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Abstract—It is challenging to detect small targets in aerial 

images captured by drones due to variations in target sizes and 

occlusions arising from the surrounding environment. This study 

proposes an optimized object detection algorithm based on 

YOLOv7 to address the above-mentioned challenges. The 

proposed method comprises the design of a Genetic Kmeans (1- 

IoU) clustering algorithm to obtain customized anchor boxes that 

more significantly apply to the dataset. Moreover, the 

SPPFCSPC_group structure is optimized using group 

convolutions to reduce model parameters. The fusion of Spatial 

Pyramid Pooling-Fast (SPPF) and Cross Stage Partial (CSP) 

structures leads to increased detection accuracy and enhanced 

multi-scale feature fusion network. Furthermore, a Detect Head 

is incorporated into the classification phase for more accurate 

position and class predictions. According to experimental 

findings, the optimized YOLOv7 algorithm performs quite well 

on the VisDrone2019 dataset in terms of detection accuracy. 

Compared with the original YOLOv7 algorithm, the optimized 

version shows a 0.18% increase in the Average Precision (AP), a 

reduction of 5.7 M model parameters, and a 1.12 Frames Per 

Second (FPS) improvement in the frame rate. With the above-

described enhancements in AP and parameter reduction, the 

precision of small target detection and the real-time detection 

speed are increased notably. In general, the optimized YOLOv7 

algorithm offers superior accuracy and real-time capability, thus 

making it well-suited for small target detection tasks in real-time 

drone aerial photography. 

Keywords—Small target detection; drone aerial photography; 

YOLOv7; clustering algorithm; spatial pyramid pooling 

I. INTRODUCTION 

Modern urban areas are characterized by dense city blocks, 
tall buildings, high population density, and heavy traffic, and 
they are capable of creating complex and dynamic 
environments. Satellite remote sensing is subjected to 
limitations in capturing high-resolution and high-dynamic 
range information for small targets for its revisit cycles, spatial 
resolution, and urban canyon effects. As sensor technology has 
been leaping forward, Unmanned Aerial Vehicles (UAVs) 
equipped with various sensors have emerged as effective tools 
for dynamically acquiring target images. UAV aerial imaging 
offers several advantages (e.g., a wide field of view, strong 
target detection capability, high real-time performance, as well 
as comprehensive information acquisition). Accurate detection 
and recognition of small targets through UAV aerial imaging 
enable fine-grained monitoring and provide valuable data for 
data-driven decision-making. However, conventional object 
detection algorithms struggle to effectively localize and 
accurately recognize small targets due to their low resolution 
and high noise interference. 

Deep learning-based object detection algorithms have 
become the mainstream method due to their optimized 
efficiency and accuracy. The above-mentioned algorithms 
typically employ two-stage or one-stage detection strategies. 
Two-stage detection methods generate a series of candidate 
object boxes, which are subsequently filtered and refined by 
classifiers. Examples of two-stage algorithms include Faster 
Region-based Convolutional Neural Network (Faster R-CNN) 
[1] and Region-based Fully Convolutional Network (R-FCN) 
[2]. One-stage detection methods utilize convolutional neural 
networks [3] to extract image features and perform object 
classification and localization based on the above-described 
features. Algorithms such as You Only Look Once (YOLO) 
[4]–[11] and Single Shot MultiBox detector (SSD) [12] offer 
higher accuracy and generalization capability. To be specific, 
YOLOv7 has been confirmed as an advanced detection 
algorithm in the YOLO series, surpassing previous versions for 
inference speed and detection accuracy. Besides, it exhibits 
enhanced performance in detecting targets at different scales. 
However, challenges remain when YOLOv7 is employed for 
small target detection in UAV aerial imaging. First, small 
targets exhibit weak feature representation, such that they turn 
out to be susceptible to background interference and result in 
issues (e.g., false positives and false negatives). Second, deep 
learning models require significant computational resources for 
training and inference, whereas UAV aerial systems are 
subjected to limited computing resources and storage capacity. 
Accordingly, improving model size and computational 
efficiency becomes necessary. Lastly, deep learning algorithms 
are dependent on large-scale, high-quality annotated datasets to 
enhance their generalization capability, which is challenging to 
obtain specifically tailored for small target detection in UAV 
aerial imaging. 

In this study, an enhanced YOLOv7 algorithm is presented 
for detecting small targets in UAV aerial imaging, to tackle the 
above challenges and fulfill the improvement requirements. 
The VisDrone2019 dataset is employed as the benchmark for 
detection. The proposed algorithm incorporates several 
significant enhancements, which comprise the redesign of 
anchor box sizes using an optimized clustering algorithm, the 
reduction of unnecessary candidate boxes, the reconstruction of 
the Spatial Pyramid Pooling (SPP) module, the integration of 
group convolutions and improved pooling connections, the 
reduction of model parameters, and the increased detection 
efficiency. Furthermore, a more accurate detection head, 
termed Detect, is introduced for target classification and 
position regression. The specific contributions of this study are 
elucidated below: 
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 The design of a high-precision anchor box clustering 
algorithm, termed Genetic Kmeans (1-IoU), employs 
genetic algorithms to optimize Kmeans clustering and 
adopts Intersection over Union (IoU) distance as a 
novel distance metric. The above-described algorithm 
leads to  higher detection accuracy while reducing the 
likelihood of missing small targets. 

