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Abstract—Emotion is a complex phenomenon that originates 

from everyday issues and has significant effects on individual 

decisions. Electroencephalography (EEG) is one of the widely 

used tools in examining the neural correlates of emotions. In this 

research, two concepts of Granger causality and directional 

transfer function were utilized to analyze EEG data recorded 

from 36 healthy volunteers in positive, negative and neutral 

emotional states and determine the effective connectivity between 

different brain sources (obtained through independent 

component analysis). Shannon entropy was utilized to sort the 

brain sources obtained by the ICA method, and average 

topography helps to add spatial information to the proposed 

connectivity models. According to the obtained confusion matrix, 

our method yielded an overall accuracy of 75% in recognizing 

three emotional states. Positive emotion was recognized with the 

highest accuracy of 87.96% (precision = 0.78, recall = 0.78 and 

F1-score = 0.81), followed by neutral (accuracy = 82.41%) and 

negative (accuracy = 79.63%) emotions. Indeed, our proposed 

method achieved the highest recognition accuracy for positive 

emotion. The proposed model in the present study has the ability 

to identify emotions in a completely personalized way based on 

neurobiological data. In the future, the proposed approach in the 

present study can be integrated with machine learning and 

neural network methods. 
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directed transfer function; emotion recognition  

I. INTRODUCTION  

Emotion is a complex phenomenon that originates from 
everyday issues and has significant effects on individual 
decisions. The extent of these decisions can affect the personal 
and social life of the people of society [1]. Emotions are very 
important in learning and communicating, and their expression 
plays a big role in human relationships. Emotions can directly 
affect a person's performance, and therefore, it is important to 
try to understand their sources and control them [2]. A certain 
emotion is one of the brain states that is produced by the 
electrical activity of millions of neurons and is associated with 
physiological changes in the whole body [3]. When 
experiencing emotions, the brain's left and right hemispheres 
are involved in different ways [4]. For example, it has been 
shown that the left prefrontal area is more involved in 
dependent emotional reactions and the right prefrontal area is 
involved in withdrawal reactions [5]. Generally, it is 
hypothesized that the left hemisphere is dominant in positive 

emotions, and the right hemisphere is dominant in negative 
emotions [6]. 

Electroencephalography (EEG) is one of the widely used 
tools in examining the neural correlates of emotions [7]. This 
instrument has many applications in cognitive neuroscience 
and psychiatry and improves our insight into various 
behavioral phenomena including depression [8], bipolar 
disorder [9-17] and hyperactivity [18-22]. Many researchers 
have applied various machine learning techniques to EEG data 
to develop an automated EEG-based emotion recognition 
system [23]. Zhang et al. applied the Empirical Mode 
Decomposition (EMD) technique to EEGs, calculated the 
sample entropy from the first four IMFs, and reported an 
average accuracy of 93.20% in classifying five distinct 
emotions [24]. Zheng and Lou trained deep belief networks by 
calculating entropy features from different EEG frequency 
bands and achieved an accuracy of 86.65% in detecting three 
negative, neutral and positive emotions [25]. Meng et al. 
proposed an EEG-based emotion recognition system based on 
entropy features and cascaded convolutional recurrent neural 
networks and achieved an accuracy of 94.85% in valence-
based classification problems [26]. Hwang et al. utilized 
convolutional neural networks along with generating topology-
keeping differential entropy features to prevent the loss of 
localized information and achieved an average accuracy of 
90% in recognizing three negative, positive and neutral 
emotions [27]. Nawaz et al. proposed an EEG-based emotion 
recognition system based on various linear and nonlinear 
features such as fractal dimension and wavelet energy, feature 
selection by principle component analysis, and multiple 
classifiers such as SVM and KNN, and reported an average 
accuracy of 77.60%, 78.96% and 77.62% in detecting 
dominance, arousal and valence emotions, respectively [28]. 
Two recent reviews on EEG-based emotion recognition 
emphasized the importance of such systems for various 
scientific fields, such as psychology and cognitive 
neuroscience, and highlighted the necessity of developing these 
systems with a special focus on regional brain connectivity [29, 
30]. 

