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Abstract—Generating test configuration for Software Product 

Line (SPL) is difficult, due to the exponential effect of feature 

combination. Pairwise testing can generate test input for a single 

software product that deviates from exhaustive testing, 

nevertheless proven to be effective. In the context of SPL testing, 

to generate minimal test configuration that maximizes pairwise 

coverage is not trivial, especially when dealing with a huge 

number of features and when constraints must be satisfied, which 

is the case in most SPL systems. In this paper, we propose an 

estimation of distribution algorithm, based on pairwise testing, to 

alleviate this problem. Comparisons are made against a greedy-

based and a constraint handling based approach. The 

experiments demonstrate the feasibility of the proposed 

algorithm, such that it achieves better test configurations 

dissimilarity and at the same time maintain the test configuration 

size and pairwise coverage. This is supported by analysis using 

descriptive statistics. 

Keywords—Estimation of distribution algorithm; marginal 

distribution algorithm; test configuration generation; pairwise 

testing; software product line 

I. INTRODUCTION 

Many software products developed for various domains 
carries some similar functionality. This software shares similar 
functionalities since they have been developed based on the 
same kind of input and output types. The similarity in the 
internal program structure due to identical user requirements 
also contributes to the commonalities among these software 
products. Because of this scenario, and based on the benefit of 
reuse principles, Software Product Line (SPL) has been 
developed as a software development paradigm to produce 
software inspired by product line approach. Developing an SPL 
system enables us to create a software structure that is 
customizable to various needs, by maximizing software 
artefacts reusability [1]. Due to the highly variable and reusable 
nature of SPL artefacts, it is uneconomic to develop software 
based on distinct requirements separately, as some of the 
functionalities are similar. However, it is difficult to employ 
single product development paradigm to build various software 
products that fulfil the needs of diverse users of a similar 
domain. 

A unit of system function in an SPL is represented as a 
feature, and explicitly defined as common or variable features 
and utilized throughout the SPL development process. One 
way to model the commonalities and variabilities in an SPL is 
using a Feature Model (FM), based on feature modeling 
technique [1]. Two or more features are combined and utilized 

together in a single software product. This is known as feature 
configuration. The flexibility of feature configuration process 
could result in unspecified and unintended system behavior. 
This might lead to incorrect execution [1]. Hence, it is crucial 
to test all possible feature configurations to reduce the potential 
misbehavior of interacting features. But, to test all possible 
feature configurations is unfeasible. The number of feature 
configurations increases dramatically as the number of features 
increased, making full testing of feature configurations 
especially in large-scale FM impractical [2], [3]. In view of 
this, a number of techniques have been proposed to reduce the 
combinatorial explosion of feature configuration testing [4] 
that leveraged the potential of search-based techniques. More 
on this is presented in Section II. 

In conventional meta-heuristics approaches, probabilities 
are implicitly employed in the selection and re-production 
operators, such as mutation operator, to produce offspring [5], 
[6]. We identified a research gap in feature configuration 
exhaustive testing, such that, one can explicitly build a 
probabilistic model of features distribution from an initial set 
of test configurations. This probabilistic model allows us to 
estimate the distribution of highly fit features and guide us in 
generating subsequent candidate solutions that maximize 
pairwise coverage. Towards that, in Section III we strategize 
the test configuration generation process, and our contributions 
are as follows: 

1) We devise a set of algorithms based on bivariate 

marginal distribution in SPL context. This approach is 

perceived as a lightweight variant of estimation of distribution 

algorithm, in which only the statistics of the population are 

maintained across generation, instead of the actual population. 

2) We introduce the notion of feature configuration 

dependency graph in part B of Section III, which contains the 

dependency information between pairs of features, extracted 

using statistical computation. 

3) We implement the proposed approach using Java and 

conducted empirical studies. Results are reported and 

discussed in Sections IV and V. 

II. BACKGROUND AND RELATED WORKS 

A. Feature Model 

Feature Modeling is a popular way to model SPL 
variability and it is by far the most reported in industry. In 
Feature Modeling, Feature Model (FM) notation has been 
developed to represent features and its dependencies [1]. The 
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tree representation of FM is known as Feature Diagram. It 
presents a feature as a node, and relationship between two 
features as an edge. Different types of edges can be assigned 
between features, which represent the relationship of type 
mandatory, optional, or, or alternative. Additionally, an FM 
might encompass some constraints which act as rules or 
conditions that limit the linking between features. 

Fig. 1 shows a feature model named as OnlineBookstore 
SPL from Software Product Line Online Tools (SPLOT) [7]. 

This feature model defines some of the most common features 
that an online bookstore system should have. It consists of 25 
features, including seven mandatory features. There is one 

cross-tree-constraint defined, which is ¬ Customer_Profiling  
Authorization. This constraint signifies that feature 
Customer_Profiling requires the presence of feature 
Authorization, but not conversely. Apart from that, a couple of 
variation points are defined. For example, we can choose to 
have Signup feature apart from Login; different types of 
Personalization features can be incorporated; and so on. 

 
Fig. 1. A Feature Model of an OnlineBookstore SPL. 

In the subsequent part of this paper, we refer each feature 

from our Feature Model as x. It is an integer where x  [1, N], 
having N as the maximum number of features in the FM. x can 
be of positive prefix (not written) to indicate the feature is 
included or negative prefix (explicitly written) to indicate the 
feature is not included. 

For brevity, each feature in the feature model shown in 
Fig. 1 is mapped to a unique number, assigned sequentially 
from top to bottom, left to right. This gives us a representation 
as shown in Fig. 2, which is used throughout this paper. 

 

Fig. 2. Number assignment of each feature. 

B. Test Configuration 

Software products of an SPL are configured and produced 
by combining several features. These artefacts are called 
feature configurations. In view of testing, test case(s) can be 
defined for each feature. Thus, to test a feature configuration, 
Test Configuration (TC), which consists of many test cases, 
can be generated in the same way the feature configuration is 
generated. A test configuration, TC, is a list of all features, 

represented by its feature number. Each feature in a test 
configuration can have either positive or negative prefix. 