 The optimization of the SPP module, 
SPPFCSPC_group, by integrating group convolutions 
and combining the SPPF module and the CSP 
structures. This enhancement improves the ability 
exhibited by the algorithm to detect multi-scale targets 
and reduces model complexity while increasing object 
detection accuracy. 

 The adoption of a more precise detection head, termed 
Detect, achieves higher precision and recall in target 
classification and localization. Accordingly, false 
positives are reduced significantly, and the model is 
endowed with the enhanced ability to distinguish 
between targets and the background. 

The optimized YOLOv7 algorithm is assessed on 10 target 
categories. Comparative analysis with the baseline YOLOv7 
model demonstrates a 0.18% increase in Average Precision 
(AP), a reduction of 5.7% in model parameters, and a 1.12 
times improvement in Frames Per Second (FPS). As revealed 
by the experimental results, the optimized YOLOv7 algorithm 
achieves high precision and speed in the recognition of tiny 
objects during UAV aerial imagery. 

II. RELATED WORK 

In object detection, small targets are commonly defined in 
accordance with the relative scale, with a bounding box area to 
image area ratio less than the square root of 0.33, or following 
the absolute scale, with a resolution less than 32 by 32 pixels. 
In UAV aerial imaging, tiny target detection requires 
adjustments in data format, algorithm structure, and parameter 
settings to tackle several challenges (e.g., small target size, 
weak feature representation, occlusion, deformation, high noise 
interference, and real-time requirements). In general, 
researchers address the above-mentioned challenges by 
implementing multi-scale detection strategies to cope with 
small targets of different sizes, incorporating contextual 
information and spatial constraints to increase the target 
localization accuracy, and introducing attention mechanisms to 
handle complex scenarios with occlusions and deformations 
involved. 

For algorithm optimization, Zhang et al. [13] proposed 
YOLOv7-RAR algorithm for urban vehicle recognition. To be 
specific, these researchers reconstructed the backbone network 
using the Res3Unit structure, with the aim of enhancing the 
model’s capability to capture more nonlinear features. 
Moreover, they introduced an ACmix attention mechanism to 
address weak target localization arising from background 
interference. Zhu et al. [14] developed TPH-YOLOv5 
algorithm for target detection in UAV captured scenes. In the 
above-described method, YOLOv5 serves as the baseline 
model, a Transformer prediction head is employed, and a 
Convolutional Block Attention Module (CBAM) attention 

mechanism is incorporated to enhance detection performance 
in dense aerial target scenarios. The enhanced algorithm 
achieves a 7% increase in accuracy compared with the baseline 
YOLOv5 model. However, the above-described methods often 
introduced additional network layers and parameters, resulting 
in increased computational complexity and limiting practical 
applications. 

For data preprocessing, augmenting the training dataset can 
lead to the enhanced diversity and quantity of small targets, 
such that the model can be endowed with the enhanced 
generalization capability. Optimizing anchor box strategies can 
reduce computational costs and improve the matching between 
anchor boxes and real targets, enhancing detection accuracy. 
For instance, Liu and Wang [15] developed a YOLO-based 
detection network for corn detection and used a technique for 
data synthesis to create simulated images of broken maize from 
genuine corn photographs, such that the challenge of acquiring 
training data for damaged corn can be addressed. In the task of 
insulator defect detection, Zheng et al. [16] optimized 
YOLOv7 algorithm using the Kmeans++ clustering algorithm 
to cluster insulator targets and generate anchor boxes that more 
significantly apply to the detection of insulator defects. In the 
video surveillance vehicle detection task, Pan et al. [17] 
designed the improved YOLOv5s algorithm using Kmeans 
algorithm to correct the anchor frames and coordinated the CA 
attention mechanism for image recognition, which provided 
more accurate vehicle detection results and higher efficiency in 
terms of processing speed. The proposed method achieved high 
detection accuracy and speed on NVIDIA TX2 platform. 
However, optimized anchor boxes may struggle to accurately 
differentiate targets when they are occluded or overlapped, 
such that the detection accuracy can be reduced. 

To conform to real-time requirements, algorithm 
optimization techniques (e.g., network pruning and 
quantization) are capable of reducing model computation and 
memory usage, such that the inference process can be 
expedited. Moreover, computational complexity can be 
reduced using lightweight model structures. Wu et al. [18] 
employed pruning techniques to lightweight the YOLOv4 
network for concrete crack detection, where the EvoNorm-S0 
algorithm was adopted to increase the detection accuracy. The 
resulting model achieved a high mAP value of 92.54% and a 
15.9% reduction in the inference time, such that a real-time and 
high-precision detection algorithm was yielded. With the aim 
of detecting rice diseases and pests, Jia et al. [19] improved the 
YOLOv7 method and used the lightweight MobileNetV3 
network for feature extraction, such that the model parameters 
were reduced, while an accuracy of 92.3% was generated. 
However, lightweight structures or network pruning may 
reduce model capacity while adversely affecting its 
representation capability, particularly in complex scene tasks, 
such that the accuracy and generalization capability can be 
decreased. 

