
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

914 | P a g e

www.ijacsa.thesai.org

Marginal Distribution Algorithm for Feature Model

Test Configuration Generation

Mohd Zanes Sahid, Mohd Zainuri Saringat, Mohd Hamdi Irwan Hamzah, Nurezayana Zainal

Faculty of Computer Science and Information Technology,

Universiti Tun Hussein Onn Malaysia (UTHM), Johor, Malaysia

Abstract—Generating test configuration for Software Product

Line (SPL) is difficult, due to the exponential effect of feature

combination. Pairwise testing can generate test input for a single

software product that deviates from exhaustive testing,

nevertheless proven to be effective. In the context of SPL testing,

to generate minimal test configuration that maximizes pairwise

coverage is not trivial, especially when dealing with a huge

number of features and when constraints must be satisfied, which

is the case in most SPL systems. In this paper, we propose an

estimation of distribution algorithm, based on pairwise testing, to

alleviate this problem. Comparisons are made against a greedy-

based and a constraint handling based approach. The

experiments demonstrate the feasibility of the proposed

algorithm, such that it achieves better test configurations

dissimilarity and at the same time maintain the test configuration

size and pairwise coverage. This is supported by analysis using

descriptive statistics.

Keywords—Estimation of distribution algorithm; marginal

distribution algorithm; test configuration generation; pairwise

testing; software product line

I. INTRODUCTION

Many software products developed for various domains
carries some similar functionality. This software shares similar
functionalities since they have been developed based on the
same kind of input and output types. The similarity in the
internal program structure due to identical user requirements
also contributes to the commonalities among these software
products. Because of this scenario, and based on the benefit of
reuse principles, Software Product Line (SPL) has been
developed as a software development paradigm to produce
software inspired by product line approach. Developing an SPL
system enables us to create a software structure that is
customizable to various needs, by maximizing software
artefacts reusability [1]. Due to the highly variable and reusable
nature of SPL artefacts, it is uneconomic to develop software
based on distinct requirements separately, as some of the
functionalities are similar. However, it is difficult to employ
single product development paradigm to build various software
products that fulfil the needs of diverse users of a similar
domain.

A unit of system function in an SPL is represented as a
feature, and explicitly defined as common or variable features
and utilized throughout the SPL development process. One
way to model the commonalities and variabilities in an SPL is
using a Feature Model (FM), based on feature modeling
technique [1]. Two or more features are combined and utilized

together in a single software product. This is known as feature
configuration. The flexibility of feature configuration process
could result in unspecified and unintended system behavior.
This might lead to incorrect execution [1]. Hence, it is crucial
to test all possible feature configurations to reduce the potential
misbehavior of interacting features. But, to test all possible
feature configurations is unfeasible. The number of feature
configurations increases dramatically as the number of features
increased, making full testing of feature configurations
especially in large-scale FM impractical [2], [3]. In view of
this, a number of techniques have been proposed to reduce the
combinatorial explosion of feature configuration testing [4]
that leveraged the potential of search-based techniques. More
on this is presented in Section II.

In conventional meta-heuristics approaches, probabilities
are implicitly employed in the selection and re-production
operators, such as mutation operator, to produce offspring [5],
[6]. We identified a research gap in feature configuration
exhaustive testing, such that, one can explicitly build a
probabilistic model of features distribution from an initial set
of test configurations. This probabilistic model allows us to
estimate the distribution of highly fit features and guide us in
generating subsequent candidate solutions that maximize
pairwise coverage. Towards that, in Section III we strategize
the test configuration generation process, and our contributions
are as follows:

1) We devise a set of algorithms based on bivariate

marginal distribution in SPL context. This approach is

perceived as a lightweight variant of estimation of distribution

algorithm, in which only the statistics of the population are

maintained across generation, instead of the actual population.

2) We introduce the notion of feature configuration

dependency graph in part B of Section III, which contains the

dependency information between pairs of features, extracted

using statistical computation.

3) We implement the proposed approach using Java and

conducted empirical studies. Results are reported and

discussed in Sections IV and V.

II. BACKGROUND AND RELATED WORKS

A. Feature Model

Feature Modeling is a popular way to model SPL
variability and it is by far the most reported in industry. In
Feature Modeling, Feature Model (FM) notation has been
developed to represent features and its dependencies [1]. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

915 | P a g e

www.ijacsa.thesai.org

tree representation of FM is known as Feature Diagram. It
presents a feature as a node, and relationship between two
features as an edge. Different types of edges can be assigned
between features, which represent the relationship of type
mandatory, optional, or, or alternative. Additionally, an FM
might encompass some constraints which act as rules or
conditions that limit the linking between features.

Fig. 1 shows a feature model named as OnlineBookstore
SPL from Software Product Line Online Tools (SPLOT) [7].

This feature model defines some of the most common features
that an online bookstore system should have. It consists of 25
features, including seven mandatory features. There is one

cross-tree-constraint defined, which is ¬ Customer_Profiling
Authorization. This constraint signifies that feature
Customer_Profiling requires the presence of feature
Authorization, but not conversely. Apart from that, a couple of
variation points are defined. For example, we can choose to
have Signup feature apart from Login; different types of
Personalization features can be incorporated; and so on.

Fig. 1. A Feature Model of an OnlineBookstore SPL.

In the subsequent part of this paper, we refer each feature

from our Feature Model as x. It is an integer where x [1, N],
having N as the maximum number of features in the FM. x can
be of positive prefix (not written) to indicate the feature is
included or negative prefix (explicitly written) to indicate the
feature is not included.

For brevity, each feature in the feature model shown in
Fig. 1 is mapped to a unique number, assigned sequentially
from top to bottom, left to right. This gives us a representation
as shown in Fig. 2, which is used throughout this paper.

Fig. 2. Number assignment of each feature.

B. Test Configuration

Software products of an SPL are configured and produced
by combining several features. These artefacts are called
feature configurations. In view of testing, test case(s) can be
defined for each feature. Thus, to test a feature configuration,
Test Configuration (TC), which consists of many test cases,
can be generated in the same way the feature configuration is
generated. A test configuration, TC, is a list of all features,

represented by its feature number. Each feature in a test
configuration can have either positive or negative prefix.

C. Pairwise Testing

Complete testing of all possible feature configurations is
not feasible. For n number of features, it requires 2n number of
test configurations to cover all possible combinations, because
it is either selected or excluded. This makes it exponentially
proportioned to the number of features. To alleviate this
obstacle, pairwise testing has been widely used as a viable
solution. The ultimate goal of pairwise testing is to cover all
possible pair of features at least once [8]–[10]. Thus, testing
can be focused on the interaction of both features. Pairwise
testing is a kind of combinatorial testing, where we choose 2
features to be considered or included in our test pool.
Generalization of pairwise testing is called t-wise testing,
where t indicates the number of features to choose.

