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Abstract—Osteoporosis commonly diagnosed as a bone 

disorder that affects the significant portion of the population. 

The Dual X-ray Absorptiometry (DXA) is one of the most 

accepted standard methods of analyzing the bone disorder, but it 

is exorbitant. However X-ray is a cost effective, therefore the 

proposed work introduces a new technique to improve 

osteoporosis detection and classification of femur bone X-ray 

image. The spectral based sub band images texture features are 

used to analyze the Region Of Interest (ROI) femoral head 

trabecular bone. A spectral domain based on the Two-

Dimensional Discrete Wavelet Transform (2D-DWT) is used to 

represent variations in finer details in the image. Trabecular 

femur bone texture is determined only by horizontal, vertical, 

and diagonal sub bands of DWT coefficients.  The sub band 

images are further enhanced by applying the maximum response 

filter (MRF) at different scales, thereby enhancing the most 

significant responses. Consequently, the sum of the MRFs of 

different scale images is considered as the supervised database. 

To detect osteoporosis, the test and supervised images are 

analyzed to calculate two significant attributes such as Zero 

Mean Normalized Cross-Correlation (ZMNC) and Sum Squared 

Difference (SSD). Based on experimental results, the 

performance metrics measure is improved in all aspects over 

current methods. 

Keywords—Classification; feature; femur; images; normal; 

osteopenia; osteoporosis; texture 

I. INTRODUCTION 

This The disease osteoporosis causes loss of bone density 
and increases the risk of fractures in millions of people 
worldwide [1][2]. Debilitating fractures can be effectively 
managed and prevented with early detection. Osteoporosis is 
often diagnosed with X-ray imaging, but traditional methods 
often rely on visual assessment, which may be subjective and 
subject to human errors [3]. A Convolution Neural Network 
(CNN) model was used to assess osteoporosis based on hip 
radiographs. An ensemble model with clinical covariates was 
also investigated [4]. From a single Dual-Energy X-Ray 
Absorptiometry (DXA) image of the proximal femur, 
reconstruct both the 3D bone shape and the Three Dimension 
Bone Mass Density (3D-BMD) distribution [5]. A set of 
Quantitative Computed Tomography (QCT) scans, a statistical 
model of the combined shape and BMD distribution is 
constructed to detect osteoporosis [6]. A method of estimating 
the apparent physical BMD of the proximal femur from CT 
images with good accuracy when evaluating post-menopausal 