Despite the advancements achieved by regulating network 
structures, existing network architectures still struggle to 
reconcile detection speed and accuracy, particularly in highly 
overlapping small target areas. Thus, in-depth improvements 
should be made to increase the speed and precision of small 
target recognition algorithms based on UAV aerial imagery, 
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ultimately elevating the capabilities of small target recognition 
and fine-grained monitoring in UAV aerial photography. 

III. OPTIMIZED YOLOV7 ALGORITHM 

A. Overview of YOLOv7 

YOLOv7 refers to a single-stage deep learning-based 
object detection framework that achieves efficient object 
detection by detecting all objects in a single forward pass [11]. 
Compared with previous versions of the YOLO series, 
YOLOv7 offers faster convolution operations and higher 
detection accuracy, enabling it to detect more fine-grained 
objects while maintaining high detection speed. The YOLOv7 
network structure comprises three components, i.e., a backbone 
network, a feature pyramid pooling layer, and a Head. Fig. 1 
presents the simplified diagram of the YOLOv7 network 
structure. Backbone utilizes multiple convolutional layers to 
extract rich feature information, which is employed for 
subsequent object detection. The neck structure introduces the 
Path Aggregation-FPN (PAFPN) structure, combining feature 
maps at different scales to endow the algorithm with the 
enhanced capability to recognize various-sized things. The 
head layer employs the RepConv structure in conjunction with 
the IDetect Head to predict the target class and bounding boxes 
from the feature maps. The YOLOv7 algorithm exhibits high 
speed and real-time object detection capabilities while finding 
wide applications in areas (e.g., real-time video surveillance, 
UAV aerial imaging, and autonomous driving). It is capable of 
expediting the realization of intelligent and automated 
applications in a wide variety of scenarios. 

 

Fig. 1. Simplified diagram of YOLOv7 network structure. 

However, YOLOv7 has high memory usage and may not 
be advantageous for mobile devices or resource-constrained 
systems. Additionally, the default anchor boxes of YOLOv7 
are clustered based on the entire Common Objects in Context 
(COCO) training set, which may result in significant 
differences in target sizes and aspect ratios compared with the 
targets in specific detection scenarios. Accordingly, it is 
necessary to optimize and improve the YOLOv7 algorithm to 
better adapt to practical detection tasks and achieve superior 
detection performance. 

B. Overall Structure of the Optimized YOLOv7 Network 

In the optimized YOLOv7 object detection algorithm, 
YOLOv7 serves as the baseline model, and optimizations and 
improvements are introduced in three aspects (i.e., clustering 
anchor box sizes, SPP structure, and detection head). Fig. 2 
presents the overall structure of the optimized YOLOv7. At the 

preprocessing stage, the Genetic Kmeans (1-IoU) clustering 
algorithm is proposed in this study to redefine the shape of 
anchor boxes. The above-described algorithm adopts genetic 
algorithms to optimize Kmeans clustering while employing 
IoU distance as a distance metric. Based on this method, the 
redefined anchor box shapes are more significantly consistent 
with the custom sample data, such that the detection accuracy 
can be improved, and the false positives can be reduced. The 
spatial pyramid structure in the feature fusion network divides 
the feature map into various groups via group convolution, and 
each group is then subjected to convolution processes 
independently. Moreover, the SPPF module with a serial 
structure is combined with the CSP structure to decrease 
computational costs and increase the effectiveness of the 
receptive field. This combination forms the SPPFCSPC_group 
module, which reduces the number of parameters, accelerates 
inference speed, and enhances the generalization ability of the 
model. The head layer incorporates RepConv module and 
Detect Head. By stacking multiple convolutional layers and 
sharing weights, the model can enhance its capacity to 
represent features and better comprehend the target’s finer 
nuances. Moreover, RepConv module can adapt to targets of 
different scales and shapes. When combined with the Detect 
Head, it can be applied to feature maps at a wide range of 
levels, enhancing the model’s capacity to recognize targets of 
all sizes and forms. 

 

Fig. 2. Overall structure of optimized YOLOv7 network. 

C. Genetic Kmeans (1-IoU) Anchor Box Clustering 

Algorithms 

At the preprocessing stage of the object detection 
algorithm, this study proposes Genetic Kmeans (1-IoU) 
algorithm to recluster the anchor box shapes. Genetic Kmeans 
(1-IoU) algorithm utilizes genetic algorithms to optimize 
Kmeans clustering [20]. Following the random initialization of 
the population and iterative optimization through genetic 
operations, the problem of local optima is addressed, and 
clustering quality is improved [21]. Furthermore, under the 
presence of significant overlap between different scales and 
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categories in the dataset employed in this study, the 
conventional Kmeans algorithm employs Euclidean distance as 
the distance measure between sample points without 
considering the size and overlap of the object bounding boxes. 
This increases the uncertainty of the model regarding the object 
bounding boxes. Thus, Genetic Kmeans (1-IoU) algorithm 
introduces IoU distance, taking into account the separation 
between the center points and the overlap of the two bounding 
boxes. To be specific, this algorithm measures the similarity 
between different categories by calculating the IoU distance 
between the cluster centers and sample points. 

The specific steps of Genetic Kmeans (1-IoU) algorithm 
are elucidated below: 

1) Randomly select k samples as the initial centers of the 

clusters and randomly initialize the cluster centers. Determine 

the IoU distance between each sample's location and the 

center of each cluster, then place the sample in the cluster to 

which it is closest. The calculation equations are written in Eq. 