For its practicality and usability, SPL pairwise testing is
governed by constraints. Considering two features (1 and 2)
from OnlineBookstore SPL, four pairs of tuple have to be
generated, i.e. (1,2), (1,-2), (-1,2) and (-1,-2), where negative
prefix indicates that the feature is not selected in the feature
configuration. Due to constraints (cross-tree-constraints and
relationship of features in FM), some invalid pairs will be
eliminated, e.g. (-1,2) is invalid, because root feature, i.e. 1,
must always be selected. The same goes with mandatory
features (2, 4, 7, and so on).

If we construct one Test Configuration, TCi, for each pair
of features, pfv,w, (as an example, pair of feature 1 and -5),
assigned as follows;

pf1,-5 = (1, -5); TCa = [1, ?, ?, ?, -5, ?, ?, ?, ?, ?]

1: OnlineBookstore 2: Front_Store

3: Back_Store 4: Personalization

5: Registration 6: Catalogue
7: Purchase 8: Customer_Profiling

9: Information_Filtering 10: Identity_Management

11: Login 12: Signup
13: Order 14: Payment

15: Shipment 16: Authorization

17: Authentication 18: Phone
19: Mail 20: Email

21: Credit_Card 22: Cheque

23: Pay_Pal 24: By_Air
25: By_Ground

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

916 | P a g e

www.ijacsa.thesai.org

we can set any arbitrary value for other variables in TCa
(marked as ?). However, these variables could possibly be
matched with other pairs of features that we should cover.
Thus, if we can systematically set the values of each variable in
TCi, we could maximize the number of valid pairs in each TC
so that it can minimize the number of TC.

D. Related Works

SPL test configuration generation techniques that are based
on greedy approach or applied meta-heuristics are discussed in
the first part of this section. In the second part, few selected
literatures of Estimation of Distribution Algorithms (EDA),
including works related to its adoption in software engineering
activities are presented.

Among others, multi-objective evolutionary algorithm has
been proposed for SPL testing [6]. Their motivation was to
minimize the tests suite by sorting the product lines. Henard et
al. [2] also employed a search-based algorithm, (1+1)
Evolution Strategy (ES), to generate and prioritise covering
array, guided by a (dis)similarity measure. Henard et al.
mentioned that t-wise approaches for SPLs are restricted to
FMs of small sizes and t-wise coverage of low strength. Both
are constrained by scalability issues that result from the
intractable computation for very large FMs or high t-wise
strength. Therefore, they formulated the feature configuration
generation problem as a search-based where the search space
consists of all valid feature configurations extracted from the
FM. Dissimilarity between features is used as the fitness
function during the searching for better populations.

Feature configuration testing is highly influenced by the
effectiveness of constraint handling techniques that eliminate
invalid test configurations. One of such prominent work is
published by Yu, Duan et al. [11], whereby the validity
checking of test configuration is achieved using minimum
invalid tuples (MITs). This approach has been implemented as
a tool named LOOKUP.

Hybrid of multi-objective crow search and fruitfly
optimization has been studied and offers an optimal selection
of the test suites at a fairly good convergence rate [12].
Haslinger et al. [13] applied a Simulated Annealing algorithm
to generate t-wise covering array and demonstrated a tool to
improve the performance of SPL testing. Haslinger et al. report
a speedup of over 60% on 133 publicly available feature
models, while preserving the coverage of the generated tests.

Johansen et al. published their solution [3] and a tool
named ICPL, which capable of processing large feature
models, better execution time and produced small covering
array. They used the fact that a (t-1)-wise is always a subset of
the t-wise, and employed this principle to recursively build up
a higher strength covering array from a smaller one.

Estimation of Distribution Algorithms (EDA) is a kind of
Evolutionary Algorithms that finds near optimal solutions
based on the evolution of candidate solutions satisfying some
fitness functions. EDA guide the search by explicitly building
the probabilistic model of promising candidate solutions. The
detail discussion on EDA is beyond the scope of this paper, but
interested reader can refer to papers by Ceberio et al. [14],
Shirazi et al. [15], Shakya and Santana [16], Simon [17] and

Pelikan [18]. In the area of Search-Based Software Engineering
(SBSE), to the best of our knowledge, no attempt has been
made to employ any variant of high-order EDA (which
includes bivariate or multivariate statistics) in SPL testing.

EDA have been adopted to solve many optimization
problems in single software-product development such as to
optimize test data generation and test suites generation [19]–
[21] and refactoring [22]. The work in [19] employs bivariate
EDA named as COMIT [23], in which the combination of pair
of variables are viewed as tree, therefore it has a single root
node. They proposed integration with data mining techniques
to predict the performance of a test data generator. In the
context of testing for concurrent software, detecting faults can
be improved by exploiting information discovered in EDA
exploration that can save future test efforts [24]. EDA has also
been employed to improve software reliability prediction [25].
They reported that EDA-based approach can optimize the
parameters of support vector regression in predicting the
software reliability, by introducing a chaotic mutation operator
into traditional EDA. Prior to that, they define the software
reliability prediction problem as a combinatorial optimization
problem with constraints, in which, search-based are known to
be a viable solution to that problem.

III. PROPOSED APPROACH

This section presents an evolutionary-based algorithm that
generates minimal and effective SPL test configuration that
satisfies pairwise coverage of features, based on bivariate
marginal distribution strategy.

A. Marginal Distribution Algorithms of EDAs

Estimation of Distribution Algorithms (EDAs) explores the
space of potential solutions following the principle of survival
of the fittest of individual and populations similar to Genetic
Algorithm (GA) [16], [18]. However, in EDAs, crossover and
mutation operators are removed and replaced by the estimation
of a probability distribution. The Probability Distribution is a
model of (1) the distribution of genes across all individuals,
and (2) the dependence relations or independence relations of
genes between individuals.

One way to estimate the distribution of genes from all the
individuals in the population is by using marginal distribution.
The simplest marginal distribution calculates the probability of
each candidate solutions’ genes independently. This strategy is
called as univariate marginal distribution. This contrasts with
bivariate marginal distribution, which calculates the estimation
based on the dependency of two genes. The dependency that is
of our interest is the statistically significant dependency, which
can be computed using Pearson’s chi-square statistics [26].

The probability distribution for the univariate marginal
distribution is calculated using the frequency of each gene from
all or truncated individuals and stored as Probability Vector
(PV). The PV will be used to sample or generate new
individuals in subsequent generations. For the bivariate
marginal distribution, we start with calculating the frequency
of each gene. Then, we calculate the joint probability of each
pair of genes, using the previously calculated frequency value.
Afterward, for each pair of genes, we calculate the Pearson’s
chi-square tests to establish links between interdependent

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

917 | P a g e

www.ijacsa.thesai.org

genes. The result of this is a set of genes dependency and we
only consider two genes as interdependent if the value is
statistically significant. Next, we generate a dependency graph
to store this information. The graph is acyclic and not
necessarily has to be connected. All genes that have no
interdependency with other genes are assigned as a root node
in the graph. Whereas, for those that have a link, if both genes
are not yet added to the graph, choose any gene from that pair
as the root node. Add the other gene as a child node and
connect them using an edge. Among them, nodes that are
added earlier are called as the parent node.