osteoporosis. The proximal femur radiographs were analyzed 
using Gabor filters, wavelet transformations, and fractal 
dimensions-based texture analysis methods to identify 
osteoporosis [7]. The volumetric estimation of femur bone 
based on an x-ray image using a computer-based algorithm to 
detect osteoporosis [8]. A comparison of BMD of CT scan and 
BMD revealed a difference of 4.53 percent in volume. An 
analysis was conducted to examine how they related with 
BMD and anthropometric factors such as height and weight 
[9]. In recent study, 34% of Indian women had osteoporosis 
and 20% had osteopenia, respectively. The study measured the 
energy of the proximal femur trabecular bone as a result of 
osteoporosis postmen pause using dual-tree complex wavelet 
transforms (DT-CWT) [10]. DT-CWT has been successfully 
used to analyze the trabecular pattern on the right proximal 
femur on radiographs. The Gabor filter was used to calculate 
features from the trabecular pattern recorded on proximal 
femur radiographs in the assessment of osteoporosis [11]. In 
order to justify the classification result, Singh indexes of 
trabecular pattern are used. An expert system designed for 
diagnosing osteoporosis based on measuring bone texture using 
fuzzy X-ray images [12]. A fuzzy X-ray imaging technique 
analyzes trabecular bone texture and thus calculates bone 
density by combining resolution enhancement algorithms and 
edge detection algorithms. Both algorithms are efficient at 
calculating disease severity. An image of a femur bone can be 
classified using morphometric features from the image 
segmented [13]. The femur bone structure is segmented using 
active contour method from a 2D X-ray radiograph and 
morphometric measurements are calculated in pixel values for 
head diameter, head height, neck diameter, and 
intertrochanteric distance in the proximal femur and neck. 
Several images of patients with osteoporotic, osteopenia, and 
normal conditions are collected using computer tomography 
(CT) [14]. MIMICS software is used to analyze the condition 
more effectively. Initially, the images must be imported into 
the MIMICS software for analysis. An effected, normal femur 
bone is generated in 3D by MIMICS software and osteopenia 
and normal patients can use the analysis as a precaution. 
Gradient Harmony Search (GHS) optimization based deep 
networks are used for classification [15]. A Harmonic Search 
(HS) algorithm is incorporated with a Gradient Descent (GD) 
algorithm is used to build GHS. Utilizing machine learning and 
image processing techniques to detect early-stage fractures 
caused by osteoporosis in femur image [16]. The Fracture Risk 
Assessment tool (FRAX) calculations were performed 
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retrospectively on 560 volunteers (age at least 50 years) who 
underwent hip-spine X-rays, BMD scans and FRAX tool 
calculations [17]. To determine whether Cortical Thickness 
Index (CTI) and Canal Flare Index (CFI) are used to calculate 
neck BMD (nBMD) on anteroposterior radiographs, both 
indices were measured on anteroposterior radiographs. Based 
on characterization of BMD and trabecular bone 
microarchitecture, an automated approach was developed to 
predict biomechanical bone strength in proximal femur 
specimens [18]. As a diagnostic biomarker for osteoporosis 
diagnosis, tracking disease progression, and evaluating the 
response to therapeutic intervention, the automated and 
objective way trabecular bone microarchitecture is analyzed, 
and the subsequent redaction performance achieved suggest 
that it may be utilized in this manner. Two Deep learning 
Convolution Neural Networks (DCNNs) i.e., Alex Net and 
Google Net were trained on anteroposterior hip radiograph 
images to detect risk in the neck of femur [19]. Feasible 
element analysis (FEA) of the hip guided by high-resolution 
magnetic resonance imaging (MRI) has been developed to 
assess subject-specific bone strength [20]. If technique is 
further validated, management of hip fracture risks in the clinic 
may be useful. Researchers evaluated the involvement of spinal 
and hip flexion discordances in Korean patients with a typical 
femoral fractures and femur neck fractures [21]. Discordances 
might be affected by osteoporotic fracture locations. Using 
conventional radiographs obtained for various indications, a 
robust opportunistic screening tool for osteoporosis and 
fracture risk assessment was demonstrated to provide xertebral 
compression fractures detection, BMD estimation, and fracture 
risk estimation in a fully automated manner [22]. In assessing 
fracture risk, parameters and their interactions are analyzed 
[23]. In a multiple regression analysis, bone density and the 
loading directions in a sideways fall have been considered as 
independent variables along with the fracture risk index as a 
dependent variable. As independent variables, angle about the 
femoral neck axis at the coronal and transverse ends of the 
shaft was measured in both coronal and transverse planes. In 
the interaction analysis of parameters, bone density appears to 
have a greater effect on fracture risk. Although analyzing the 
current techniques for detecting osteoporosis in femur images 
helps to a definite conclusion, while several challenges remain, 
there is a need for the work to be advanced. To produce more 
comprehensive work and enhance system performance, a new 
approach of osteoporosis detection in femur image based on 
spectrum analysis is introduced in this work. 

II. METHODOLOGY FOR PROPOSED WORK 

The Fig. 1 illustrates the proposed work analysis is on the 
basis of spectral domain, 2D-DWT spectral domain analysis  is 
introduced to  analyze texture features of the X-ray of ROI 
femur images, offering valuable insights beyond the visual 
representation. 

An analysis of the spectral features of image texture in two 
dimensions is carried out by one level decomposition of 2D-
DWT [24][25]. Detecting osteoporosis involves two steps: the 
first is analyzing texture features on ROI images of femur 
bones and then deciding whether the given test image is normal 
(healthy bone) or abnormal (osteopenia or osteoporosis). By 
focusing on Horizontal Coefficients (HC), Vertical 

Coefficients (VC), and Diagonal Coefficients (DC), the feature 
dimension in 2D-DWT can be reduced substantially. As a 
result, the proposed system model can detect bone diseases 
effectively with this reduced set of image texture. Ultimately, 
this work aims to obtain meaningful information from texture 
features by using symmetric wavelet family. With wavelet 
transformations, extracting texture information at different 
directions depending on how it is oriented. Further the image 
texture analysis of 2D-DWT is executed using MRFs at 
different scales. In order to classify normal or abnormal 
images, test and supervised images are matched based on 
attributes of ZMNCC and SSD of MRFs. 