In the last two decades, neuroscience studies have focused 
on the connections of different areas of the cerebral cortex and 
how these areas interact when performing a specific sensory-
motor or cognitive action to better understand brain function 
[31]. Many attempts have been made to quantify these 
connections through EEG analysis [32]. Functional 
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connectivity is an observable phenomenon that can be 
quantified by measuring statistical dependencies such as 
correlation or transfer entropy [33]. On the other hand, 
effective connectivity refers to the model parameters that 
attempt to explain the observed dependencies (functional 
connectivity). From this point of view, effective connectivity 
refers to the concept of coupling or direct causal influence by 
examining the direction of information dissemination [34, 35]. 
Bagherzadeh et al. achieved a high accuracy of 99% in the 
classification of five emotional states using effective EEG 
connectivity and convolutional neural networks [36]. In 
another study, Bagherzadeh et al. used EEG frequency 
effective connectivity maps based on the transfer learning 
technique and achieved an accuracy of 95% in the 
classification of five emotional states [37]. Although these 
studies have shown the high potential of EEG effective 
connectivity as a biomarker for human emotion recognition, 
few studies have used this important feature of brain signals to 
develop EEG-based emotion recognition systems.  

Therefore, in this research, we aim to process EEG signals 
to estimate effective connectivity in brain resources and 
provide models to investigate how brain resources influence 
each other in order to detect three emotional states: neutral, 
negative, and positive. For this purpose, we investigated the 
potential of Granger causality and directed transfer function to 
estimate effective cortical connectivity in different emotions. 
Our research showed that these approaches can reveal 
noticeable effective connectivity patterns in each emotion, 
which can be classified in order to emotion recognition. 

II. METHODS 

Fig. 1 shows the work process of the current research. 
Considering that in this research, two concepts of Granger 
causality and directional transfer function are used in EEG data 
processing, it is necessary to briefly introduce these concepts 
first. 

A. Granger Causality 

Granger causality is a technique to derive specific kinds of 
causal dependence among stochastic samples by reducing the 

bias of predicting possible effects if past observations of the 
hypothesized causes are utilized to anticipate the effects plus 
previous observations of the possible effects. This concept was 
first proposed through Wiener and then reformulated through 
Granger based on linear autoregressive models. This algorithm 
considers two assumptions: (I) a cause should precede its 
effects, and (II) data on the past of a cause should enhance the 
anticipation of the effects above and beyond data on the 
collective past of the other observed samples.  To estimate 
influences from the channel xj to xi for n channel 
autoregressive processes, we considered n and n-1 multivariate 
autoregressive models. The model is fitted to overall n-channel 
system, resulting in the residual variance Vi,n(t) = var(Ei,n(t)) 
for time series xi. Then, a n-1 multivariate model is fitted for n-
1 channels, except for channel j, which results in the residual 
variance Vi,n-1(t) = var(Ei,n-1(t)). So, Granger causality is given 
by: 

𝐺𝑟𝑎𝑛𝑔𝑒𝑟𝑗→𝑖(𝑡) = ln (
𝑉𝑖.𝑛(𝑡)

𝑉𝑖.𝑛−1(𝑡)
)  (1) 

B. Directed Transfer Function 

This method is used to measure the direction and frequency 
content of brain activities. The directed transfer function is a 
multivariate approach that is formulated by multivariate 
autoregressive models to investigate the causal relationships 
between EEG channels and recognize the directed 
dissemination of EEG activities. This algorithm works in the 
frequency domain to characterize regional connectivity based 
on the factorization of the coherence between two EEG 
channels.  

C. Dataset 

In this research, we utilized an EEG dataset on neutral, 
positive, and negative emotional states from [38]. This dataset 
includes EEG signals recorded from 36 young adults in the 
neutral, positive, and negative emotional states induced by 
standard images from the International Affective Picture 
System (IAPS). 16 Ag/AgCl electrodes were utilized to capture 
brain signals at a sampling rate of 512 Hz based on a 10-20 
international recording protocol. 

 

Fig. 1. Flow chart of the proposed method for EEG-based emotion recognition based on effective connectivity. 
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D. Data Preprocessing 

First, we applied a Butterworth band-pass filter (order 4) 
with a frequency of 1–60 Hz to the signals to cancel unwanted 
noise. A 50 Hz notch filter was then applied to the signals to 
cancel power line interference. Next, an experienced 
neurologist checked all EEGs and rejected all parts of the 
signals contaminated with various artifacts, such as body 
motion and eye blinking. After obtaining a clean EEG signal 
for each subject, independent component analysis (ICA) was 
applied to the signals to decompose them into independent 
components. A fast ICA algorithm was utilized in this work to 
decompose 16 source components from EEG channels. 
However, we encountered a bad situation when using ICA 
because the order of the extracted components changes in 
every run of the algorithm. To solve this problem, Shannon's 
entropy of sources was used as a measure of information to sort 
brain sources. Sources are sorted according to Shannon entropy 
value and in ascending order. These brain sources obtained 
from ICA were used for further analysis. 