Based on the constructed graph, we generate a new
population. First, populate genes for root nodes using
univariate frequencies. Next, for each child nodes, populate the
genes using conditional probability. Perform the same process
for all child nodes. From there, the standard evolutionary step
is applied, which is fitness evaluation of each individual in the
new population. The population is truncated, and the process
repeats until an acceptable solution is found. The intuition is,
univariate-based EDA is considered as a lightweight
evolutionary algorithm and require small memory footprint
[27], whereas the bivariate EDA manifest possible variables
interdependency [18].

B. Bivariate Distribution of SPL Features

This section presents the mechanism and illustration of a
second-order EDA (bivariate distribution) to generate pairwise
test configuration for SPL. Here, we named this approach as
Combinatorial Testing using Estimation of Distribution
(COTED).

The proposed strategy is generally outlined as follows:

1) Generate a set of test configuration as the initial

population. Calculate the fitness of each test configuration

using the number of covered pairwise. Then, we perform

truncation to select highly fit candidate solutions.

2) Calculate univariate frequencies and bivariate

frequencies of each feature number.

3) Create a feature configuration dependency graph using

the calculated frequency.

4) Generate new test configurations based on the graph.

5) Repeat until termination criteria are matched.

We define our fitness function as the number of pairs of
features covered by each test configuration, whereby, the more
pairs covered, the better the fitness. The intuition is, during the
search for fitter test configurations, the stronger the
dependency of a particular pair of features present in the
current fittest test configuration, the more frequent it should be
included in the subsequent list of test configuration. For

example, if the dependency of features 5 and 7 are statistically
significant in our 10 best test configurations, we should create
more test configurations using the calculated conditional
distribution of features 5 and 7 in the next iteration. The
definition of best test configurations refers to those that cover a
higher number of pairs from our list of all valid pairs.

By modeling the non-dependency between two features in a
set of test configurations, we can search for possible
dependency between two features. This dependency would
suggest that the two features should be paired, and those that
have strong dependency should be considered first. A variant
of EDA that has the capability to find this dependency is called
the Bivariate Marginal Distribution Algorithm (BMDA) [17],
[28]. It uses a factorization of the univariate marginal and joint
probability distribution that able to expose second-order
dependencies. For our test configuration generation problem,
we define the univariate marginal and joint probability
distribution as follows:

Definition 1 (univariate marginal probability)

The probability of a feature is selected, p(xi), is
unconditional to other features. For example, p(5) = 0.7, means
that the probability of feature number 5 to be selected is 70 per
cent from all test configurations.

Definition 2 (joint probability)

Joint probability between feature v and feature w, JPv,w, is
defined as the probability of feature v and feature w been
considered (either selected or not selected).

In the remaining part of this section, we elaborate the
details of the mechanism to generate test configuration that
satisfies pairwise coverage of feature configuration.

Step 1. Feature configurations in FM are governed by
constraints, so that only valid test configurations are generated.
A SAT solver is utilized to populate the seed of our search
space. Once a collection of valid test configurations is
available, we calculate their fitness using pairwise coverage
and remove unfit test configurations. To illustrate this, we
make a list of valid pair of features that needs to be covered in
Listing 1. We start by populating 20 test configurations from
SAT solver and calculate the number of pairwise covered by
each test configuration as its fitness value. We sort and select
10 fittest test configurations as our truncated initial population,
which is presented in Fig. 3.

Pair of features, pf = { (-3,20), (-3,21), (5,19), (-5,20), (5,22), (-5,23),

(-6,18), (8,9), (8,19), (8,21), (-8,23), (-9,19), (9,23), (-10,20), (-10,23),

(11,19), (11,22), (-11,23), (12,19), (12,22), (-12,23), (-16,23), (19,23),
(20,22), (21,24), (21,-25), (22,-24), (22,25) }

Listing 1. Pair of valid features that needs to be covered.

Test Configuration, TC Fitness

01:[1,2, 3,4, 5, 6,7, 8, 9, 10,-11, 12,13,14,15, 16, 17,-18, 19,-20,-21, 22,-23,-24, 25]

02:[1,2, 3,4, 5, 6,7, 8,-9, 10, 11,-12,13,14,15, 16,-17,-18, 19,-20,-21, 22,-23,-24, 25]

03:[1,2,-3,4, 5, 6,7,-8,-9, 10, 11, 12,13,14,15,-16, 17,-18,-19, 20,-21, 22,-23,-24, 25]

04:[1,2,-3,4, 5, 6,7, 8, 9, 10, 11,-12,13,14,15, 16, 17,-18, 19,-20,-21, 22,-23, 24,-25]

05:[1,2, 3,4,-5, 6,7,-8, 9, 10,-11,-12,13,14,15, 16, 17,-18,-19, 20,-21,-22, 23,-24, 25]

06:[1,2,-3,4, 5,-6,7,-8, 9,-10, 11, 12,13,14,15,-16,-17, 18,-19,-20,-21, 22,-23,-24, 25]

07:[1,2,-3,4,-5,-6,7,-8,-9, 10,-11,-12,13,14,15, 16, 17,-18,-19, 20, 21,-22,-23, 24,-25]

08:[1,2,-3,4,-5,-6,7,-8,-9, 10,-11,-12,13,14,15, 16,-17, 18,-19,-20,-21,-22, 23, 24,-25]

09:[1,2, 3,4, 5,-6,7,-8, 9, 10, 11,-12,13,14,15,-16, 17,-18,-19, 20,-21,-22, 23,-24, 25]

10:[1,2,-3,4, 5,-6,7,-8, 9, 10, 11,-12,13,14,15, 16,-17,-18,-19, 20,-21,-22, 23, 24,-25]

8

8

7

6

6

6

5

5

4

4

Fig. 3. List of initial truncated population with fitness value.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

918 | P a g e

www.ijacsa.thesai.org

Step 2. We calculate the univariate distribution for each
feature. Each feature in each test configuration has either
positive or negative prefix. We compute the mean of positive
number for each feature from all test configurations. These
processes are presented in Algorithm 1. The result of this
process is the Probability Vector, PV of our initial population,
as shown in Fig. 4.

Algorithm 1. Calculate Probability Vector

1. Load a population of candidate solutions

2. Select 10 test configurations according to its pairwise fitness

3. Let n be the length of a test configuration

4. For i = 1 to n

5. Calculate the mean of positive i as mean_i

6. Set the probability vector for feature i, P(i) = mean_i

7. Next i

PV:[1.0,1.0,0.4,1.0,0.7,0.5,1.0,0.3,0.6,0.9,0.6,0.3,

1.0,1.0,1.0,0.7,0.6,0.2,0.3,0.5,0.1,0.5,0.4,0.4,0.6]

Fig. 4. Probability vector of initial population.