C. Pairwise Testing 

Complete testing of all possible feature configurations is 
not feasible. For n number of features, it requires 2n number of 
test configurations to cover all possible combinations, because 
it is either selected or excluded. This makes it exponentially 
proportioned to the number of features. To alleviate this 
obstacle, pairwise testing has been widely used as a viable 
solution. The ultimate goal of pairwise testing is to cover all 
possible pair of features at least once [8]–[10]. Thus, testing 
can be focused on the interaction of both features. Pairwise 
testing is a kind of combinatorial testing, where we choose 2 
features to be considered or included in our test pool. 
Generalization of pairwise testing is called t-wise testing, 
where t indicates the number of features to choose. 

For its practicality and usability, SPL pairwise testing is 
governed by constraints. Considering two features (1 and 2) 
from OnlineBookstore SPL, four pairs of tuple have to be 
generated, i.e. (1,2), (1,-2), (-1,2) and (-1,-2), where negative 
prefix indicates that the feature is not selected in the feature 
configuration. Due to constraints (cross-tree-constraints and 
relationship of features in FM), some invalid pairs will be 
eliminated, e.g. (-1,2) is invalid, because root feature, i.e. 1, 
must always be selected. The same goes with mandatory 
features (2, 4, 7, and so on). 

If we construct one Test Configuration, TCi, for each pair 
of features, pfv,w, (as an example, pair of feature 1 and -5), 
assigned as follows; 

pf1,-5 = (1, -5);  TCa  = [ 1, ?, ?, ?, -5, ?, ?, ?, ?, ? ] 

1: OnlineBookstore 2: Front_Store 

3: Back_Store 4: Personalization 

5: Registration 6: Catalogue 
7: Purchase 8: Customer_Profiling 

9: Information_Filtering 10: Identity_Management 

11: Login 12: Signup 
13: Order 14: Payment 

15: Shipment 16: Authorization 

17: Authentication 18: Phone 
19: Mail 20: Email 

21: Credit_Card 22: Cheque 

23: Pay_Pal 24: By_Air 
25: By_Ground 
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we can set any arbitrary value for other variables in TCa 
(marked as ?). However, these variables could possibly be 
matched with other pairs of features that we should cover. 
Thus, if we can systematically set the values of each variable in 
TCi, we could maximize the number of valid pairs in each TC 
so that it can minimize the number of TC. 

D. Related Works 

SPL test configuration generation techniques that are based 
on greedy approach or applied meta-heuristics are discussed in 
the first part of this section. In the second part, few selected 
literatures of Estimation of Distribution Algorithms (EDA), 
including works related to its adoption in software engineering 
activities are presented. 

Among others, multi-objective evolutionary algorithm has 
been proposed for SPL testing [6]. Their motivation was to 
minimize the tests suite by sorting the product lines. Henard et 
al. [2] also employed a search-based algorithm, (1+1) 
Evolution Strategy (ES), to generate and prioritise covering 
array, guided by a (dis)similarity measure. Henard et al. 
mentioned that t-wise approaches for SPLs are restricted to 
FMs of small sizes and t-wise coverage of low strength. Both 
are constrained by scalability issues that result from the 
intractable computation for very large FMs or high t-wise 
strength. Therefore, they formulated the feature configuration 
generation problem as a search-based where the search space 
consists of all valid feature configurations extracted from the 
FM.  Dissimilarity between features is used as the fitness 
function during the searching for better populations. 

Feature configuration testing is highly influenced by the 
effectiveness of constraint handling techniques that eliminate 
invalid test configurations. One of such prominent work is 
published by Yu, Duan et al. [11], whereby the validity 
checking of test configuration is achieved using minimum 
invalid tuples (MITs). This approach has been implemented as 
a tool named LOOKUP. 

Hybrid of multi-objective crow search and fruitfly 
optimization has been studied and offers an optimal selection 
of the test suites at a fairly good convergence rate [12]. 
Haslinger et al. [13] applied a Simulated Annealing algorithm 
to generate t-wise covering array and demonstrated a tool to 
improve the performance of SPL testing. Haslinger et al. report 
a speedup of over 60% on 133 publicly available feature 
models, while preserving the coverage of the generated tests. 

Johansen et al. published their solution [3] and a tool 
named ICPL, which capable of processing large feature 
models, better execution time and produced small covering 
array. They used the fact that a (t-1)-wise is always a subset of 
the t-wise, and employed this principle to recursively build up 
a higher strength covering array from a smaller one. 

Estimation of Distribution Algorithms (EDA) is a kind of 
Evolutionary Algorithms that finds near optimal solutions 
based on the evolution of candidate solutions satisfying some 
fitness functions. EDA guide the search by explicitly building 
the probabilistic model of promising candidate solutions. The 
detail discussion on EDA is beyond the scope of this paper, but 
interested reader can refer to papers by Ceberio et al. [14], 
Shirazi et al. [15], Shakya and Santana [16], Simon [17] and 

Pelikan [18]. In the area of Search-Based Software Engineering 
(SBSE), to the best of our knowledge, no attempt has been 
made to employ any variant of high-order EDA (which 
includes bivariate or multivariate statistics) in SPL testing. 

EDA have been adopted to solve many optimization 
problems in single software-product development such as to 
optimize test data generation and test suites generation [19]–
[21] and refactoring [22]. The work in [19] employs bivariate 
EDA named as COMIT [23], in which the combination of pair 
of variables are viewed as tree, therefore it has a single root 
node. They proposed integration with data mining techniques 
to predict the performance of a test data generator. In the 
context of testing for concurrent software, detecting faults can 
be improved by exploiting information discovered in EDA 
exploration that can save future test efforts [24]. EDA has also 
been employed to improve software reliability prediction [25]. 
They reported that EDA-based approach can optimize the 
parameters of support vector regression in predicting the 
software reliability, by introducing a chaotic mutation operator 
into traditional EDA. Prior to that, they define the software 
reliability prediction problem as a combinatorial optimization 
problem with constraints, in which, search-based are known to 
be a viable solution to that problem. 

III. PROPOSED APPROACH 

This section presents an evolutionary-based algorithm that 
generates minimal and effective SPL test configuration that 
satisfies pairwise coverage of features, based on bivariate 
marginal distribution strategy. 