(1) and Eq. (2). 
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2) Transform the clustering problem into an optimization 

problem of assessing the objective function, which can be 

written as: 
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3) The clustering performance of the genetic algorithm is 

assessed using the fitness value, as shown in Eq. (7). A higher 

fitness value indicates a greater likelihood for the individual's 

genes to be selected for the next generation. 
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D. SPPFCSPC_Group Structure 

Based on the SPPCSPC module (as shown in Fig. 3(a)), the 
SPPFCSPC_group module is designed to perform feature 
fusion and dimensionality reduction at different scales in the 
Neck network structure of the improved YOLOv7 algorithm. 
Fig. 3(b) presents the structure of the SPPFCSPC_group 
module, comprising a series of group convolutions, SPPF 
module, and CSP structure. By partially connecting at different 
stages of the network and cross-linking the features of the 
earlier stage with the later stage, the SPPFCSPC_group module 

increases the performance of target recognition and the 
network's capacity to represent features. 

  

(a) (b) 

Fig. 3. Space pyramid pooling module (a) Structure of SPPCSPC module (b) 

Structure of SPPFCSPC_group module. 

To be specific, the input image undergoes feature extraction 
through a series of group convolution layers. After feature 
extraction, the SPPF module uses group convolutions to 
execute multi-scale pooling operations to capture broad and 
specific information at various scales. The input feature map is 
divided into various scales by the SPPF module, and each scale 
undergoes a group convolution operation to obtain scale-
specific feature representations [22]. The group convolutions 
concatenate the feature maps from multiple scales, resulting in 
a feature representation that contains global and local 
information at different scales. After feature fusion, The CSP 
module separates the feature map into two parts after feature 
fusion: one portion directly conducts the subsequent 
convolution operation; the other half is preprocessed before 
being fused with the previous component, such that the feature 
representation capability can be enhanced. 

Fig. 4 depicts the structure of group convolution. Eq (8) 
and (9), respectively, indicate the number of parameters in a 
single convolution kernel and the total number of parameters in 
the convolution layer. 

   {
                    
                     

 (8) 

                   (9) 

where the input is expressed as    ,    ,    , and    ; the 
output is denoted as     ,     ,     , and     . 

Group convolution divides the input feature map into g 
groups following the channel dimension while applying a 
regular convolution to the respective group. The number of 
parameters for group convolution is represented by Eq. (10). 

                 

{
     (

   

 
      )           
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where 
   

 
 denotes the number of channels in each group of 

the input feature map, i.e., the number of channels in the 
respective convolutional kernel. After group convolution is 
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completed, a regular convolution is applied to the respective 
group. Since the respective group requires at least one 
convolutional kernel, the output channel number      for 
group convolution is at least  . If the respective group covers n 
convolutional kernels, the output channel number      is given 
by     (   ) , here y expresses the number of groups. In 
other words, the output channel number      is a multiple of 
the number of groups. Accordingly, group convolution requires 
that the input and output channel numbers be evenly divided by 
the number of groups  . The reduction in the number of 
parameters is the fundamental reason behind the decrease in 
the channel number of the respective convolutional kernel to 
1/  after group convolution is completed. 

 

Fig. 4. Structure of group convolution. 

E. Optimized YOLOv7 Detection Head 

The optimized YOLOv7 algorithm utilizes the Detect Head 
in the Head layer to obtain prediction results. The feature map 
transfers the Detect Head by the optimized YOLOv7 model. 
Fig. 5 depicts the Detect module’s flowchart. The Detect Head 
utilizes a series of convolutional layers and fully connected 
layers to predict the position and class of the target. The above-
described layers extract features through convolution 
operations and nonlinear activation functions and map them to 
the spatial coordinates and class of the target. The optimized 
YOLOv7 algorithm outputs the prediction results through the 
Detect Head, along with labels and confidence scores for the 
target classes. Since no extra classifiers or regressors are 
necessary because the Detect Head can anticipate the bounding 
boxes and classes of the targets directly, the model structure 
can be simplified, computational and memory overhead can be 
reduced, and the inference speed can be increased. 
Furthermore, the Detect Head is not dependent on feature 
vectors to predict the position and size of the targets, such that 
the bounding boxes and classes can be directly predicted. 
Consequently, the Detect Head enhances the precision of target 
localization to a certain extent. 

 
Fig. 5. Flowchart of detection head. 

IV. EXPERIMENTAL VALIDATION AND ANALYSIS 

A. Dataset Preparation 

In this study, the performance of the optimized YOLOv7 
model for small object detection is assessed using the 
VisDrone2019 dataset. A total of 2158 samples are randomly 
selected to generate a custom dataset, with the aim of 
investigating the detection capabilities of the optimized 
YOLOv7 algorithm on small objects. A training set and a test 
set are divided into the custom dataset in 7:3 ratio. The original 
detection categories are further assigned to 10 classes. For 
simplicity, new names are assigned to the above-mentioned 10 
classes in the experiment. The names and distribution of the 
target categories are listed in Table I. In the custom dataset, 
based on the definition of small objects for relative scale, small 
objects account for approximately 70% of the dataset. Likewise, 
small objects take up approximately 54% of the dataset, 
following the definition of small objects for absolute scale. 