The next step is to calculate the joint probability of all
possible value in each pair of the feature. As an example, for
features 5 and 11, we calculate the occurrences of all four
pairs; i.e. (5,11), (5,-11), (-5,11) and (-5,-11). Based on the
population in Fig. 3, we get the joint probability value of 0.6,
0.1, 0.0 and 0.3, respectively. This process is defined in
Algorithm 2, line 2 to 8.

After that, calculate the Pearson’s chi-square statistics, Cv,w,
for each pair of features using the following equation:

Cv,w = n * ∑
[𝐽𝑃𝛼𝑣,𝛽𝑤 −𝑃(𝛼𝑣)𝑃(𝛽𝑤)]2

𝑃(𝛼𝑣)𝑃(𝛽𝑤)𝛼,𝛽

where n is the number of test configuration

𝛼 is either positive or negative prefix

𝛽 is either positive or negative prefix

For example, for v=5 and w=11:

C5,11 = 10 *

(
(𝐽𝑃5,11 −𝑃(5)𝑃(11))

2

𝑃(5)𝑃(11)
+

(𝐽𝑃5,−11 −𝑃(5)𝑃(−11))
2

𝑃(5)𝑃(−11)
+

(𝐽𝑃−5,11 −𝑃(−5)𝑃(11))
2

𝑃(−5)𝑃(11)
+

(𝐽𝑃5,11 −𝑃(−5)𝑃(−11))
2

𝑃(−5)𝑃(−11)
) = 10 *

(
(0.6 −(0.7∗0.6))

2

0.7∗0.6
+ (0.1 −(0.7∗0.4))

2

0.7∗0.4
+ (0.0 −(0.3∗0.6))

2

0.3∗0.6
+

(0.3 −(0.3∗0.4))
2

0.3∗0.4
) = 6.4

This step is defined in Algorithm 2, line 9 to 14. Based on
our sampled population, the calculated bivariate frequencies
are shown in Fig. 5. Here, we are only interested in chi-square
value of at least 3.84 [17], based on the degree of freedom of 1
and p value of 0.05. By calculating the chi-square values of the
initial population, we choose 11 feature pairs. These pairs are
conceived as having a strong dependency, due to the high
degree of correlation.

Algorithm 2. Calculate Bivariate Frequencies

1. Initialize joint probability, JP

2. For v = 1 to n - 1

3. For w = 2 to n

4. For each test configuration, tc

5. Calculate joint probability between feature v and w, JPv,w,

group by combination of positive and negative prefix

6. Next tc

7. Next w

8. Next v

9. Initialize chi-square, C

10. For v = 1 to n-1

11. For w = 2 to n

12. Calculate the Pearson’s chi-square statistics Cv,w

13. Next w

14. Next v

Feature Pair Chi-square
(8,19) 10.0
(24,25) 10.0

(22,23) 6.6

(5,11) 6.4
(10,18) 4.5

(3,24) 4.5

(5,22) 4.4
(8,22) 4.4

(12,22) 4.4

(8,20) 4.4
(6,8) 4.4

Other pair <3.84

Fig. 5. Bivariate frequencies of the initial population.

Step 3. The succeeding step is to create a Feature
Configuration Dependency Graph (FCDG). We define FCDG
as a forest and are specified in Definition 3.

Definition 3. (Feature Configuration Dependency Graph,
FCDG).

FCDG = (V,E), where V is the set of all features available
in the forest, and E is the set of all edges between some ordered
pairs of features. FCDG contains a collection of possibly
disconnected trees.

Each feature is represented by a node, and dependency
between the pair of features is represented by an edge. The
dependency between features is to be calculated based on
conditional probability, thus its relationship is of type
directional. Therefore, we link the respective nodes in our
FCDG using directed edges.

We define the following six properties for the FCDG:

1) The indegree of a node is the number of edges directing

to that node. Each node has zero or one indegree.

2) The outdegree of a node is the number of edges leading

away from that node. Each node has zero or more outdegree.

3) A node with zero indegree and non-zero outdegree is

called as a root node. FCDG can have more than one root

node.

4) A node with non-zero indegree is called as a child node.

5) A node with non-zero outdegree is called as a parent

node.

6) A node without a degree is called as a standalone node.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

919 | P a g e

www.ijacsa.thesai.org

The generation process of FCDG starts by selecting a
random feature and adds it to our graph. Then, add a dependent
feature by finding another feature having the highest chi-square
value of at least 3.84, and add it to the graph. Repeat this step
until no more features fulfil this criterion. Then, select another
random feature and repeat the whole process until all features
are added to the graph. This process is defined in Algorithm 3.

Algorithm 3. Create Feature Configuration Dependency Graph

1. Let W as the set of all features

2. Let F as an empty graph, consists of empty V and E

3. Select a random feature, r, from W

4. Add r to the graph, V

5. Remove r from W

6. If there are no more features in W, goto end

7. For each remaining features in W

8. Find a feature, s, that has the highest dependency to feature r

9. If found

10. add s to V

11. removes s from W

12. add set {r,s} into E

13. if not found

14. goto step 3

15. end if

16. End

Executing this algorithm against the values from Fig. 5 will
result in a graph with the following attributes:

 The set of all features, V = {1,2,3,…,25}

 Edges between some ordered feature pairs, E = {
{3,24}, {5,11}, {8,6}, {8,19}, {8,20}, {18,10 },
{22,5}, {22,8}, {22,12,}, {22,23}, {24,25} }

In this case, the FCDG for our running example consists of
25 nodes with 11 edges. This can be graphically presented
using a forest with three disconnected trees as shown in Fig. 6.
All nodes in white colour are standalone nodes, in which no
dependency to other nodes is discovered. The rest (coloured
nodes) are nodes with dependency. As an example, it is shown
that features 18 and 10 are highly dependent. From Fig. 3,
feature 18 is always negative whenever feature 10 is positive,
and the other way round. Another example is between feature 8
and 19. It is of high frequency that both having negative values
in the same row. The same relationship (of a certain pattern)
can be observed for the rest of the pairs.

Step 4. Once we have the dependency graph, we can
proceed with generating a new population. It consists of two
parts, (1) to populate root nodes, and (2) to populate child
node.

Fig. 6. The feature configuration dependency graph of the initial population.

We start by populating all features correspond to the root
nodes in our graph. The features are assigned with positive or
negative values using univariate probabilities. Then, we
populate the remaining features that correspond to the child
nodes. This is performed by calculating the conditional
probabilities of the child nodes given its parent nodes. We
define the conditional probabilities for our strategy as follows:

Definition 4. (conditional probability)

Conditional probability of feature s and feature r, CP(s|r) is
defined as the probability of feature s to be selected, given
feature r been selected. It is calculated using the joint
probability of s and r, JPs,r, divide by the univariate probability
of r, i.e P(r).

CP(s | r) =
𝐽𝑃𝑠,𝑟

𝑃(𝑟)

This process is defined from line 3 to line 8 of Algorithm 4.