E. Effective Connectivity Estimation 

EEGLAB and SIFT toolbox were utilized to estimate 
effective connectivity [39]. The first step to estimate the 
connectivity value is to fit a model to the data using Adaptive 
Multivariate Autoregressive (AMVAR) modeling, which is 
acceptable for this purpose. To adapt this model, the length of 
the window, the step of the window, and the order of the model 
should be selected. After selecting the values of these 
parameters, the accuracy of the fitted model is evaluated. 
Table I shows the selected values for these parameters. 

TABLE I. SELECTED VALUES FOR AMVAR MODEL PARAMETERS 

Parameter Value 

Window length (second) 5 

Window step (second) 1 

Model order 10 

It should be noted that the higher order of the model causes 
complexity, and the short length of the window leads to an 
increase in calculations. As a result, a trade-off should be made 
in choosing these parameters. If the model is sufficiently 
adapted to the data, the residual coefficients of the model 
should be small and uncorrelated relative to the real data. The 
presence of correlation in the residuals indicates the presence 
of correlated structures in the data that the model is unable to 
provide. To solve this issue, a null hypothesis with a 
significance level is considered, and the model is evaluated 
through it. To evaluate the whiteness of the residuals in this 
research, the autocorrelation function method with a 
significance level of 90% was utilized, as well as the 
consistency assessment through the percent consistency [40]. 
The stability of the model was evaluated with the stability 
index. A VAR model is stable if the augmented coefficient 
matrix of all stability indices is less than one [41].  

Granger causality and direct transfer function methods were 
used to estimate the effective connectivity. In this study, 
effective connectivity was estimated in four EEG frequency 
bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta 

(13-30 Hz). In fact, for six sources sorted by Shannon entropy, 
effective connectivity was estimated in these frequency bands.  

F. Performance Evaluaion 

To evaluate our proposed approach for emotion 
recognition, we utilized various classification metrics, 
including accuracy, precision, recall and F1-score. These 
metrics are given by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (4) 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (5) 

where TP, TN, FP and FN denote true positive, true 
negative, false positive and false negative elements for a 
specified emotional class obtained from the confusion matrix. 

III. RESULTS 

First, the accuracy, stability, and consistency of the model 
were checked using the mentioned criteria. The results showed 
that the stability of all models was fully established, and the 
average model stability in all samples was about 78%. The 
average rejection of the null hypothesis was 93%. For each 
emotional state, the maximum number of connections in each 
frequency band was calculated. In each sample, a source can 
receive information from other sources. Fig. 2 shows a 
schematic of the calculation of the connectivity between 
sources as a sender or receiver of information. 

Based on the schematic shown in Fig. 2, the sources with 
the most receiving and sending information in three emotional 
states were determined based on averaging in different 
frequency bands as shown in Table II. 

 
Fig. 2. A schematic of the calculation of the connectivity between sources as 

a sender or receiver of information. Source 1 is the sender with 100%, and 
source 5 is the receiver with 100%. 

Based on the results obtained in Table II, the proposed 
model based on Granger causality and directed transfer 
function for effective connectivity for neutral, negative, and 
positive emotional states is shown in Fig. 3. The models 
presented in Fig. 3 are obtained from the statistical analysis of 
the connection between different sources. In fact, in these 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 9, 2023 

865 | P a g e  

www.ijacsa.thesai.org 

models, the information related to the location of brain sources 
is not included, so they cannot be used to identify the location 
of connections. To solve this problem, topographic images of 
sources were used. 

TABLE II. SOURCES WITH THE MOST RECEIVING AND SENDING 

INFORMATION IN THREE EMOTIONAL STATES 

Emotional 

state 

Sending sources Receiving sources 

Source Percentage Source Percentage 

Neutral 
5 54.2 9 52.1 

7 48.4 7 46.8 

Negative 
6 47.1 8 48.7 

10 44.3 6 44.5 

Positive 
10 66.2 6 66.2 

9 43.1 7 49.2 

In this model, each circle represents a brain source, which 
is assigned a number based on Shannon entropy ranking. 
Arrows go from the source of the information transmitter to the 
source of the information receiver. The larger the diameter of 
an arrow, the greater the amount of information spread. 