A. Marginal Distribution Algorithms of EDAs 

Estimation of Distribution Algorithms (EDAs) explores the 
space of potential solutions following the principle of survival 
of the fittest of individual and populations similar to Genetic 
Algorithm (GA) [16],  [18]. However, in EDAs, crossover and 
mutation operators are removed and replaced by the estimation 
of a probability distribution. The Probability Distribution is a 
model of (1) the distribution of genes across all individuals, 
and (2) the dependence relations or independence relations of 
genes between individuals. 

One way to estimate the distribution of genes from all the 
individuals in the population is by using marginal distribution. 
The simplest marginal distribution calculates the probability of 
each candidate solutions’ genes independently. This strategy is 
called as univariate marginal distribution. This contrasts with 
bivariate marginal distribution, which calculates the estimation 
based on the dependency of two genes. The dependency that is 
of our interest is the statistically significant dependency, which 
can be computed using Pearson’s chi-square statistics [26]. 

The probability distribution for the univariate marginal 
distribution is calculated using the frequency of each gene from 
all or truncated individuals and stored as Probability Vector 
(PV). The PV will be used to sample or generate new 
individuals in subsequent generations. For the bivariate 
marginal distribution, we start with calculating the frequency 
of each gene. Then, we calculate the joint probability of each 
pair of genes, using the previously calculated frequency value. 
Afterward, for each pair of genes, we calculate the Pearson’s 
chi-square tests to establish links between interdependent 
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genes. The result of this is a set of genes dependency and we 
only consider two genes as interdependent if the value is 
statistically significant. Next, we generate a dependency graph 
to store this information. The graph is acyclic and not 
necessarily has to be connected. All genes that have no 
interdependency with other genes are assigned as a root node 
in the graph. Whereas, for those that have a link, if both genes 
are not yet added to the graph, choose any gene from that pair 
as the root node. Add the other gene as a child node and 
connect them using an edge. Among them, nodes that are 
added earlier are called as the parent node. 

Based on the constructed graph, we generate a new 
population. First, populate genes for root nodes using 
univariate frequencies. Next, for each child nodes, populate the 
genes using conditional probability. Perform the same process 
for all child nodes. From there, the standard evolutionary step 
is applied, which is fitness evaluation of each individual in the 
new population. The population is truncated, and the process 
repeats until an acceptable solution is found. The intuition is, 
univariate-based EDA is considered as a lightweight 
evolutionary algorithm and require small memory footprint 
[27], whereas the bivariate EDA manifest possible variables 
interdependency [18]. 

B. Bivariate Distribution of SPL Features 

This section presents the mechanism and illustration of a 
second-order EDA (bivariate distribution) to generate pairwise 
test configuration for SPL. Here, we named this approach as 
Combinatorial Testing using Estimation of Distribution 
(COTED). 

The proposed strategy is generally outlined as follows: 

1) Generate a set of test configuration as the initial 

population. Calculate the fitness of each test configuration 

using the number of covered pairwise. Then, we perform 

truncation to select highly fit candidate solutions. 

2) Calculate univariate frequencies and bivariate 

frequencies of each feature number. 

3) Create a feature configuration dependency graph using 

the calculated frequency. 

4) Generate new test configurations based on the graph. 

5) Repeat until termination criteria are matched. 

We define our fitness function as the number of pairs of 
features covered by each test configuration, whereby, the more 
pairs covered, the better the fitness. The intuition is, during the 
search for fitter test configurations, the stronger the 
dependency of a particular pair of features present in the 
current fittest test configuration, the more frequent it should be 
included in the subsequent list of test configuration. For 

example, if the dependency of features 5 and 7 are statistically 
significant in our 10 best test configurations, we should create 
more test configurations using the calculated conditional 
distribution of features 5 and 7 in the next iteration. The 
definition of best test configurations refers to those that cover a 
higher number of pairs from our list of all valid pairs. 

By modeling the non-dependency between two features in a 
set of test configurations, we can search for possible 
dependency between two features. This dependency would 
suggest that the two features should be paired, and those that 
have strong dependency should be considered first. A variant 
of EDA that has the capability to find this dependency is called 
the Bivariate Marginal Distribution Algorithm (BMDA) [17], 
[28]. It uses a factorization of the univariate marginal and joint 
probability distribution that able to expose second-order 
dependencies. For our test configuration generation problem, 
we define the univariate marginal and joint probability 
distribution as follows: 

Definition 1 (univariate marginal probability) 

The probability of a feature is selected, p(xi), is 
unconditional to other features. For example, p(5) = 0.7, means 
that the probability of feature number 5 to be selected is 70 per 
cent from all test configurations. 

Definition 2 (joint probability) 

Joint probability between feature v and feature w, JPv,w, is 
defined as the probability of feature v and feature w been 
considered (either selected or not selected). 

In the remaining part of this section, we elaborate the 
details of the mechanism to generate test configuration that 
satisfies pairwise coverage of feature configuration. 

Step 1. Feature configurations in FM are governed by 
constraints, so that only valid test configurations are generated. 
A SAT solver is utilized to populate the seed of our search 
space. Once a collection of valid test configurations is 
available, we calculate their fitness using pairwise coverage 
and remove unfit test configurations. To illustrate this, we 
make a list of valid pair of features that needs to be covered in 
Listing 1. We start by populating 20 test configurations from 
SAT solver and calculate the number of pairwise covered by 
each test configuration as its fitness value. We sort and select 
10 fittest test configurations as our truncated initial population, 
which is presented in Fig. 3. 

Pair of features, pf = { (-3,20), (-3,21), (5,19), (-5,20), (5,22), (-5,23), 

(-6,18), (8,9), (8,19), (8,21), (-8,23), (-9,19), (9,23), (-10,20), (-10,23), 

(11,19), (11,22), (-11,23), (12,19), (12,22), (-12,23), (-16,23), (19,23), 
(20,22), (21,24), (21,-25), (22,-24), (22,25) } 

Listing 1. Pair of valid features that needs to be covered. 