Algorithm 4. Populate New Generation

1. For each root nodes, r, in G

2. Populate new generation having positive/negative value of r

using univariate frequencies

3. For other nodes, s, in G

4. If parent node of s has been populated

5. Populate positive/negative value of s based on the

conditional probability of s given parent of s

6. If all features have been populated, goto end

7. Next root node

8. End

To demonstrate the first part, which is populating all the
root nodes, Fig. 7 shows a possible assignment for 20 test
configurations of our new generation. For example, for feature
16, from our initial generation, the PV value for feature 16 is
0.7, hence 70% of the new generation should have the positive
value of 16. This can be achieved by using random numbers
generated from a uniform distribution between 0 and 1. As per
shown in Fig. 7, the outcome of this strategy is the assignment
of a positive value of 16 for test configurations TC01, TC04-
TC08, TC10, TC11, TC14 TC16 and TC18 TC20. The
remaining test configurations are assigned with -16. We apply
the same strategy to populate the remaining root node features,
and values are presented in Fig. 7. For non-root node features,

which we mark with unfilled squares (□), will be populated

later.

The second part populates the remaining features, with
respect to the child nodes from our dependency graph, i.e.
features 5, 6, 8, 10, 11, 12, 19, 20, 23, 24, 25. Let us choose
feature 12 as an example. Since feature 22 has been assigned
with values, we assign feature 12 given the respective values of
feature 22, using conditional distribution. It can be calculated
using the joint probability of both features having positive
values in the initial population, i.e. 0.3. Then divide by the
probability vector of feature 22, i.e. 0.5. This equates to 0.6.
Thus, we populate 60% of feature 12 with positive values for
test configuration having positive 22. Similarly, calculate the
probability of positive 12 given the negative value of feature
22, and use the result to populate the value of remaining test
configurations. Once all values for feature 12 have been

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

920 | P a g e

www.ijacsa.thesai.org

assigned, we use the same strategy to populate the remaining
features. A possible outcome of this process is shown in Fig. 8.

Step 5. The final step in this iteration is to calculate the
fitness of each individual in the new generation. We count how
many pairs from Listing 1 matched with each pair of features
in each test configuration. The fitness values are shown in the

right column of Fig. 8. It is observed that three test
configurations (TC10, TC17, and TC18) have better fitness
value (marked with *) compared to the previous generation of
test configuration (refer Fig. 3). Truncation is again applied to
select only ten highly fit individuals. The whole process repeats
from Algorithm 1 and continue until the intended pairwise
coverage has been met.

List of root node features=

 [1, 2, 3, 4, 7, 9, 13, 14, 15, 16, 17, 18, 21, 22]

PV (for root node features)=

 [1.0, 1.0, 0.4, 1.0, 1.0, 0.6, 1.0, 1.0, 1.0, 0.7, 0.6, 0.2, 0.1, 0.5]

New Generation of Test Configuration, TC:

01:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15, 16,-17,-18,□,□,-21,-22,□,□,□]

02:[1,2,-3,4,□,□,7,□,-9,□,□,□,13,14,15,-16, 17, 18,□,□,-21,-22,□,□,□]

03:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15,-16, 17,-18,□,□,-21, 22,□,□,□]

04:[1,2, 3,4,□,□,7,□,-9,□,□,□,13,14,15, 16, 17, 18,□,□,-21, 22,□,□,□]

05:[1,2, 3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17,-18,□,□,-21,-22,□,□,□]

06:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17, 18,□,□,-21,-22,□,□,□]

07:[1,2,-3,4,□,□,7,□,-9,□,□,□,13,14,15, 16, 17,-18,□,□,-21, 22,□,□,□]

08:[1,2, 3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17,-18,□,□,-21,-22,□,□,□]

09:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15,-16, 17, 18,□,□,-21,-22,□,□,□]

10:[1,2, 3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17, 18,□,□,-21,-22,□,□,□]

11:[1,2, 3,4,□,□,7,□, 9,□,□,□,13,14,15, 16,-17, 18,□,□, 21, 22,□,□,□]

12:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15,-16,-17,-18,□,□,-21,-22,□,□,□]

13:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15,-16,-17,-18,□,□,-21, 22,□,□,□]

14:[1,2, 3,4,□,□,7,□,-9,□,□,□,13,14,15, 16, 17,-18,□,□, 21,-22,□,□,□]

15:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17,-18,□,□,-21,-22,□,□,□]

16:[1,2, 3,4,□,□,7,□, 9,□,□,□,13,14,15, 16,-17, 18,□,□,-21,-22,□,□,□]

17:[1,2,-3,4,□,□,7,□,-9,□,□,□,13,14,15,-16,-17,-18,□,□,-21, 22,□,□,□]

18:[1,2, 3,4,□,□,7,□,-9,□,□,□,13,14,15, 16, 17,-18,□,□,-21, 22,□,□,□]

19:[1,2,-3,4,□,□,7,□, 9,□,□,□,13,14,15, 16, 17,-18,□,□,-21, 22,□,□,□]

20:[1,2, 3,4,□,□,7,□,-9,□,□,□,13,14,15, 16,-17,-18,□,□,-21,-22,□,□,□]

Fig. 7. Populated root node features using univariate frequencies.

List of Non-Root node features =

[5, 6 , 8 , 10, 11, 12, 19, 20, 23, 24, 25]

New Generation of Test Configuration, TC: Fitness

01:[1,2,-3,4,-5,-6,7,-8, 9, 10,-11,-12,13,14,15, 16,-17,-18,-19,-20,-21,-22, 23, 24,-25]

02:[1,2,-3,4, 5,-6,7,-8,-9, 10, 11,-12,13,14,15,-16, 17, 18,-19, 20,-21,-22, 23, 24,-25]

03:[1,2,-3,4, 5, 6,7, 8, 9, 10, 11, 12,13,14,15,-16, 17,-18, 19,-20,-21, 22,-23, 24,-25]

04:[1,2, 3,4, 5, 6,7, 8,-9,-10,-11,-12,13,14,15, 16, 17, 18, 19,-20,-21, 22,-23,-24,-25]

05:[1,2, 3,4, 5,-6,7,-8, 9, 10, 11,-12,13,14,15, 16, 17,-18,-19,-20,-21,-22, 23,-24, 25]

06:[1,2,-3,4, 5, 6,7,-8, 9, 10, 11,-12,13,14,15, 16, 17, 18,-19,-20,-21,-22, 23, 24,-25]

07:[1,2,-3,4, 5, 6,7, 8,-9, 10, 11,-12,13,14,15, 16, 17,-18, 19,-20,-21, 22,-23, 24,-25]

08:[1,2, 3,4, 5,-6,7,-8, 9, 10, 11,-12,13,14,15, 16, 17,-18,-19, 20,-21,-22, 23,-24,-25]

09:[1,2,-3,4, 5,-6,7,-8, 9,-10,-11,-12,13,14,15,-16, 17, 18,-19,-20,-21,-22, 23, 24,-25]