In addition to separating different sources from each other, 
ICA provides us with information about the location of these 

sources on the scalp by producing images called the 
topography of a source. These images are important in that 
they can show how a source spatially affects the entire scalp. 
As a result, by considering the assumptions about the location 
that is activated during specific stimuli, the location of their 
sources can be identified. Accordingly, the topography of the 
sources whose models were created in the previous section was 
determined, and their average topography was examined in all 
samples. It is worth mentioning that the selected sources are 
the same in terms of entropy. The topography of source 10 in 
the positive emotion belongs to source 10 in terms of entropy 
in all samples. Table II and Fig. 3 specify the sources with the 
most output and input connections in each emotion. Based on 
this, Fig. 4 shows the average topography of these sources for 
positive, negative, and neutral emotional states. 

The images in Fig. 4 contain spatial information about 
brain sources. By combining these images with the information 
of the models from Fig. 3, other new models are presented that 
also contain spatial information about brain sources. Fig. 5 
shows the presented model for effective connectivity between 
brain sources in positive, negative, and neutral emotional states 
with spatial information. 

 

Fig. 3. Proposed model based on Granger causality and directed transfer function for effective connectivity for (A) positive, (B) neutral, and (C) negative 

emotional states. 

 

Fig. 4. Average topography images of 36 samples for sources with the most input and output connections, as specified in Fig. 3, extracted with independent 

component analysis, in (A) positive, (B) negative, and (C) neutral emotional states. 
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Fig. 5. The proposed models for effective connectivity in (A) positive, (B) negative, and (C) neutral emotional states with spatial information.

In this model, each circle represents a brain source, which 
is assigned a number based on Shannon entropy ranking. 
Arrows go from the source of the information transmitter to the 
source of the information receiver. The larger the diameter of 
an arrow, the greater the amount of information spread. 

The models presented in Fig. 5 are the average of all 
samples. In the next step, similarity measurement and labeling 
operations were performed for each sample. In other words, 
each individual's connectivity model was compared with the 
average models presented in Fig. 5 and labeled based on its 
similarity to each of the average models. The total number of 
samples is 36 subjects with three emotional states: positive, 
negative, and neutral. Therefore, there are 108 models with 
similar distribution in different emotional states. To measure 
the similarity of each sample in all emotional states and 
frequency bands, first, the average input and output 
information of all sources of that sample was calculated. The 
rate of receiving and sending information from all sources was 
determined for each sample. Then, in each sample, two sources 
that had the highest amount of receiving and sending 
information were selected. In the next step, the emotional state 
label of 108 samples was removed, and the samples were 
shuffled. Two selected sources from each sample were 
compared with the proposed models and given a label 
according to their similarity to each of the models as shown in 
Table III. 

TABLE III. THE RESULT OF LABELING SAMPLES FOR POSITIVE, 
NEGATIVE, AND NEUTRAL EMOTIONAL STATES IS BASED ON THE PROPOSED 

EFFECTIVE CONNECTIVITY MODELS 

  
Estimated label based on similarity with 

proposed models 

 
Emotional 

states 
Positive Neutral Negative 

Real label 

Positive 28 3 5 

Neutral 2 26 8 

Negative 3 6 27 

Table III shows the confusion matrix obtained by the 
proposed approach based on effective connectivity to identify 
positive, negative, and neutral emotions. According to the 
obtained confusion matrix, our method yielded an overall 
accuracy of 75% in recognizing three emotional states. Table 
IV shows the obtained classification criteria for each class. As 
shown, positive emotion was recognized with the highest 
accuracy of 87.96% (precision = 0.78, recall = 0.78, and F1-
score = 0.81), followed by neutral (accuracy = 82.41%) and 
negative (accuracy = 79.63%) emotions. 