Test Configuration, TC Fitness 

01:[1,2, 3,4, 5, 6,7, 8, 9, 10,-11, 12,13,14,15, 16, 17,-18, 19,-20,-21, 22,-23,-24, 25] 

02:[1,2, 3,4, 5, 6,7, 8,-9, 10, 11,-12,13,14,15, 16,-17,-18, 19,-20,-21, 22,-23,-24, 25] 

03:[1,2,-3,4, 5, 6,7,-8,-9, 10, 11, 12,13,14,15,-16, 17,-18,-19, 20,-21, 22,-23,-24, 25] 

04:[1,2,-3,4, 5, 6,7, 8, 9, 10, 11,-12,13,14,15, 16, 17,-18, 19,-20,-21, 22,-23, 24,-25] 

05:[1,2, 3,4,-5, 6,7,-8, 9, 10,-11,-12,13,14,15, 16, 17,-18,-19, 20,-21,-22, 23,-24, 25] 

06:[1,2,-3,4, 5,-6,7,-8, 9,-10, 11, 12,13,14,15,-16,-17, 18,-19,-20,-21, 22,-23,-24, 25] 

07:[1,2,-3,4,-5,-6,7,-8,-9, 10,-11,-12,13,14,15, 16, 17,-18,-19, 20, 21,-22,-23, 24,-25] 

08:[1,2,-3,4,-5,-6,7,-8,-9, 10,-11,-12,13,14,15, 16,-17, 18,-19,-20,-21,-22, 23, 24,-25] 

09:[1,2, 3,4, 5,-6,7,-8, 9, 10, 11,-12,13,14,15,-16, 17,-18,-19, 20,-21,-22, 23,-24, 25] 

10:[1,2,-3,4, 5,-6,7,-8, 9, 10, 11,-12,13,14,15, 16,-17,-18,-19, 20,-21,-22, 23, 24,-25] 

8 

8 

7 

6 

6 

6 

5 

5 

4 

4 

Fig. 3. List of initial truncated population with fitness value. 
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Step 2. We calculate the univariate distribution for each 
feature. Each feature in each test configuration has either 
positive or negative prefix. We compute the mean of positive 
number for each feature from all test configurations. These 
processes are presented in Algorithm 1. The result of this 
process is the Probability Vector, PV of our initial population, 
as shown in Fig. 4. 

Algorithm 1. Calculate Probability Vector 

1. Load a population of candidate solutions 

2. Select 10 test configurations according to its pairwise fitness  

3. Let n be the length of a test configuration 

4. For i = 1 to n 

5.     Calculate the mean of positive i as mean_i 

6.     Set the probability vector for feature i, P(i) = mean_i 

7. Next i 
 

PV:[1.0,1.0,0.4,1.0,0.7,0.5,1.0,0.3,0.6,0.9,0.6,0.3, 

1.0,1.0,1.0,0.7,0.6,0.2,0.3,0.5,0.1,0.5,0.4,0.4,0.6] 

Fig. 4. Probability vector of initial population. 

The next step is to calculate the joint probability of all 
possible value in each pair of the feature. As an example, for 
features 5 and 11, we calculate the occurrences of all four 
pairs; i.e. (5,11), (5,-11), (-5,11) and (-5,-11). Based on the 
population in Fig. 3, we get the joint probability value of 0.6, 
0.1, 0.0 and 0.3, respectively. This process is defined in 
Algorithm 2, line 2 to 8. 

After that, calculate the Pearson’s chi-square statistics, Cv,w, 
for each pair of features using the following equation: 

Cv,w = n * ∑
[𝐽𝑃𝛼𝑣,𝛽𝑤  −𝑃(𝛼𝑣)𝑃(𝛽𝑤)]2

𝑃(𝛼𝑣)𝑃(𝛽𝑤)𝛼,𝛽   

where  n is the number of test configuration 

𝛼 is either positive or negative prefix 

𝛽 is either positive or negative prefix 

For example, for v=5 and w=11: 

C5,11 = 10 *  

(
(𝐽𝑃5,11  −𝑃(5)𝑃(11))

2

𝑃(5)𝑃(11)
+

(𝐽𝑃5,−11  −𝑃(5)𝑃(−11))
2

𝑃(5)𝑃(−11)
+

(𝐽𝑃−5,11  −𝑃(−5)𝑃(11))
2

𝑃(−5)𝑃(11)
+

(𝐽𝑃5,11  −𝑃(−5)𝑃(−11))
2

𝑃(−5)𝑃(−11)
 ) = 10 * 

(
(0.6 −(0.7∗0.6))

2

0.7∗0.6
+ (0.1  −(0.7∗0.4))

2

0.7∗0.4
+ (0.0  −(0.3∗0.6))

2

0.3∗0.6
+

(0.3  −(0.3∗0.4))
2

0.3∗0.4
 ) = 6.4 

This step is defined in Algorithm 2, line 9 to 14. Based on 
our sampled population, the calculated bivariate frequencies 
are shown in Fig. 5. Here, we are only interested in chi-square 
value of at least 3.84  [17], based on the degree of freedom of 1 
and p value of 0.05. By calculating the chi-square values of the 
initial population, we choose 11 feature pairs. These pairs are 
conceived as having a strong dependency, due to the high 
degree of correlation. 

Algorithm 2. Calculate Bivariate Frequencies 

1.   Initialize joint probability, JP 

2.   For v = 1 to n - 1 

3.     For w = 2 to n 

4.       For each test configuration, tc  

5.       Calculate joint probability between feature v and w, JPv,w, 

group by combination of positive and negative prefix 

6.       Next tc 

7.     Next w 

8.   Next v 

9.   Initialize chi-square, C 

10. For v = 1 to n-1 

11.   For w = 2 to n 

12.     Calculate the Pearson’s chi-square statistics Cv,w  

13.   Next w 

14. Next v 
 

Feature Pair  Chi-square 
(8,19) 10.0 
(24,25) 10.0 

(22,23) 6.6 

(5,11) 6.4 
(10,18) 4.5 

(3,24) 4.5 

(5,22) 4.4 
(8,22) 4.4 

(12,22) 4.4 

(8,20) 4.4 
(6,8) 4.4 

Other pair <3.84 

Fig. 5. Bivariate frequencies of the initial population. 