10:[1,2, 3,4,-5,-6,7,-8, 9,-10,-11,-12,13,14,15, 16, 17, 18,-19, 20,-21,-22, 23,-24,-25]

11:[1,2, 3,4, 5, 6,7,-8, 9, 10, 11, 12,13,14,15, 16,-17, 18,-19,-20, 21, 22,-23,-24, 25]

12:[1,2,-3,4,-5,-6,7,-8, 9, 10, 11,-12,13,14,15,-16,-17,-18,-19, 20,-21,-22, 23, 24,-25]

13:[1,2,-3,4, 5, 6,7, 8, 9, 10, 11,-12,13,14,15,-16,-17,-18, 19,-20,-21, 22,-23,-24, 25]

14:[1,2, 3,4,-5, 6,7,-8,-9, 10,-11,-12,13,14,15, 16, 17,-18,-19, 20, 21,-22, 23,-24,-25]

15:[1,2,-3,4,-5, 6,7,-8, 9, 10,-11,-12,13,14,15, 16, 17,-18,-19, 20,-21,-22, 23, 24,-25]

16:[1,2, 3,4,-5,-6,7,-8, 9,-10, 11,-12,13,14,15, 16,-17, 18,-19, 20,-21,-22, 23,-24,-25]

17:[1,2,-3,4, 5, 6,7, 8,-9, 10, 11, 12,13,14,15,-16,-17,-18, 19,-20,-21, 22,-23,-24,-25]

18:[1,2, 3,4, 5, 6,7, 8,-9, 10, 11, 12,13,14,15, 16, 17,-18, 19,-20,-21, 22,-23,-24, 25]

19:[1,2,-3,4, 5, 6,7, 8, 9, 10, 11, 12,13,14,15, 16, 17,-18, 19,-20,-21, 22,-23, 24,-25]

20:[1,2, 3,4,-5,-6,7,-8,-9, 10,-11,-12,13,14,15, 16,-17,-18,-19,-20,-21,-22, 23,-24, 25]

 5

 5

 8

 5

 3

 3

 6

 3

 7

 9 *

 5

 7

 8

 6

 7

 8

 9 *

10 *

 8

 4

Fig. 8. Populated non-root node features using conditional distribution and calculated fitness value.

IV. EXPERIMENT AND RESULTS

COTED has been implemented and executed on a set of
feature models from Software Product Line Online Tools
(SPLOT) [7]. The objective is to measure the efficiency and
effectiveness of bivariate distribution approach based on EDA
in generating test configuration satisfying pairwise testing. The
comparison has been made against (1) a greedy-based
approach, ICPL [3] and (2) a constraint handling approach
based on the minimum-invalid-tuple strategy, LOOKUP [29].

The first part assesses the efficiency by measuring the
minimum number of test configurations that the three
approaches able to generate. The second part measures the

quality of the generated test configuration, in terms of the
frequency of pairwise tuple, and test configuration similarity.
During the experiments, 8 datasets of various sizes of
constrained Feature Models (FMs) have been selected from
SPLOT. COTED has been executed with the population of size
800 with truncation size 100, stagnancy count of 3 executions,
maximum generations were 5000 and execution timeout of
1800 seconds.

A. Minimum Number of Test Configurations

This is the most used metric that evaluates the efficiency of
the solution for SPL test configuration generation [12]. It
calculates the number of test configurations generated using a
particular approach that either fully satisfies the pairwise

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

921 | P a g e

www.ijacsa.thesai.org

coverage, or partially fulfil the coverage with a decent
percentage. However, the latter does not conform to the
definition of pairwise testing, i.e. to have all pairs covered at
least once. Therefore, a complete pairwise coverage is often of
the goal in any SPL test configuration exercise.

Fig. 9 shows that LOOKUP is the most outstanding tool in
generating the most minimal test configurations. For
J2EEWebArch and CocheEcologico, it outperforms the other
techniques. For others, it produces an equal number of test
configuration as generated by COTED, except for
SPLSimulES dataset.

B. t-wise Frequency

This measure has been devised by Perrouin et al. [30] as the
ratio between the occurrences of t-wise and the number of test
configurations generated. This can be used to check whether
the solution satisfies the t-wise principle, i.e., in the solution,
every valid combination of t factors must present at least once.
An optimum solution consists of combination of t factors once.
This, however, is hard to achieve.

Fig. 10 shows the box plots of all evaluated techniques
calculated based on the median of t-wise frequencies of the
generated test configurations for each benchmark datasets. In
general, the average and the dispersion of the t-wise
frequencies are stable for the three techniques. Most of the
results show that the frequencies are maintained low, as
depicted by the concentration on the low end of the scale,
except for Ecommerce (Fig. 10(a)) and Billing (Fig. 10(g))
datasets. Low frequency of t-wise in the generated test
configurations indicates that there are less pairwise

occurrences; hence lower the redundancy of feature of pairs.
This is useful in the event of limited time and resources
available for testing, which is often the case in SPL testing.

On average, as shown in Table I, the median and standard
deviation (σ) of the proposed techniques resides on the decent
level, which is on par with the other approaches. Even though,
on average, ICPL can demonstrate lower t-wise frequency
(0.288), the deviation of the overall solution is worse than the
rest. On the other side of the coin, LOOKUP and COTED
managed to cover pairwise steadily, with low variations, on
average, however, it covers higher frequency than ICPL. The
differences between COTED and LOOKUP are relatively low.
50 per cent of the overall medians are equal for both
techniques.

Datasets

N
u

m
.
o

f

F
ea

tu
re

s

N
u

m
.
o

f

C
o
n

st
ra

in
ts

 TC Generation Techniques

COTED ICPL LOOKUP

Ecommerce 10 10 6 7 6

Cellphone 11 14 7 8 7

GraphProductLine 20 30 15 17 15

SPLSimulES 32 25 10 10 11

ArcadeGame 61 87 16 18 16

J2EEWebArch 77 86 19 18 17

Billing 88 89 13 14 13

CocheEcologico 94 131 92 93 90

Fig. 9. Minimum number of test configuration generated.

Fig. 10. Box plots for the median of t-wise frequency of the three approaches.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

922 | P a g e

www.ijacsa.thesai.org

TABLE I. MEDIAN AND STANDARD DEVIATION () OF T-WISE FREQUENCY

 Techniques

Datasets

COTED ICPL LOOKUP

Median Median Median

ECommerce 0.33 0.1634 0.29 0.1910 0.33 0.1634

Cellphone 0.29 0.1615 0.38 0.1636 0.29 0.1615

SPL-SimulES 0.3 0.1498 0.3 0.1543 0.27 0.1470

ArcadeGamePL 0.31 0.1695 0.28 0.2101 0.31 0.1771

Graph Product Line 0.27 0.2280 0.29 0.2289 0.27 0.2263

J2EE Web Arch 0.26 0.1440 0.28 0.1566 0.29 0.1391

Billing 0.4 0.1530 0.36 0.1782 0.38 0.1553

Coche-ecologico 0.33 0.2488 0.13 0.3353 0.32 0.2530

Average 0.311 0.177 0.288 0.202 0.307 0.177

C. Test Configurations Similarity

The third measurement is test configuration similarity [30].
The objective is to assess the degree of similarity between test
configurations among a different set of solutions. The
similarity between two test configurations is calculated using
Jaccard Index, Jac. Given a and b as the two test
configurations, we calculate Jac(a,b) as follows:

Jac(a,b) =
|𝑎 ∩ 𝑏|

|𝑎 ∪ 𝑏|

The presence of all mandatory features is a must in all test
configurations. Since all solutions from the three techniques
are of valid test configurations, we omit the similarity checking
for mandatory features. Only optional features are observed.