TABLE I.  CORRESPONDING NAMES AND QUANTITY DISTRIBUTION OF 

TARGET CATEGORIES 

Category Models Accuracy (%) 

pedestrian C1 79339 

people C2 27059 

bicycle C3 10480 

car C4 144867 

van C5 24956 

truck C6 12875 

tricycle C7 4812 

awning-tricycle C8 3246 

bus C9 5926 

motor C10 29647 

B. Experimental Condition and Assessment Metrics 

The experiments are performed on an Alienware X15 R1 
laptop with the following hardware specifications: 11th Gen 
Intel (R) Core (TM) i7-11800H CPU (2.3GHz), 32GB RAM, 
NVIDIA GeForce RTX 3070 GPU with 8GB VRAM. The 
experiments are performed using the PyTorch deep learning 
framework on Windows 11 operating system. The program 
code is implemented in Python, utilizing libraries (e.g., CUDA, 
Cudnn, and OpenCV). The above-mentioned setup contributes 
to the training and testing of tiny item detection on the 
VisDrone2019 dataset. In the comparative experiments and 
fusion studies, the input image is configured to be 640 by 640 
pixels. 50 total epochs of training are completed, with a batch 
size of 2. Weight decay is set to 0.0005, momentum is set to 
0.937, and the initial learning rate is set to 0.01. 

Common assessment metrics in object detection algorithms 
are employed to objectively evaluate the effectiveness of the 
detection models. The above-described metrics comprise AP, 
mean Average Precision (mAP), Number of Parameters 
(Params), Giga Floating-point Operations Per Second 
(GFLOPS), as well as FPS. 
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C. Comparative Analysis of Experimental Results 

1) Comparison and analysis of clustering algorithm loss 

curves: During the training of the YOLOv7 model, the Best 

Possible Recall (BPR) between the default anchor boxes and 

each target in the custom dataset is automatically determined 

by the network. If the BPR falls below 0.98, the detection 

model uses a combination of genetic algorithm and Kmeans to 

recluster and generate new anchor boxes, known as 

Autoanchor. Autoanchor combines genetic algorithm with 

Kmeans clustering and utilizes Euclidean distance for 

mutation on the clustering results. The experiment tested three 

different clustering algorithms: Autoanchor using Euclidean 

distance, Kmeans using 1-IoU distance, and Genetic Kmeans. 

Table II displays the predicted anchor box forms for each 

clustering algorithm at various scales. 

TABLE II.  ANCHOR BOX SHAPES FOR THREE CLUSTERING ALGORITHMS 

AT PREDICTED SCALES 

Branch P3 P4 P5 

Dimension 80 × 80 40 × 40 20 × 20 

Autoanchor (2,3,3,8,6,5) (7,14,12,8,21,12) (13,21,30,23,48,45) 

Kmeans (1-IoU) (2,3,3,7,6,5) (6,12,11,9,11,20) (22,12,25,25,47,39) 

Genetic Kmeans 

(1-IoU) 
(2,4,3,8,6,6) (6,12,12,9,11,18) (25,14,23,28,47,36) 

Table III presents a comparison of assessment metrics for a 
variety of clustering algorithms. The models with optimized 
anchor box sizes achieve overall improved detection accuracy 
compared with the baseline network. mAP achieved by the 
model using Genetic Kmeans (1-IoU) as the clustering 
algorithm reaches 31.8%, marking improvements of 0.4% and 
0.4% compared with Autoanchor and Kmeans (1-IoU), 
respectively. To be specific, mAP is raised by 0.9% in 
comparison to the original YOLOv7 algorithm. Furthermore, 
AP obtained by training the network with Genetic Kmeans (1-
IoU) reaches 17.04%, marking improvements of 1.41% and 
0.61% over the original YOLOv7 algorithm and Autoanchor, 
respectively. As revealed by the above-mentioned results, the 
detection model achieves higher detection accuracy by using 1-
IoU distance and improving Kmeans clustering method with 
genetic algorithms to generate anchor boxes that more 
effectively match the sizes of detection targets in the sample 
dataset. In general, compared with the original YOLOv7 
model, Genetic Kmeans (1-IoU) achieves the optimal 
performance. 

TABLE III.  COMPARISON OF ASSESSMENT METRICS FOR DIFFERENT 

CLUSTERING ALGORITHMS 

Anchor YOLOv7 Autoanchor 
Kmeans 

(1-IoU) 

Genetic 

Kmeans (1-IoU) 

AP (%) 15.63 16.43 17.05 17.04 

mAP (%) 30.9 31.4 31.4 31.8 

GFLOPS 103.5 103.5 103.5 103.5 

FPS 60.61 65.79 65.79 64.93 

Params (M) 36.54 36.54 36.54 36.54 

The trained models are further validated for loss. Fig. 6 
presents the comparison of loss curves for different clustering 
algorithms. As depicted in Fig. 6, Autoanchor and Kmeans (1-
IoU) have slightly higher losses compared with Genetic 
Kmeans (1-IoU), with average losses of 0.13, 0.1309, and 
0.1288, respectively. In contrast, YOLOv7 has the slowest 
decrease in loss, with a final average loss of 0.1316. The above 
result suggests that the Genetic Kmeans (1-IoU) algorithm 
reduces the loss of the original YOLOv7 algorithm by 0.28%. 