Step 3. The succeeding step is to create a Feature 
Configuration Dependency Graph (FCDG). We define FCDG 
as a forest and are specified in Definition 3. 

Definition 3. (Feature Configuration Dependency Graph, 
FCDG). 

FCDG = (V,E), where V is the set of all features available 
in the forest, and E is the set of all edges between some ordered 
pairs of features. FCDG contains a collection of possibly 
disconnected trees. 

Each feature is represented by a node, and dependency 
between the pair of features is represented by an edge. The 
dependency between features is to be calculated based on 
conditional probability, thus its relationship is of type 
directional. Therefore, we link the respective nodes in our 
FCDG using directed edges. 

We define the following six properties for the FCDG: 

1) The indegree of a node is the number of edges directing 

to that node. Each node has zero or one indegree. 

2) The outdegree of a node is the number of edges leading 

away from that node. Each node has zero or more outdegree. 

3) A node with zero indegree and non-zero outdegree is 

called as a root node. FCDG can have more than one root 

node. 

4) A node with non-zero indegree is called as a child node. 

5) A node with non-zero outdegree is called as a parent 

node. 

6) A node without a degree is called as a standalone node. 
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The generation process of FCDG starts by selecting a 
random feature and adds it to our graph. Then, add a dependent 
feature by finding another feature having the highest chi-square 
value of at least 3.84, and add it to the graph. Repeat this step 
until no more features fulfil this criterion. Then, select another 
random feature and repeat the whole process until all features 
are added to the graph. This process is defined in Algorithm 3. 

Algorithm 3. Create Feature Configuration Dependency Graph 

1.   Let W as the set of all features  

2.   Let F as an empty graph, consists of empty V and E 

3.   Select a random feature, r, from W 

4.   Add r to the graph, V 

5.   Remove r from W 

6.   If there are no more features in W, goto end 

7.   For each remaining features in W 

8.      Find a feature, s, that has the highest dependency to feature r 

9.      If found 

10.       add s to V 

11.       removes s from W 

12.       add set {r,s} into E 

13.    if not found 

14.       goto step 3 

15.    end if 

16. End 

Executing this algorithm against the values from Fig. 5 will 
result in a graph with the following attributes: 

 The set of all features, V = {1,2,3,…,25} 

 Edges between some ordered feature pairs, E = { 
{3,24}, {5,11},  {8,6}, {8,19}, {8,20},  {18,10 }, 
{22,5}, {22,8}, {22,12,}, {22,23}, {24,25} } 

In this case, the FCDG for our running example consists of 
25 nodes with 11 edges. This can be graphically presented 
using a forest with three disconnected trees as shown in Fig. 6. 
All nodes in white colour are standalone nodes, in which no 
dependency to other nodes is discovered. The rest (coloured 
nodes) are nodes with dependency. As an example, it is shown 
that features 18 and 10 are highly dependent. From Fig. 3, 
feature 18 is always negative whenever feature 10 is positive, 
and the other way round. Another example is between feature 8 
and 19. It is of high frequency that both having negative values 
in the same row. The same relationship (of a certain pattern) 
can be observed for the rest of the pairs. 

Step 4. Once we have the dependency graph, we can 
proceed with generating a new population. It consists of two 
parts, (1) to populate root nodes, and (2) to populate child 
node. 

 
Fig. 6. The feature configuration dependency graph of the initial population. 

We start by populating all features correspond to the root 
nodes in our graph. The features are assigned with positive or 
negative values using univariate probabilities. Then, we 
populate the remaining features that correspond to the child 
nodes. This is performed by calculating the conditional 
probabilities of the child nodes given its parent nodes. We 
define the conditional probabilities for our strategy as follows: 

Definition 4. (conditional probability) 

Conditional probability of feature s and feature r, CP(s|r) is 
defined as the probability of feature s to be selected, given 
feature r been selected. It is calculated using the joint 
probability of s and r, JPs,r, divide by the univariate probability 
of r, i.e P(r). 

CP( s | r ) = 
𝐽𝑃𝑠,𝑟

𝑃(𝑟) 
 

This process is defined from line 3 to line 8 of Algorithm 4. 

Algorithm 4. Populate New Generation 

1.  For each root nodes, r, in G 

2.     Populate new generation having positive/negative value of r 

using univariate frequencies 

3.     For other nodes, s, in G 

4.        If parent node of s has been populated 

5.           Populate positive/negative value of s based on the 

conditional probability of s given parent of s 

6.        If all features have been populated, goto end 

7.  Next root node 

8.  End 

To demonstrate the first part, which is populating all the 
root nodes, Fig. 7 shows a possible assignment for 20 test 
configurations of our new generation. For example, for feature 
16, from our initial generation, the PV value for feature 16 is 
0.7, hence 70% of the new generation should have the positive 
value of 16. This can be achieved by using random numbers 
generated from a uniform distribution between 0 and 1. As per 
shown in Fig. 7, the outcome of this strategy is the assignment 
of a positive value of 16 for test configurations TC01, TC04-
TC08, TC10, TC11, TC14 TC16 and TC18 TC20. The 
remaining test configurations are assigned with -16. We apply 
the same strategy to populate the remaining root node features, 
and values are presented in Fig. 7. For non-root node features, 

which we mark with unfilled squares (□), will be populated 

later. 

The second part populates the remaining features, with 
respect to the child nodes from our dependency graph, i.e. 
features 5, 6, 8, 10, 11, 12, 19, 20, 23, 24, 25. Let us choose 
feature 12 as an example. Since feature 22 has been assigned 
with values, we assign feature 12 given the respective values of 
feature 22, using conditional distribution. It can be calculated 
using the joint probability of both features having positive 
values in the initial population, i.e. 0.3. Then divide by the 
probability vector of feature 22, i.e. 0.5. This equates to 0.6. 
Thus, we populate 60% of feature 12 with positive values for 
test configuration having positive 22. Similarly, calculate the 
probability of positive 12 given the negative value of feature 
22, and use the result to populate the value of remaining test 
configurations. Once all values for feature 12 have been 
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assigned, we use the same strategy to populate the remaining 
features. A possible outcome of this process is shown in Fig. 8. 