This similarity measure can be used to measure the degree
of diversity of the generated solutions. Lower Jaccard Index
value indicates that the test configurations are less likely to be
similar, hence more diversified. Fig. 11 shows the box plots
calculated based on the median of the test configuration

similarity from the generated solutions for each benchmark
datasets. Overall, the averages of the test configuration
similarity are low and encouraging among all techniques, and
the dispersions of the median are stable for all techniques. This
is depicted in Fig. 11 based on the trend of right skewness, as
most medians are closer to the first quartile than the third
quartile. COTED performance is on par with LOOKUP, and in
fact, it managed to outperform LOOKUP at SPL-SimulES
dataset. Overall, COTED and LOOKUP outperform ICPL for
most datasets.

With respect to the average and measure of dispersion, as
shown in Table II, LOOKUP performed better than the rest,
with the exception to three datasets (Cellphone, SPL SimulES
and ArcadeGamePL) where COTED has a bit lower median
values. Meanwhile, the median of COTED is better than ICPL,

with lower median and on five datasets (ECommerce,
Cellphone, ArcadeGamePL, Graph Product Line and Coche
ecologico). This suggests, on average, it produces more
dissimilar sets of test configurations.

Fig. 11. Box plots for the median of t-wise similarity of the three approaches.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

923 | P a g e

www.ijacsa.thesai.org

TABLE II. MEDIAN AND STANDARD DEVIATION () OF TEST CONFIGURATION SIMILARITY

 Techniques

Datasets

COTED ICPL LOOKUP

Median Median Median

ECommerce 0.67 0.6581 1 0.8064 0.67 0.6489

Cellphone 1.1 0.8134 1.2 0.8955 1.3 0.7188

SPL-SimulES 1.4 1.0682 1.4 1.0199 1.6 1.1632

ArcadeGamePL 2.45 1.9168 2.9 2.2197 2.55 1.9063

Graph Product Line 2.9 2.1399 3.35 2.4305 2.7 2.1715

J2EE Web Arch 3 2.2429 2.7 2.1194 2.6 1.9755

Billing 3.3 2.3822 2.9 2.2185 2.8 2.0049

Coche-ecologico 17 13.6009 21 14.3204 17 13.3103

Average 3.977 3.102 4.556 3.253 3.902 2.987

V. DISCUSSIONS

By calculating the marginal distribution between every two
features in a particular sample, we can infer its connection.
And based on that strong assumption, the population evolve
towards more frequently connected features. This can directly
be translated to more pairwise coverage. The ability to
maximize pairwise coverage at each evolution cycle results in
the reduction in the overall cycles of exploration, and
subsequently, reduce the number of generated test
configuration that fulfil pairwise coverage.

This strategy has been evaluated against two current
approaches, i.e. greedy-based and minimum invalid tuple
based. Of the three strategies, the minimum invalid tuple-based
strategy performed the best, but, competitively challenged by
COTED, and this is supported by results analysis using
descriptive statistics.

Even though the performance of COTED is shown to be
comparable, if not better than other approach, it provides us
with a set of knowledge on the problem structure. By analysing
the evolution of the probability models during test
configuration generation, we discover a set of data on how the
problem is being solved. We also gain knowledge on how
features are distributed in the population with respect to other
features. We explicitly acquire this in the form of feature
configuration dependency graph which stores a set of feature
pairs that have strong dependency. This information is deemed
crucial as it could help us (1) decide how to prioritize the test
configurations in pairwise testing, and (2) infer a higher order
marginal distribution based on the collection of dependency
knowledge.

As compared to test generation, previous literature
highlighted that test prioritization for SPL is insufficiently
researched, especially on one that is based on feature
reusability [31]. Reusable features are features that appear
more frequently in final software products than the others.
Hence, calculating the frequency might help in extracting the
most reusable one. In view of interaction testing, two
interacting features are of one main concern. Thus, to find
those reusable interactions could mean to find common feature
interactions.

The dependency knowledge in the form of a collection of
feature configuration dependency graphs are acquired
iteratively from second-order probabilistic model. As opposed
to computing a higher-order probabilistic model (which
involves multivariate computation), this process is more viable
as it incurs much lower cost. Additionally, a higher-order
probabilistic model is achievable by grouping or clustering
lower-order dependencies which contains highly interacting
sets of variables [32]. Therefore, we could leverage a
lightweight second-order iterative computation for practical
higher-order computation. This remains to be investigated and
thus motivate our future work.

VI. CONCLUSION AND FUTURE WORKS

Generating efficient and effective test configurations for
SPL is difficult. One way to feasibly tackle the combinatorial
explosions of feature configuration testing is by leveraging
pairwise testing.

Based on the work we conducted throughout this study, we
found that the marginal distribution algorithm-based approach
is a feasible and competitive strategy. It allows us to reduce the
number of required test configuration from an exhaustive
approach by leveraging pairwise coverage as its fitness
function. Our proposed strategy managed to generate the
solution of similar quality in terms of t-wise frequency and test
configuration diversity, compared to those generated by state-
of-the-art approaches. The outcome of the proposed strategy is
two-fold. First, it generates minimized test configuration for
pairwise testing. Secondly, the inherent ability of the strategy
to extract the dependency knowledge in the form of feature
configuration dependency graphs. As per our knowledge, this
is the first time a combinatorial interaction testing in software
product line problem is being modelled and tackled by using
probability based evolutionary algorithm.

ACKNOWLEDGMENT

This research was supported by Universiti Tun Hussein
Onn Malaysia (UTHM) through Tier 1 (Vote Q103).

REFERENCES

[1] D. Hinterreiter, K. Feichtinger, L. Linsbauer, H. Prähofer, and P.
Grünbacher, “Supporting feature model evolution by lifting code-level
dependencies: A research preview,” in Requirements Engineering:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

924 | P a g e

www.ijacsa.thesai.org

Foundation for Software Quality: 25th International Working
Conference, REFSQ 2019, Essen, Germany, March 18--21, 2019,
Proceedings 25, 2019, pp. 169–175.