2D-DWT
ROI Femur 

Image
Maximum 

Response

Filters

Abnormal

Image Texture 

Supervised Data Base

Test

Image Texture Matching Decision

Normal

 

Fig. 1. Block schematic for the suggested work. 

A. Two Dimension Discrete Wavelet Transform 

The 2D-DWT is a versatile and powerful tool for analyzing 
and processing 2D data like images, and its significance be 
situated in its capability to provide a compact and meaningful 
representation that facilitates various texture analysis in 
spectral domain. There were four sub band images in a one 
level decomposed 2D-DWT is illustrated in Fig. 2. Rows of the 
input image matrix are first transformed with an LPF and HPF, 
then its columns are treated with an LPF and HPF to produce 
sub band images are like approximation coefficients i.e., AC 
and three detail sub band images like HC, VC, and DC 
correspond to horizontal, vertical, and diagonal coefficients, 
respectively and each sub band images size are quarter of the 
input image. All three detail coefficients are represented half-
resolutions of the input image and edge variations are almost 
exclusively visible in these three images. These three sub band 
images are considered in this study because of their texture 
information gives significant variations of intensity for 
analyzing the trabecular micro architecture of the femur bone. 

The Symlet-4 wavelet is the basis function used in this 
work, due to its higher-scale detail coefficients are captured as 
finer details and texture patterns, while lower-scale detail 
coefficients capture broader texture patterns. The Symlet-4 is a 
type of wavelet that is used due to its balance between compact 
support and frequency localization. The sym in Sym4 stands 
for symmetric, which means that it has a symmetric shape. It is 
like Daubechies wavelets but have slightly different properties. 
The significance of using the Symlet-4 wavelet for image 
texture analysis lies in its ability to capture both low-frequency 
and high-frequency information effectively. 

B. Two-Dimensional Maximum Response Filter 

A two-dimensional maximum response filter (2D-MRF) is 
introduced in this work to extract fine and coarse detail 
information of HC, VC and DC and its kernel is based on  a 
Gaussian filters [26][27] at different scales. Each pixel location 
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must be analyzed in order to obtain the response values, first 
convolve the image with the Gaussian filter at multiple scales. 
Thus, the filtered output is calculated by taking the maximum 
value from the responses for each pixel location. 
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Fig. 2. First level 2D-DWT decomposition structure. 

The MRF can help improve the robustness of feature 
extraction methods to noise and variations in the image. By 
emphasizing the most prominent responses and suppressing 
less significant ones, the filter helps in reducing the influence 
of noise or unwanted artifacts on the extracted features. The 
MRF can exhibit scale properties i.e., it can be effective in 
detecting the same pattern at different scales within the image. 
It helps in reducing the computational load by focusing on the 
most relevant features, this results in a faster processing and 
analysis of image datasets. Eq. (1) is the 2D-MRF using a 

Gaussian function, given an input sub band images ( , )BS x y , 

which are HC, VC and DC. 

2 2

2

( )

(2 )

2

1
( , )

(2 )

x y

G x y e 



 



  (1) 

However, the Gaussian filter is characterized by a standard 
deviation, which is a scaling factor of the filter to compute the 
response values at each pixel location in the image i.e., where 
is the different scales and perform convolution operation (   ) 

between the image and the Gaussian filter at multiple scales 
shown in (2). 

( , , ) ( , ) ( , , ) V BR x y S S x y G x y S 
  (2) 

Each pixel location is evaluated at multiple scales after 
obtaining the response values, a maximum response filter 
selects the response value that is the highest i.e., from the set of 
responses for each pixel demonstrated in (3). 

 ( , ) ( , ,1), ( , , 2),....., ( , , )max V V VR x y max R x y R x y R x y S
 (3) 

The total number of scales used in this work are two 
different sets i.e., [0.3, 0.6, 0.9] and [5, 10, 15] to get fine and 
coarse detailed texture information respectively. Finally, the 

filtered output ( , )oF x y  as in (4) represents the maximum 

pixel value at each location. 

( , ) ( , )o maxF x y R x y
  (4) 

The MRFs process efficiently highlights the most salient 
features across different scales and emphasizes significant 
structures while suppressing less important ones. The scale 

values determine the filter output i.e., Gaussian filter standard 
deviation (  ) can be adaptable to for fine and coarse image 

texture requirements. The total texture image ( , )IT x y  is a 

supervised image texture data in this proposed work, its value 

is calculated at each pixel location ( , )x y  in the image using 

the following algorithm. 