 

Fig. 6. Comparison of loss curves for different clustering algorithms. 

2) Comparison and analysis of assessment metrics for 

pyramid pooling structure: A fusion experiment is performed 

on the pyramid pooling module to validate the effectiveness of 

the SPPFCSPC_group module, which utilizes grouped 

convolution and the SPPF structure, in small object detection 

from aerial images captured by drones. Starting with the 

SPPCSPC module, improvements are made sequentially with 

grouped convolution and the SPPF structure. Table IV 

presents the comparison of assessment metrics for the fusion 

study of the pyramid pooling module. As seen in Table IV, 

using grouped convolution decreases the module’s parameter 

size by 5.7 M. The SPPFCSPC_group structure achieves an 

AP value of 15.82%, marking an improvement of 0.19% 

compared with the SPPCSPC structure. Moreover, FPS is 

increased by 3.91, validating the performance of the optimized 

structure for accuracy and speed. 

TABLE IV.  PERFORMANCE COMPARISON OF ASSESSMENT METRICS IN 

FUSION STUDY ON PYRAMID POOLING MODULE 

Neck SPPCSPC SPPCSPC_group 
SPPFCSPC_group 

AP (%) 15.63 15.26 15.82 

mAP (%) 30.9 30.8 30.8 

GFLOPS 103.5 99.0 99.0 

FPS 60.61 60.98 64.52 

Params 

(M) 
36.54 30.84 30.84 
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To further verify the effect of the SPPFCSPC_group 
module on the detection accuracy of small object samples in 
the YOLOv7 model for aerial drone images, experiments are 
performed to compare five different pyramid pooling 
structures, i.e., SPP [23], SPPF, Atrous Spatial Pyramid 
Pooling (ASPP) [24], Receptive Field Block (RFB) [25], and 
SPPFCSPC_group. Table V presents the comparison of 
assessment metrics for the comparative study of the pyramid 
pooling module. 

As depicted in Table V, the YOLOv7 baseline network 
achieves the maximum AP value and mAP value when using 
the SPPFCSPC_group structure, which is 15.82% and 30.8% 
respectively. The adoption of group convolution reduces the 
model parameters to only 30.84 M, resulting in a reduction of 
14.61 and 2.44 M compared with the ASPP module and the 
RFB module that utilize dilated convolution, respectively. As 
revealed by the above result, while reducing the model 
parameters, the model maintains a high detection accuracy and 
avoids weakening the information interaction between different 
layers by using group convolution. The above-described 
findings validate the effectiveness of SPPFCSPC_group 
module. 

TABLE V.  PERFORMANCE COMPARISON OF ASSESSMENT METRICS IN 

COMPARATIVE STUDY ON PYRAMID POOLING MODULE 

Neck SPP SPPF ASPP RFB 
SPPFCSPC 

_group 

AP (%) 15.26 15.50 15.73 15.78 15.82 

mAP (%) 30.6 30.7 30.6 30.5 30.8 

GFLOPS 98.7 98.7 110.6 100.9 99.0 

FPS 65.79 68.49 64.51 64.94 64.52 

Params 

(M) 
30.51 30.51 45.45 33.28 30.84 

3) Comparison and analysis of different detection heads: 

The positive and negative sample allocation strategy of 

YOLOv7 is designed around the Lead head and the Auxiliary 

head, combining the positive and negative sample allocation 

strategies of YOLOv5 and YOLOX. To assess the impact of 

different detection heads on the model’s detection accuracy, a 

comparative analysis was conducted among YOLOv5, 

YOLOX, the default Detect Head used in YOLOv7, 

Decoupled Head, and IDetect Head. 

TABLE VI.  PERFORMANCE COMPARISON OF DIFFERENT DETECTION 

HEADS IN DETECTORS 

Head IDetect Decoupled Head Detect Head 

AP (%) 15.63 16.80 15.73 

mAP (%) 30.9 24.7 30.4 

GFLOPS 103.5 144.6 103.5 

FPS 60.61 54.05 62.50 

Params (M) 36.54 44.03 36.54 

As depicted in Table VI, the Decoupled Head achieves the 
minimum overall precision, with a mAP value of only 24.7%, 
which is significantly lower than the IDetect Head (6.2%) and 

the Detect Head (5.7%). Besides, the Decoupled Head also has 
the largest parameter count, exceeding that of IDetect by 7.49 
M and Detect by 7.49 M. Furthermore, when using the Detect 
Head, the overall AP value reaches the maximum point at 
15.73%, representing a 0.1% increase compared with IDetect 
Head, while keeping the model size unchanged. 

In order to further observe the effect of different detection 
heads on the model detection accuracy, the experiments are 
shown in Fig. 7 as scatter plots of the P-R curves on the 
VisDrone dataset for detectors using different detection heads. 
The precision P is represented by the vertical axis, while the 
recall rate R is represented by the horizontal axis. The area 
enclosed by the curve and the coordinate axes represents the 
AP value, where a curve closer to the top right corner indicates 
a better detection model. As seen in Fig. 7, the recall rate 
steadily raises but the accuracy declines as the number of 
epochs rises. Decoupled Head shows a rapid decline in 
precision when the recall rate reaches 20%, suggesting a lower 
performance of the detector. The P-R curve of Detect largely 
envelops the curve of IDetect, demonstrating higher precision 
and recall. This indicates that Detect has stronger adaptability 
to different scenes, lighting conditions, and variations in target 
morphology. Thus, through experimental analysis and 
comparison, Detect achieves optimal classification 
performance, making it the preferred detection head for the 
detection model. 