Step 5. The final step in this iteration is to calculate the 
fitness of each individual in the new generation. We count how 
many pairs from Listing 1 matched with each pair of features 
in each test configuration. The fitness values are shown in the 

right column of Fig. 8. It is observed that three test 
configurations (TC10, TC17, and TC18) have better fitness 
value (marked with *) compared to the previous generation of 
test configuration (refer Fig. 3). Truncation is again applied to 
select only ten highly fit individuals. The whole process repeats 
from Algorithm 1 and continue until the intended pairwise 
coverage has been met. 

List of root node features= 

   [1, 2, 3, 4, 7, 9, 13, 14, 15, 16, 17, 18, 21, 22] 

PV (for root node features)= 

 [1.0, 1.0, 0.4, 1.0, 1.0, 0.6, 1.0, 1.0, 1.0, 0.7, 0.6, 0.2, 0.1, 0.5] 

New Generation of Test Configuration, TC: 

01:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15, 16,-17,-18,□,□,-21,-22,□,□,□] 

02:[1,2,-3,4,□,□,7,□,-9,□,□,□,13,14,15,-16, 17, 18,□,□,-21,-22,□,□,□] 

03:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15,-16, 17,-18,□,□,-21, 22,□,□,□] 

04:[1,2, 3,4,□,□,7,□,-9,□,□,□,13,14,15, 16, 17, 18,□,□,-21, 22,□,□,□] 

05:[1,2, 3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17,-18,□,□,-21,-22,□,□,□] 

06:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17, 18,□,□,-21,-22,□,□,□] 

07:[1,2,-3,4,□,□,7,□,-9,□,□,□,13,14,15, 16, 17,-18,□,□,-21, 22,□,□,□] 

08:[1,2, 3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17,-18,□,□,-21,-22,□,□,□] 

09:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15,-16, 17, 18,□,□,-21,-22,□,□,□] 

10:[1,2, 3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17, 18,□,□,-21,-22,□,□,□] 

11:[1,2, 3,4,□,□,7,□, 9,□,□,□,13,14,15, 16,-17, 18,□,□, 21, 22,□,□,□] 

12:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15,-16,-17,-18,□,□,-21,-22,□,□,□] 

13:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15,-16,-17,-18,□,□,-21, 22,□,□,□] 

14:[1,2, 3,4,□,□,7,□,-9,□,□,□,13,14,15, 16, 17,-18,□,□, 21,-22,□,□,□] 

15:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17,-18,□,□,-21,-22,□,□,□] 

16:[1,2, 3,4,□,□,7,□, 9,□,□,□,13,14,15, 16,-17, 18,□,□,-21,-22,□,□,□] 

17:[1,2,-3,4,□,□,7,□,-9,□,□,□,13,14,15,-16,-17,-18,□,□,-21, 22,□,□,□] 

18:[1,2, 3,4,□,□,7,□,-9,□,□,□,13,14,15, 16, 17,-18,□,□,-21, 22,□,□,□] 

19:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17,-18,□,□,-21, 22,□,□,□] 

20:[1,2, 3,4,□,□,7,□,-9,□,□,□,13,14,15, 16,-17,-18,□,□,-21,-22,□,□,□] 

Fig. 7. Populated root node features using univariate frequencies. 

List of Non-Root node features =  

[5, 6 , 8 , 10, 11, 12, 19, 20, 23, 24, 25] 

New Generation of Test Configuration, TC: Fitness 

01:[1,2,-3,4,-5,-6,7,-8, 9, 10,-11,-12,13,14,15, 16,-17,-18,-19,-20,-21,-22, 23, 24,-25] 

02:[1,2,-3,4, 5,-6,7,-8,-9, 10, 11,-12,13,14,15,-16, 17, 18,-19, 20,-21,-22, 23, 24,-25] 

03:[1,2,-3,4, 5, 6,7, 8, 9, 10, 11, 12,13,14,15,-16, 17,-18, 19,-20,-21, 22,-23, 24,-25] 

04:[1,2, 3,4, 5, 6,7, 8,-9,-10,-11,-12,13,14,15, 16, 17, 18, 19,-20,-21, 22,-23,-24,-25] 

05:[1,2, 3,4, 5,-6,7,-8, 9, 10, 11,-12,13,14,15, 16, 17,-18,-19,-20,-21,-22, 23,-24, 25] 

06:[1,2,-3,4, 5, 6,7,-8, 9, 10, 11,-12,13,14,15, 16, 17, 18,-19,-20,-21,-22, 23, 24,-25] 

07:[1,2,-3,4, 5, 6,7, 8,-9, 10, 11,-12,13,14,15, 16, 17,-18, 19,-20,-21, 22,-23, 24,-25] 

08:[1,2, 3,4, 5,-6,7,-8, 9, 10, 11,-12,13,14,15, 16, 17,-18,-19, 20,-21,-22, 23,-24,-25] 

09:[1,2,-3,4, 5,-6,7,-8, 9,-10,-11,-12,13,14,15,-16, 17, 18,-19,-20,-21,-22, 23, 24,-25] 

10:[1,2, 3,4,-5,-6,7,-8, 9,-10,-11,-12,13,14,15, 16, 17, 18,-19, 20,-21,-22, 23,-24,-25] 

11:[1,2, 3,4, 5, 6,7,-8, 9, 10, 11, 12,13,14,15, 16,-17, 18,-19,-20, 21, 22,-23,-24, 25] 

12:[1,2,-3,4,-5,-6,7,-8, 9, 10, 11,-12,13,14,15,-16,-17,-18,-19, 20,-21,-22, 23, 24,-25] 

13:[1,2,-3,4, 5, 6,7, 8, 9, 10, 11,-12,13,14,15,-16,-17,-18, 19,-20,-21, 22,-23,-24, 25] 

14:[1,2, 3,4,-5, 6,7,-8,-9, 10,-11,-12,13,14,15, 16, 17,-18,-19, 20, 21,-22, 23,-24,-25] 

15:[1,2,-3,4,-5, 6,7,-8, 9, 10,-11,-12,13,14,15, 16, 17,-18,-19, 20,-21,-22, 23, 24,-25] 