Algorithm : Determination of fine and coarse texture image 

information 

Step1: Fine texture analysis  

            Find, 
1( , ) ( , )maxF x y R x y  

            ( , ) ( , ,0.3), ( , ,0.3), ( , ,0.3)max H V DR x y max R x y R x y R x y
 

            
The  ( , ,0.3)HR x y  is filter response due to HC input   

             at 0.3 scale, the ( , ,0.3)VR x y   is  filter       response     

             due to VC  input at  0.3 scale   and  ( , ,0.3)DR x y  is   

             filter response  due  to DC  input  at 0.3  scale. 

             Similarly, find  
2( , ) ( , )maxF x y R x y  at 0.6 scale   

              and  
3( , ) ( , )maxF x y R x y

 
 at 0.9  scale. 

Step 2:  Determine fine texture sum i.e., ( , )FS x y   

Step 3: Coarse texture analysis 

  Repeat Step 1:   to find  
4( , )F x y  at 5 scale,    

             
5( , )F x y   at 10 scale and  

6( , )F x y   at 15 scale.   

Step 4: Determine coarse texture sum  ( , )CS x y  

                
4 5 6( , ) ( , ) ( , ) ( , )CS x y F x y F x y F x y     

Step 5:   Determine total texture image i.e.,  ( , )IT x y  

               ( , ) ( , ) ( , )I F CT x y S x y S x y   

 

C. Matching and Decision process 

A general match is based on finding test features that 
correspond to supervised databases [28]. In the matching 
process in which the test images and supervised images texture 
features are matching based on two attributes such as Zero 
Mean Normalized Cross-Correlation (ZNCC) and Sum of 
Squared Difference (SSD), which are obtained from total 
texture image i.e., The classification of the input test image is 
developed on having the highest possible value of ZNCC and 
lowest value of SSD, which are considered as the matching test 
classes. Pixels are compared based on their intensity values. 
These attributes help quantify the similarity between two 
images. Based on their intensity values, these attributes help 
quantify the similarity between two images. 

 Zero Mean Normalized Cross-Correlation (ZNCC): 
Using the ZNCC, the cross-correlation between two 
images can be normalized. An image's similarity can be 
measured with it, where a value close to 1 indicates 
high similarity, while a value close to -1 indicates high 
dissimilarity. 

Eq. (5) is the ZNCC between two images supervised i.e.   
test given by: 
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 
 (5) 

Where: ( , )IS i j    is the intensity value of supervised image 

IS    at position ( , )i j .  The ( , )T i j  is the intensity value of 

test image T  at position ( , )i j , The ( )IS  is the mean intensity 

value of image. The is the mean intensity value of image T , 

the  denotes the summation over all pixel positions ( , )i j  in 

the images. 

 Sum of Squared Difference (SSD): It measures the 
difference between corresponding intensity of the 
supervised image and the test image by summarizing 
their squares. Using the (6), it measures the degree of 
two images diverge from one another. 

   
2

, ( , ) ( , )I ISSD S T S i j T i j   (6) 

where, the summation is performed over all pixel positions 
in the images. In SSD case, test and supervised images are 
more similar when the value is lower. Based on SSD and 
ZNCC, the test input ROI image class is identified by 
reflecting on D1=Max {ZCCC} and D2= min {SSD}, if both 
D1 and D2 conditions are satisfied, that class is reflected as 
prediction class. The three classes are employed in this work as 
abnormal labeled as class-1 (osteopenia), class-2 (osteoporosis) 
and class-3 (normal). 

III. PERFORMANCE METRICS 

The confusion matrix provides valuable insights into the 
model performance by quantifying different types of 
classifications [29]. The Table I displays the general confusion 
matrix used in the field of medicine to categorize the patient's 
positive and negative health conditions. From the confusion 
matrix, calculate various evaluation metrics, such as accuracy, 
precision, recall, and F1 score, which help assess the model 
effectiveness in different aspects. 

TABLE I. GENERAL REPRESENTATION OF CONFUSION MATRIX 

 Predicted Negative Predicted Positive 

Actual Negative TN (True Negative) FP (False Positive) 

Actual Positive FN (False Negative) TP (True Positive) 

1) True positive (TP): Indicates that, number of samples 

were positive predictions made correctly. 

2) True negative (TN): Number of negatively predicted 

samples that were correct. 

3) False positive (FP): Incorrectly predicted positive 

samples are measured by this metric.  