 

Fig. 7. P-R scatter plot of detectors with different detection heads on the 

VisDrone dataset. 

4) Comparative analysis of fusion studies: To validate the 

effect of the suggested improvements on the detection model, 

fusion studies were conducted by testing the components of 

the improvement method. Table VII compares the results of 

the fusion studies. The fusion experiments were performed 

based on the YOLOv7 baseline model, and the improvements 

were incrementally added to observe their effects on the 

research objectives and assess their importance. First, IDetect 

Head was replaced with the Detect Head. Then, Genetic 

Kmeans (1-IoU) clustering algorithm was added. Finally, the 
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SPPFCSPC_group module was added on top of the previous 

modifications. 

TABLE VII.  COMPARATIVE RESULTS OF FUSION STUDIES 

Method Baseline 
+Detect 

Head 

+Genetic Kmeans 

(1-IoU) 

+SPPFCSPC 

_group 

AP (%) 15.63 15.73 15.13 15.81 

mAP (%) 30.9 30.4 30.0 30.3 

GFLOPS 103.5 103.5 103.5 99.0 

FPS 60.61 62.50 59.52 61.73 

Params 
(M) 

36.54 36.54 36.54 30.84 

Table VII shows that the proposed improvements have 
achieved performance gains in small object detection from 
aerial images. First, replacing the Detect Head resulted in 
higher detection accuracy with a 0.1% increase in AP and a 2.4 
FPS improvement in detection speed, suggesting the good 
performance of the Detect Head in the context of this study. 
Second, when the Genetic Kmeans (1-IoU) algorithm and 
SPPFCSPC_group module were added on top of the Detect-
based model, AP reached its maximum value at 15.81%, which 
is an improvement of 0.8% compared with YOLOv7. 
Additionally, the model’s parameter count decreased to 30.84 
M, which is a reduction of 5.7 M compared with YOLOv7, 
while achieving an FPS of 61.73, which is a 1.12 improvement 
over YOLOv7. The above-mentioned results demonstrate that 
the model may concentrate on positive anchor boxes of high 
quality by upgrading the original anchor boxes leading to 
increased detection accuracy. Moreover, the improvements in 
the form of group convolution and the SPPF module 
effectively reduce the model’s parameter count while 
increasing the inference speed, thus conforming to the 
requirements for real-time detection. 

5) Comparison and analysis of different models: Table 

VIII lists the comparative experimental results of a variety of 

algorithms. Two lightweight models (i.e., YOLOv5s and 

YOLOv7-Tiny) are tested and compared through the 

experiments. As depicted in Table VIII, YOLOv5s achieves a 

higher AP value than YOLOv7-Tiny by 1.45%, whereas its 

mAP value is 70.7% lower than that of YOLOv7-Tiny. As 

indicated by the above results, YOLOv5s exhibits high 

performance in certain categories, while YOLOv7-Tiny 

exhibits overall higher performance. Among other larger 

models, the YOLOR-P6 algorithm achieves the minimum 

detection accuracy, with an AP value of only 10.21% and an 

mAP value of 20.9%. Optimized YOLOv7 achieves the 

maximum AP value, with improvements of 0.89%, 3.63%, 

5.6%, and 0.18% compared with YOLOv3-SPP, YOLOv5l, 

YOLOR-P6, and YOLOv7, respectively. mAP value of 

Optimized YOLOv7 is 30.3%, with improvements of 1.0%, 

4.8%, and 9.4% compared with YOLOv3-SPP, YOLOv5l, and 

YOLOR-P6, respectively. 

TABLE VIII.  COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT 

ALGORITHMS 

Models 
AP 

(%) 

mAP 

(%) 
GFLOPS FPS 

Params 

(M) 

YOLOv3-
SPP 

14.92 29.3 155.7 54.05 62.61 

YOLOv5l 12.18 25.5 114.3 59.52 44.66 

YOLOv5s 10.20 16.6 16.4 100.00 7.08 

YOLOR-P6 10.21 20.9 80.4 63.29 36.87 

YOLOv7-
Tiny 

8.75 17.3 13.2 70.42 6.04 

YOLOv7 15.63 30.9 103.5 60.61 36.54 

Optimized 

YOLOv7 
15.81 30.3 99.0 61.73 30.84 

To provide a more intuitive comparison of different models 
in detecting the same samples, the comparison of AP values for 
the respective category is presented in Fig. 8. For some 
categories with fewer samples, difficult discrimination, and 
occlusion, such as ‘people’, ‘truck’, and ‘bicycle’, the 
improvement in accuracy and speed of the models is limited. 
However, in general, there is a balance between the reduction 
in model parameters and the improvement in accuracy. 

 

Fig. 8. Comparison of AP values for the respective category. 