16:[1,2, 3,4,-5,-6,7,-8, 9,-10, 11,-12,13,14,15, 16,-17, 18,-19, 20,-21,-22, 23,-24,-25] 

17:[1,2,-3,4, 5, 6,7, 8,-9, 10, 11, 12,13,14,15,-16,-17,-18, 19,-20,-21, 22,-23,-24,-25] 

18:[1,2, 3,4, 5, 6,7, 8,-9, 10, 11, 12,13,14,15, 16, 17,-18, 19,-20,-21, 22,-23,-24, 25] 

19:[1,2,-3,4, 5, 6,7, 8, 9, 10, 11, 12,13,14,15, 16, 17,-18, 19,-20,-21, 22,-23, 24,-25] 

20:[1,2, 3,4,-5,-6,7,-8,-9, 10,-11,-12,13,14,15, 16,-17,-18,-19,-20,-21,-22, 23,-24, 25] 

 5 
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 5 

 3 

 3 
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 3 
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 5 
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 8 

 4 

Fig. 8. Populated non-root node features using conditional distribution and calculated fitness value. 

IV. EXPERIMENT AND RESULTS 

COTED has been implemented and executed on a set of 
feature models from Software Product Line Online Tools 
(SPLOT) [7]. The objective is to measure the efficiency and 
effectiveness of bivariate distribution approach based on EDA 
in generating test configuration satisfying pairwise testing. The 
comparison has been made against (1) a greedy-based 
approach, ICPL [3] and (2) a constraint handling approach 
based on the minimum-invalid-tuple strategy, LOOKUP [29]. 

The first part assesses the efficiency by measuring the 
minimum number of test configurations that the three 
approaches able to generate. The second part measures the 

quality of the generated test configuration, in terms of the 
frequency of pairwise tuple, and test configuration similarity. 
During the experiments, 8 datasets of various sizes of 
constrained Feature Models (FMs) have been selected from 
SPLOT. COTED has been executed with the population of size 
800 with truncation size 100, stagnancy count of 3 executions, 
maximum generations were 5000 and execution timeout of 
1800 seconds. 

A. Minimum Number of Test Configurations 

This is the most used metric that evaluates the efficiency of 
the solution for SPL test configuration generation [12]. It 
calculates the number of test configurations generated using a 
particular approach that either fully satisfies the pairwise 
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coverage, or partially fulfil the coverage with a decent 
percentage. However, the latter does not conform to the 
definition of pairwise testing, i.e. to have all pairs covered at 
least once. Therefore, a complete pairwise coverage is often of 
the goal in any SPL test configuration exercise. 

Fig. 9 shows that LOOKUP is the most outstanding tool in 
generating the most minimal test configurations. For 
J2EEWebArch and CocheEcologico, it outperforms the other 
techniques. For others, it produces an equal number of test 
configuration as generated by COTED, except for 
SPLSimulES dataset. 

B. t-wise Frequency 

This measure has been devised by Perrouin et al. [30] as the 
ratio between the occurrences of t-wise and the number of test 
configurations generated. This can be used to check whether 
the solution satisfies the t-wise principle, i.e., in the solution, 
every valid combination of t factors must present at least once. 
An optimum solution consists of combination of t factors once. 
This, however, is hard to achieve. 

Fig. 10 shows the box plots of all evaluated techniques 
calculated based on the median of t-wise frequencies of the 
generated test configurations for each benchmark datasets. In 
general, the average and the dispersion of the t-wise 
frequencies are stable for the three techniques. Most of the 
results show that the frequencies are maintained low, as 
depicted by the concentration on the low end of the scale, 
except for Ecommerce (Fig. 10(a)) and Billing (Fig. 10(g)) 
datasets. Low frequency of t-wise in the generated test 
configurations indicates that there are less pairwise 

occurrences; hence lower the redundancy of feature of pairs. 
This is useful in the event of limited time and resources 
available for testing, which is often the case in SPL testing. 

On average, as shown in Table I, the median and standard 
deviation (σ) of the proposed techniques resides on the decent 
level, which is on par with the other approaches. Even though, 
on average, ICPL can demonstrate lower t-wise frequency 
(0.288), the deviation of the overall solution is worse than the 
rest. On the other side of the coin, LOOKUP and COTED 
managed to cover pairwise steadily, with low variations, on 
average, however, it covers higher frequency than ICPL. The 
differences between COTED and LOOKUP are relatively low. 
50 per cent of the overall medians are equal for both 
techniques. 

Datasets 
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 TC Generation Techniques 

COTED ICPL LOOKUP 

Ecommerce 10 10 6 7 6 

Cellphone 11 14 7 8 7 

GraphProductLine 20 30 15 17 15 

SPLSimulES 32 25 10 10 11 

ArcadeGame 61 87 16 18 16 

J2EEWebArch 77 86 19 18 17 

Billing 88 89 13 14 13 

CocheEcologico 94 131 92 93 90 

Fig. 9. Minimum number of test configuration generated. 

 
Fig. 10. Box plots for the median of t-wise frequency of the three approaches. 
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TABLE I.  MEDIAN AND STANDARD DEVIATION () OF T-WISE FREQUENCY 

                    Techniques  

Datasets 

COTED ICPL LOOKUP 

Median  Median  Median  

ECommerce 0.33 0.1634 0.29 0.1910 0.33 0.1634 

Cellphone 0.29 0.1615 0.38 0.1636 0.29 0.1615 

SPL-SimulES 0.3 0.1498 0.3 0.1543 0.27 0.1470 

ArcadeGamePL 0.31 0.1695 0.28 0.2101 0.31 0.1771 

Graph Product Line 0.27 0.2280 0.29 0.2289 0.27 0.2263 

J2EE Web Arch 0.26 0.1440 0.28 0.1566 0.29 0.1391 

Billing 0.4 0.1530 0.36 0.1782 0.38 0.1553 

Coche-ecologico 0.33 0.2488 0.13 0.3353 0.32 0.2530 

Average 0.311 0.177 0.288 0.202 0.307 0.177 

C. Test Configurations Similarity 

The third measurement is test configuration similarity [30]. 
The objective is to assess the degree of similarity between test 
configurations among a different set of solutions. The 
similarity between two test configurations is calculated using 
Jaccard Index, Jac. Given a and b as the two test 
configurations, we calculate Jac(a,b) as follows: 

Jac(a,b) = 
|𝑎 ∩ 𝑏|

|𝑎 ∪ 𝑏|
 

The presence of all mandatory features is a must in all test 
configurations. Since all solutions from the three techniques 
are of valid test configurations, we omit the similarity checking 
for mandatory features. Only optional features are observed. 