4) False negative (FN): Number of negative samples 

predicted incorrectly. 

In accordance with the confusion matrix, here are various 
evaluation metrics: Model accuracy measures how accurate the 
predictions as in (7), 

( )

( )

TP TN
Accuracy

TP TN FP FN




     (7) 

Precision (Positive Predictive Value, PPV), estimates the 
positive samples predicted correctly by the model using (8),     

( )

TP
Precision

TP FP


   (8) 

Recall (Sensitivity, True Positive Rate, TPR) measures the 
model ability to correctly identify positive samples among all 
actual positive samples as in (9), 

( )

TP
Recall

TP FN


   (9) 

Specificity (True Negative Rate, TNR) measures the 
model's ability to correctly identify negative samples among all 
actual negative samples measured in (10), 

( )

TN
Specificity

TN FP


   (10) 

The F1 score represents in (11) is a balanced measure of the 
model's performance by combining precision and recall 
together. 

2( * )
1

( )

Precision Recall
F score

Precision Recall


   (11) 

Analyzing the performance of a model using these metrics 
provides valuable insight into different aspects. A high 
accuracy indicates overall good performance, it indicates good 
class predictions when precision and recall are high. As it 
incorporates both precision and recall, the F1 score is 
particularly useful when both are equally important. 
Interpretation of these evaluation metrics must consider the 
context. If there is an imbalanced dataset, accuracy might not 
be a reliable measure, and other metrics like precision-recall 
curve or area under the receiver operating characteristic (AU-
ROC-) curve might be more informative [30]. This curve plots 
between two parameters: True Positive Rate (TPR), False 
Positive Rate (FPR).  

IV. DATASET DESCRIPTION 

Total 51 X-ray femur images were collected with the focal 
distance was set at 0.812 m. The X-ray parameters were 75-80 
kV and 80 mAs for all patients. This study used images 
supplied by a reputed Bangalore hospital, Karnataka state, 
India. The image data consist of 2D radiographic images in 
JPEG format of size 2140×1760. In that 23 are normal, 10 are 
osteopenia and 18 are osteoporosis femur images. Table II 
listed the region of interested (ROI) femur bone of left and 
right of size 170×114, the total 102 ROI images including both 
left and right, which are considered to verify the proposed 
system experimentally. 
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TABLE II. DESCRIPTION OF DATA SET 

Total ROI images:  (23×2) + (10×2) + (18×2)=102     

Normal femur bone 
Abnormal femur bone 

Osteopenia femur Osteoporosis femur 

Left Right Left Right Left Right 

23 23 10 10 18 18 

A. Experimental Dataset Division 

The proposed model can be experimentally tested by 
dividing the 102 total ROI of the image dataset into different 
cross-folding schemes, in the following Table III. A 
comparison between this and a previously conducted study on 
cross-folding methods reveals how well the proposed model 
performs. 

TABLE III. EXPERIMENTAL DIVISION OF DATASET 

Data -

folding 

Total number of samples0f ROI images = 102 

Supervised set Test set 

Normal 

Abnormal 

Normal 

Abnormal 

Osteo-

penia 

Osteop-

orosis 

Osteo-

penia 

Osteop-

orosis 

Two-

fold 

12+12 5+5 9+9 11+11 5+5 9+9 

24+10+18=52 22+10+18=50 

Three-

fold 

16+16 7+7 12+12 7+7 3+3 6+6 

32+14+24=70 14+6+12=32 

Four-
fold 

18+18 8+8 14+14 5+5 2+2 4+4 

36+16+28=80 10+4+8=22 

V. RESULTS AND DISCUSSION 

The input image of femur is a very low-quality image 
because the X-ray image of inner trabecular bones micro-
architecture in not visible to distinguish between healthy bone 
and osteoporotic bone. Because of its versatility, DWT has 
become a very useful method for the process of decomposing 
an image into several resolutions through wavelet 
decomposition. By concentrating the wavelet energy in time 
and keeping its periodic properties, wavelets can 
simultaneously analyze both time and frequency   of pixels 
intensity in the image. By decomposing a digital image into 
different sub bands, the 2D-DWT can resolve frequencies more 
precisely and time resolutions more coarsely at lower 
frequencies. Fig. 3 shows 2D-DWT output AC, HC, VC and 
DC. The approximation coefficient is same as the input image, 
Horizontal coefficient sub band is giving the horizontal 
information of texture features, vertical coefficient sub band 
gives the vertical information of texture features similarly the 
diagonal sub band gives the diagonal texture features. Only 
HC, VC and DC are texture information is sufficient to analyze 
the texture features of inner trabecular bones micro-
architecture of femur bone. 