TABLE IV. CALCULATED CLASSIFICATION CRITERIA FOR EACH POSITIVE, 
NEGATIVE, AND NEUTRAL EMOTIONAL STATE 

Class n (truth) 
Accuracy 

(%) 
Precision Recall F1-score 

Positive 33 87.96 0.78 0.85 0.81 

Neutral 35 82.41 0.72 0.74 0.73 

Negative 40 79.63 0.75 0.68 0.71 

IV. DISCUSSION 

The aim of this study was to estimate cortical effective 
connectivity from the EEG signal of emotions based on 
Granger causality and directed transfer function for the 
recognition of different human emotions. Our proposed method 
achieved the highest recognition accuracy for positive emotion. 
In the proposed model for positive emotion, source 10 had the 
highest amount of receiving information from other sources. 
This finding is consistent [38], where source 10 achieves the 
highest recognition accuracy for positive emotion. In the 
proposed model for negative emotion, source 8 had the highest 
amount of sending information to other sources. Abdolssalehi 
et al. also achieved the highest recognition accuracy for 
negative emotion through source 8 [38]. However, in [38], the 
authors relied on recurrence quantification analysis for pattern 
recognition from brain sources. 

TABLE V. COMPARING THE FINDINGS OF THE PRESENT STUDY WITH 

PREVIOUS STUDIES 

Reference Algorithm Results 

[42] 
Spectral features and SVM 
classifier 

49.4% like, 55.7% arousal, 
58.5% valence 

[43] 
Spectral features and SVM 

classifier 

79.59% sadness, 74.11% anger, 

86.15% joy, 83.59% pleasure 

[44] 
Spectral and statistical 

features and LDA classifier 

62% anxiety, 50% engagement, 

57% boredom 

[45] 

Spectral assymetry index, 

wavelet entropy and SVM 
classifier 

82.5% negative excitement, 

64% neutral 

[46] 

Spectral features, Gabor 

transform and probabilistic 
neural network 

62.97% sadness, 69.74% 

disgust, 73.64% anger, 56.79% 
fear 

[47] 
Spectral features and SVM 

classifier 
50.5% valence, 62.1% arousal 

[48] 
Spectral features and SVM 
classifier 

61% sadness, 58% fear, 53% 
anger, 51% joy 

Our 

proposed 

approach 

Effective connectivity and 
confusion matrix 

87.96% positive, 82.41% 
neutral, 79.63% negative 

In contrast, we utilized the effective connectivity between 
these sources and improved the results obtained in 
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Abdolssalehi et al.’s work. In addition, as mentioned, sources 
10 and 8 had the highest amount of information exchange in 
positive and negative emotional states, respectively. The 
average topography of sources 10 and 8 of all samples was 
located in the left posterior hemisphere and the right posterior 
hemisphere, respectively. This finding is consistent with the 
valence hypothesis, which assumes the opposite predominance 
of the right hemisphere for negative emotions and the left 
hemisphere for positive emotions [49, 50]. Table V compares 
the findings of the present study with previous studies. As can 
be seen, our proposed system performs better than most of the 
previous methods. 

Most of the studies that have tried to recognize human 
emotions using EEG signals have used a variety of machine 
learning methods and artificial neural networks that provide us 
with a black box-like function [51-53]. Although some of these 
studies have reported very high detection accuracies, the 
process of pattern recognition in them is unclear and 
ambiguous [54]. However, in this research, we tried to choose 
and propose a transparent work process to overcome this 
important limitation of previous studies. Although we did not 
use learning machines and artificial neural networks for 
classification and pattern recognition, the obtained results are 
quite promising. Therefore, our proposed model can be very 
useful in various research fields, such as psychiatry, 
psychology, neuroscience, and cognitive science. The 
important thing to consider about our proposed model is that 
this model can work completely depending on a person, and it 
is a personalized model. Individual and cultural differences are 
very important issues in the development of emotion 
recognition systems. At the same time, most previous 
techniques ignore this important issue. However, the proposed 
model in the present study has the ability to identify emotions 
in a completely personalized way based on neurobiological 
data. In the future, the proposed approach in the present study 
can be integrated with machine learning and neural network 
methods and improve the proposed model. 

V. CONCLUSION 

In this study, a new method based on effective connectivity 
using Granger causality and directed transfer function was able 
to successfully extract connectivity patterns related to positive, 
negative and neutral emotions and led to the detection of these 
emotions based on EEG signal analysis. The obvious 
advantage of our method is its transparency in all stages of 
analysis and not using black boxes related to machine learning 
and neural networks, which increases its clinical applicability 
compared to previous works. However, this method needs 
further validation using different databases. In addition, our 
proposed method should be integrated with an artificial 
intelligence system to automate emotion recognition. In this 
study, only three emotions were investigated, and future 
studies should evaluate this method for other emotions as well. 
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