This similarity measure can be used to measure the degree 
of diversity of the generated solutions. Lower Jaccard Index 
value indicates that the test configurations are less likely to be 
similar, hence more diversified. Fig. 11 shows the box plots 
calculated based on the median of the test configuration 

similarity from the generated solutions for each benchmark 
datasets. Overall, the averages of the test configuration 
similarity are low and encouraging among all techniques, and 
the dispersions of the median are stable for all techniques. This 
is depicted in Fig. 11 based on the trend of right skewness, as 
most medians are closer to the first quartile than the third 
quartile. COTED performance is on par with LOOKUP, and in 
fact, it managed to outperform LOOKUP at SPL-SimulES 
dataset. Overall, COTED and LOOKUP outperform ICPL for 
most datasets. 

With respect to the average and measure of dispersion, as 
shown in Table II, LOOKUP performed better than the rest, 
with the exception to three datasets (Cellphone, SPL SimulES 
and ArcadeGamePL) where COTED has a bit lower median 
values. Meanwhile, the median of COTED is better than ICPL, 

with lower median and  on five datasets (ECommerce, 
Cellphone, ArcadeGamePL, Graph Product Line and Coche 
ecologico). This suggests, on average, it produces more 
dissimilar sets of test configurations. 

 

Fig. 11. Box plots for the median of t-wise similarity of the three approaches. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 9, 2023 

923 | P a g e  

www.ijacsa.thesai.org 

TABLE II.  MEDIAN AND STANDARD DEVIATION () OF TEST CONFIGURATION SIMILARITY 

             Techniques 

Datasets 

COTED ICPL LOOKUP 

Median  Median  Median  

ECommerce 0.67 0.6581 1 0.8064 0.67 0.6489 

Cellphone 1.1 0.8134 1.2 0.8955 1.3 0.7188 

SPL-SimulES 1.4 1.0682 1.4 1.0199 1.6 1.1632 

ArcadeGamePL 2.45 1.9168 2.9 2.2197 2.55 1.9063 

Graph Product Line 2.9 2.1399 3.35 2.4305 2.7 2.1715 

J2EE Web Arch 3 2.2429 2.7 2.1194 2.6 1.9755 

Billing 3.3 2.3822 2.9 2.2185 2.8 2.0049 

Coche-ecologico 17 13.6009 21 14.3204 17 13.3103 

Average 3.977 3.102 4.556 3.253 3.902 2.987 

V. DISCUSSIONS 

By calculating the marginal distribution between every two 
features in a particular sample, we can infer its connection. 
And based on that strong assumption, the population evolve 
towards more frequently connected features. This can directly 
be translated to more pairwise coverage. The ability to 
maximize pairwise coverage at each evolution cycle results in 
the reduction in the overall cycles of exploration, and 
subsequently, reduce the number of generated test 
configuration that fulfil pairwise coverage. 

This strategy has been evaluated against two current 
approaches, i.e. greedy-based and minimum invalid tuple 
based. Of the three strategies, the minimum invalid tuple-based 
strategy performed the best, but, competitively challenged by 
COTED, and this is supported by results analysis using 
descriptive statistics. 

Even though the performance of COTED is shown to be 
comparable, if not better than other approach, it provides us 
with a set of knowledge on the problem structure. By analysing 
the evolution of the probability models during test 
configuration generation, we discover a set of data on how the 
problem is being solved. We also gain knowledge on how 
features are distributed in the population with respect to other 
features. We explicitly acquire this in the form of feature 
configuration dependency graph which stores a set of feature 
pairs that have strong dependency. This information is deemed 
crucial as it could help us (1) decide how to prioritize the test 
configurations in pairwise testing, and (2) infer a higher order 
marginal distribution based on the collection of dependency 
knowledge. 

As compared to test generation, previous literature 
highlighted that test prioritization for SPL is insufficiently 
researched, especially on one that is based on feature 
reusability [31]. Reusable features are features that appear 
more frequently in final software products than the others. 
Hence, calculating the frequency might help in extracting the 
most reusable one. In view of interaction testing, two 
interacting features are of one main concern. Thus, to find 
those reusable interactions could mean to find common feature 
interactions. 

The dependency knowledge in the form of a collection of 
feature configuration dependency graphs are acquired 
iteratively from second-order probabilistic model. As opposed 
to computing a higher-order probabilistic model (which 
involves multivariate computation), this process is more viable 
as it incurs much lower cost. Additionally, a higher-order 
probabilistic model is achievable by grouping or clustering 
lower-order dependencies which contains highly interacting 
sets of variables [32]. Therefore, we could leverage a 
lightweight second-order iterative computation for practical 
higher-order computation. This remains to be investigated and 
thus motivate our future work. 

VI. CONCLUSION AND FUTURE WORKS 

Generating efficient and effective test configurations for 
SPL is difficult. One way to feasibly tackle the combinatorial 
explosions of feature configuration testing is by leveraging 
pairwise testing. 

Based on the work we conducted throughout this study, we 
found that the marginal distribution algorithm-based approach 
is a feasible and competitive strategy. It allows us to reduce the 
number of required test configuration from an exhaustive 
approach by leveraging pairwise coverage as its fitness 
function. Our proposed strategy managed to generate the 
solution of similar quality in terms of t-wise frequency and test 
configuration diversity, compared to those generated by state-
of-the-art approaches. The outcome of the proposed strategy is 
two-fold. First, it generates minimized test configuration for 
pairwise testing. Secondly, the inherent ability of the strategy 
to extract the dependency knowledge in the form of feature 
configuration dependency graphs. As per our knowledge, this 
is the first time a combinatorial interaction testing in software 
product line problem is being modelled and tackled by using 
probability based evolutionary algorithm. 
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