 

Fig. 3. First level 2D-DWT decomposition structure. 

2D-DWT followed by Maximum Response Filter (MRF) 
based sub band image texture analysis is a technique used in 
order to extract meaningful texture features from an image as 
shown in Fig. 4, Multi-resolution analysis. In 2D-DWT, the 
image is decomposed into multiple frequency bands, 
representing different levels of detail or textures. This multi-
resolution property is well-suited for texture analysis as 
textures often exhibit varying degrees of complexity at 
different scales. By applying the MRF at two sets of scale as 
[0.3, 0.6, 0.9] and [5, 10, 15] and filter size is technique after 
the 2D-DWT of HC, VC and DC, the most significant texture 
information from different sub bands can be extracted. MRF 
highlights regions with the maximum texture response, 
enhancing the representation of dominant texture patterns. 

       
(a)        (b)                 (c) 

Fig. 4. First image texture (a) sum of MRFs scale at [0.3, 0.6, 0.9] (b) sum 

of MRFs scale at [5, 10, 15 (c) sum image of (a) and (b). 

The matching is taking place between the supervised image 
database and test images based on SSD and ZNCC attributes 
and then decision is made on these attributes to decide whether 
the test ROI is abnormal (osteoporosis or osteopenia) or normal 
bone based on maximum ZNCC and minimum SDD. 

According to the Table IV, different data cross-folding 
methods result in different confusion matrices. By applying 
cross-validation techniques, whether the model will perform 
well on unseen data and avoid over fitting or under fitting 
issues. As a result of supervised dataset for four folding, that is, 
80 samples and the test dataset is 22 samples, the method 
achieves better results for four folding because of a greater 
number of supervised datasets. The system will have a larger 
number of texture patterns to decide whether an image is 
normal or abnormal, however osteoporosis and osteopenia 
bones both are included as abnormal in this proposed work. 
Actual positive sample (abnormal) set in test data set is 12 
(osteoporosis and osteopenia) and actual negative sample set is 
10 (normal). In the case of four folding, the model gives TP=12 
and FP=0, which gives better results, however in normal case 
gives TN=9 out of 10 and FN=1. 
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TABLE IV. CONFUSION MATRIX FOR DIFFERENT FOLDING 

Data Folding TP FP TN FN 

Two-fold 11 3 4 4 

Three-fold 12 2 5 3 

Four-fold 12 0 9 1 

Using graphical representation of non-normalized 
confusion matrix, system performance can easily assess at a 
momentary look as shown in Fig. 5 for four folding data. The 
diagonal of the confusion matrix (from top-left to bottom-right) 
represents correct predictions, while off-diagonal elements 
indicate misclassifications. This graphical representation helps 
in understanding the model strengths and weaknesses in terms 
of classifying different instances. The observation of four 
folding data from Table IV gives the TP=4+8=12 i.e., 
abnormal bone = Osteopenia (class-1) + Osteoporosis (class-2) 
and TN=10 i.e., normal bone (class-3). The system predicts 
better results with false negative was the only one sample, 
which is actually normal (healthy) bone showing it as 
abnormal. 

 

Fig. 5. Graphical representation confusion matrix for four folding data. 

On all metrics measures, four folding achieves better results 
than the other folding, as revealed in Table V. Model 
performance metrics provide quantitative measures to evaluate 
how well a machine learning model is performing on a dataset. 
Metrics like accuracy, precision, recall, and other 
characteristics are essential for evaluating model. The choice of 
data folding (i.e., cross-validation method) can impact the way 
these metrics are computed. 

TABLE V. MODEL PERFORMANCE METRICS FOR DIFFERENT DATA 

FOLDING 

Data 

Folding 
Precision Recall Specificity 

F1 

Score 
Accuracy 

Two- 
fold 

78.57% 73.33% 57.14% 75.85% 68.18 % 

Three-

fold 
85.71% 80.00% 71.42% 82.75% 77.27% 

Four-
fold 

100% 93.33% 100% 96.54% 95.45% 

Testing of the proposed model includes a general classifier 
technique in machine learning [31]: K-Nearest Neighbor 
(KNN), Discriminant Analysis (DA), Naive Bayes (NB), 
Decision Tree (DT), Support Vector Machine (SVM), and 
Random Forest (RF).  For each classifier and proposed method, 
total twenty-one experiments were conducted including two, 
three, and four data folding. Comparing the system accuracy 

for different classifiers is an essential step in selecting the most 
suitable classifier for a specific task. The accuracy metric 
provides an overall measure of how well the classifier performs 
in terms of correctly classifying instances. The Table VI shows 
that the proposed model is more accurate than other 
classification techniques, due to the effectiveness of the texture 
analysis method, so the system could be able to distinguish 
between normal and abnormal. 