The detection results of YOLOv3-SPP, YOLOv5l, 
YOLOR-P6, and the optimized YOLOv7 algorithm are 
compared for three different scenarios: slight category 
differences, dense object distribution, and low-light conditions 
at night. As depicted in Fig. 9, detection algorithms are more 
prone to false positives and false negatives when there exists 
slight category differences and dense object distribution. Under 
low-light conditions at night, the visibility of small objects 
declines significantly, such that the blurred details and edges 
are generated, adversely affecting the effective feature 
extraction of the detection network. In contrast to other 
algorithms, the optimized YOLOv7 algorithm is effective in 
mitigating the above described interference factors and 
demonstrates outstanding detection performance in various 
scenarios. 
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Fig. 9. Comparison of test outcomes among various algorithms. 

6) GradCAM heatmap visualization analysis: In this 

study, the heatmaps of the 102nd layer of the detection 

network are visualized using GradCAM. The highlighted 

regions in the heatmaps represent the areas that the network 

considers relevant to the target categories. The 102nd layer 

represents the P3 branch of the model, i.e., the feature layer 

specifically developed for small object detection. This 

visualization presents a more intuitive insight into the 

network’s attention and decision-making process in detecting 

small objects. In the VisDrone dataset, categories (e.g., 

‘pedestrian’, ‘people’, and ‘motor’) are considered small 

objects for their relatively small sizes. Moreover, ‘car’ can 

still be considered a small object category in scenarios with 

long distances and significant occlusions even it exhibits a 

larger relative size. During the experiment, feature 

visualization is performed for the above-mentioned four small 

object categories, and Fig. 10 presents the visualization of the 

detection image heatmaps. 

As depicted in Fig. 10, the highlighted regions in the 
heatmaps represent the detected object positions, suggesting 
that the network can clearly concentrate on small targets. 
Furthermore, the intensity of colors in the heatmaps represents 
the degree of network attention. Compared with the YOLOv7 
algorithm, the optimized YOLOv7 algorithm exhibits stronger 

intensity in the highlighted regions (① and ②) when detecting 

‘pedestrian’ and ‘people’, suggesting that the optimized 
YOLOv7 algorithm accurately focuses on the target objects 
while exhibiting a higher level of attention towards small 
targets. In the visualization image for the ‘motor’ category, as 

indicated by the label (③), when a significant overlap exists 

between ‘people’ and ‘motor’, the YOLOv7 algorithm tends to 
produce false positives. However, the optimized YOLOv7 
algorithm displays a more distinctive and accurate highlighting 
in the area representing the ‘motor’ target, suggesting 
improved attention towards the detection targets. For the ‘car’ 

category, under a long distance or tree occlusion, the attention 
intensity of YOLOv7 turns out to be weaker, such that 
potentially missed detections are conducted. In contrast, the 
optimized YOLOv7 algorithm achieves the notably enhanced 

color intensity in the heatmap, marked as (④), suggesting an 

improvement in detecting small objects that are previously 
missed. 

  

  

  

  
YOLOv7 Optimized YOLOv7 

Fig. 10. Visualization of detection image heatmaps. 

As revealed by the experimental analysis, the optimized 
YOLOv7 algorithm demonstrates significant advantages in 
accuracy and speed for locating tiny objects in aerial 
photographs taken by UAVs. In the comparative experiments, 
the proposed Genetic Kmeans (1-IoU) clustering algorithm 
allows the model to more effectively cluster the anchor box 
sizes for small targets. Moreover, the optimized 
SPPFCSPC_group module, utilizing group convolution, 
effectively reduces the model parameters. The integration of 
the SPPF module with the CSP structure enhances both the 
speed of inference and the precision of detection. Lastly, the 
use of the Detect Head improves the model’s confidence in 
target detection. The optimized YOLOv7 algorithm is capable 
of recognizing small-sized objects in UAV aerial images more 
significantly, even in sophisticated backgrounds. Furthermore, 
fusion experiments are used to confirm the effectiveness of the 
proposed methods. 

V. CONCLUSION 

In this study, an optimized YOLOv7 algorithm is proposed 
to address the challenges of detecting small-sized and heavily 
occluded objects in aerial images captured by UAVs. The 
proposed method comprises three key steps. At the 
preprocessing stage, an anchor box clustering algorithm is 
designed to achieve anchor boxes that better suit the dataset, 

  
YOLOv3-SPP Optimized YOLOv7 

  
YOLOv5l Optimized YOLOv7 

  
YOLOR-P6 Optimized YOLOv7 
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increasing the accuracy of object detection and reducing the 
rate of missed detections for small targets. In the feature fusion 
network, SPP structure based on group convolution is 
introduced to reduce model parameters and computational 
complexity. The inference speed of the model is enhanced by 
adopting a serial pyramid pooling method. Lastly, a detection 
head that is more tailored to the custom dataset is employed to 
refine the detection layers. With this method, more accurate 
detection of small-sized and low-count categories of objects 
can be achieved. Experimental findings show that compared 
with the standard YOLOv7, the suggested approach achieves 
an AP improvement of 0.18%, reduces the model size by 4.5 
GFLOPS, decreases the network parameter size by 5.7 million, 
and increases FPS by 1.12. Accordingly, the proposed method 
enhances the applicability of the YOLO algorithm for locating 
tiny targets in aerial photographs that UAVs have recorded. 
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