TABLE VI. FOUR-FOLD OF DATA COMPARISON OF SYSTEM ACCURACY 

FOR DIFFERENT CLASSIFIERS 

Classifiers 
Accuracy 

Two-fold Three-fold Four-fold 

KNN 58% 59%  61 % 

DA   62%    64%  73 % 

NB   60%  64%  66% 

DT  67%  67%  68% 

SVM  74%  75% 75% 

RF  68%  68%  68% 

Proposed 

method 
68.18 % 77.27% 95.45% 

The Table VII indicates that the proposed method for 
texture analysis performed better than other classification 
techniques, allowing the system to distinguish normal from 
abnormal behavior based on the performance evolution results. 

TABLE VII. FOUR-FOLD COMPARISON OF PERFORMANCE EVALUATIONS 

FOR DIFFERENT CLASSIFIERS 

Classifiers Precision Recall Specificity 
F1 

Score 

AU-ROC 

value 

 KNN 60 % 72 % 57% 65% 0.6128 

DA 65% 72 % 60 % 68% 0.6789 

NB  54% 60 % 67% 66% 0.6534 

DT 60 % 60 % 60 % 60 % 0.5934 

SVM 94 % 91% 93% 94% 0.9489 

RF 92 % 92% 93 % 94 % 0.9393  

Proposed 

method 
100% 93.33% 95.45% 96.54% 0.9659 

The An AU-ROC (Area Under the Receiver Operating 
Characteristic) plot is a graphical representation used to 
compare the performance of different classifiers in 
classification tasks. When comparing different classifiers using 
AU-ROC plots, the classifier with the highest AU-ROC value 
is generally considered as best performance. AU-ROC plot of 
the proposed system with two classification techniques is 
revealed in Fig. 6, in which the proposed occupies a larger area 
under the curve than the other two. 

It is critical to compare the performance of different 
methods for determining osteoporosis in the femur bone when 
analyzing image data. Various methods or algorithms are 
employed to solve a particular problem, and comparing their 
performance helps in selecting the most effective one. As an 
illustration of the system performance for the different methods 
is as revealed in Table VIII, nevertheless proposed method 
performs better when data is folded four times. 
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Fig. 6. An AU-ROC plots. 

TABLE VIII. PERFORMANCE COMPARISON WITH DIFFERENT METHODS 

Ref. No. 

 
Specificity 

F1 

Score 
Accuracy Sensitivity 

AU-

ROC 

[4] 88.24% 89.43% 88.50% 88.19% 89.01% 

[15] 93.70% 93.39% 93.39% 93.90% 92.37% 

[17] 84.20% 85.39% 91.39% 92.80% 86.50% 

[22] 94.19% 90.28% 91.27% 80.29% 93.43% 

Proposed 
Method 

95.45% 96.54% 95.45% 93.33% 96.59% 

VI. CONCLUSION 

The spectral based analysis of texture features of ROI 
femur X-ray images produces very good results because the 
2D-DWT gives pixel intensity variation at different scale. 
Therefore, the texture features are helpful in obtaining the 
significant texture using MRFs. The various scales in image 
texture benefit from the MRFs, contributing to its effectiveness 
and the capability to process fine and coarse information 
efficiently. By calculating the two attributes as ZNCC and SSD 
of the test and supervised images in the matching process helps 
to classify the test image. The best matching between the test 
and the supervised database is considered as the maximum 
correlation and minimum sum difference which is exactly the 
test predicted classes. The proposed work achieves better 
osteoporosis detection with less error. 

In future the evaluation can be made in spatial domain so 
that the system can be in contrast with proposed one however 
requiring extra database to boost the system performance. The 
femur X-ray images must be derived from a customary public 
dataset to make this work useful in medical disciplines for 
early detection of osteoporosis. A generalized X-ray image 
dataset for the femur is not available to make the proposed 
work more significant for detecting osteoporosis. 
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