[2] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. le
Traon, “Bypassing the Combinatorial Explosion: Using Similarity to
Generate and Prioritize T-Wise Test Configurations for Software
Product Lines,” Softw. Eng. IEEE Trans., vol. 40, no. 7, pp. 650–670,
2014, doi: http://doi.org/10.1109/TSE.2014.2327020.

[3] M. F. Johansen, Ø. Haugen, and F. Fleurey, “An algorithm for
generating t-wise covering arrays from large feature models,” in
Proceedings of the 16th International Software Product Line
Conference-Volume 1, 2012, pp. 46–55. doi: 10.1145/2362536.2362547.

[4] A. Bajaj and O. P. Sangwan, “A systematic literature review of test case
prioritization using genetic algorithms,” IEEE Access, vol. 7, pp.
126355–126375, 2019.

[5] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon, “Combining
multi-objective search and constraint solving for configuring large
software product lines,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, 2015, vol. 1, pp. 517–528.

[6] N. Khoshniat, A. Jamarani, A. Ahmadzadeh, M. Haghi Kashani, and E.
Mahdipour, “Nature-inspired metaheuristic methods in software
testing,” Soft Comput., pp. 1–42, 2023.

[7] M. Mendonca, M. Branco, and D. Cowan, “SPLOT: software product
lines online tools,” in Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming systems
languages and applications, 2009, pp. 761–762.

[8] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, “The
combinatorial design approach to automatic test generation,” IEEE
Softw., vol. 13, no. 5, p. 83, 1996.

[9] D. Gupta and L. Sharma, “Improved Combinatorial Algorithms Test for
Pairwise Testing Used for Testing Data Generation in Big Data
Applications,” in Artificial Intelligence, Chapman and Hall/CRC, 2021,
pp. 81–90.

[10] J. Ferrer, F. Chicano, and J. A. Ortega-Toro, “CMSA algorithm for
solving the prioritized pairwise test data generation problem in software
product lines,” J. Heuristics, vol. 27, pp. 229–249, 2021.

[11] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Combinatorial
Test Generation for Software Product Lines Using Minimum Invalid
Tuples,” in 15th International Symposium on High-Assurance Systems
Engineering (HASE), 2014, pp. 65–72. doi: 10.1109/HASE.2014.18.

[12] P. Ramgouda and V. Chandraprakash, “Constraints handling in
combinatorial interaction testing using multi-objective crow search and
fruitfly optimization,” Soft Comput., vol. 23, no. 8, pp. 2713–2726,
2019, doi: 10.1007/s00500-019-03795-w.

[13] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed, “Improving
CASA runtime performance by exploiting basic feature model analysis,”
arXiv Prepr. arXiv1311.7313, 2013.

[14] J. Ceberio, A. Mendiburu, and J. A. Lozano, “A roadmap for solving
optimization problems with estimation of distribution algorithms,” Nat.
Comput., pp. 1–15, 2022.

[15] A. Shirazi, J. Ceberio, and J. A. Lozano, “EDA++: Estimation of
distribution algorithms with feasibility conserving mechanisms for
constrained continuous optimization,” IEEE Trans. Evol. Comput., vol.
26, no. 5, pp. 1144–1156, 2022.

[16] S. Shakya and R. Santana, “A Review of Estimation of Distribution
Algorithms and Markov Networks,” in Markov Networks in
Evolutionary Computation, vol. 14, S. Shakya and R. Santana, Eds.
Springer Berlin Heidelberg, 2012, pp. 21–37. doi: 10.1007/978-3-642-
28900-2_2.

[17] D. Simon, “Estimation of Distribution Algorithms,” in Evolutionary
Optimization Algorithms, John Wiley & Sons, 2013, pp. 313–347.

[18] M. Pelikan, M. Hauschild, and F. Lobo, “Estimation of Distribution
Algorithms,” in Springer Handbook of Computational Intelligence, J.
Kacprzyk and W. Pedrycz, Eds. Springer Berlin Heidelberg, 2015, pp.
899–928. doi: 10.1007/978-3-662-43505-2_45.

[19] R. Sagarna and J. Lozano, “Software Metrics Mining to Predict the
Performance of Estimation of Distribution Algorithms in Test Data
Generation,” in Knowledge-Driven Computing, vol. 102, C. Cotta, S.
Reich, R. Schaefer, and A. Ligęza, Eds. Springer Berlin Heidelberg,
2008, pp. 235–254. doi: 10.1007/978-3-540-77475-4_15.

[20] R. Sagarna, A. Arcuri, and Y. Xin, “Estimation of distribution
algorithms for testing object oriented software,” in Evolutionary
Computation, 2007. CEC 2007. IEEE Congress on, 2007, pp. 438–444.
doi: 10.1109/cec.2007.4424504.

[21] R. Sagarna and J. A. Lozano, “Scatter Search in software testing,
comparison and collaboration with Estimation of Distribution
Algorithms,” Eur. J. Oper. Res., vol. 169, no. 2, pp. 392–412, 2006, doi:
http://dx.doi.org/10.1016/j.ejor.2004.08.006.

[22] N. Sadat Jalali, H. Izadkhah, and S. Lotfi, “Multi-objective search-based
software modularization: structural and non-structural features,” Soft
Comput., vol. 23, no. 21, pp. 11141–11165, 2019, doi: 10.1007/s00500-
018-3666-z.

[23] S. Baluja and S. Davies, “Fast probabilistic modeling for combinatorial
optimization,” in AAAI/IAAI, 1998, pp. 469–476.

[24] J. Staunton and J. Clark, “Applications of Model Reuse When Using
Estimation of Distribution Algorithms to Test Concurrent Software,” in
Search Based Software Engineering, vol. 6956, M. Cohen and M. Ó
Cinnéide, Eds. Springer Berlin Heidelberg, 2011, pp. 97–111. doi:
10.1007/978-3-642-23716-4_12.

[25] C. Jin and S.-W. Jin, “Software reliability prediction model based on
support vector regression with improved estimation of distribution
algorithms,” Appl. Soft Comput., vol. 15, pp. 113–120, 2014, doi:
http://dx.doi.org/10.1016/j.asoc.2013.10.016.

[26] M. Pelikan and H. Mühlenbein, “Marginal distributions in evolutionary
algorithms,” in Proceedings of the International Conference on Genetic
Algorithms Mendel, 1998, vol. 98, pp. 90–95.

[27] M. Hauschild and M. Pelikan, “An introduction and survey of estimation
of distribution algorithms,” Swarm Evol. Comput., vol. 1, no. 3, pp.
111–128, 2011, doi: http://dx.doi.org/10.1016/j.swevo.2011.08.003.

[28] M. Pelikan and H. Mühlenbein, “The bivariate marginal distribution
algorithm,” in Advances in Soft Computing, Springer, 1999, pp. 521–
535.

[29] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Combinatorial
test generation for software product lines using minimum invalid
tuples,” in High-Assurance Systems Engineering (HASE), 2014 IEEE
15th International Symposium on, 2014, pp. 65–72.

[30] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. Le Traon,
“Pairwise testing for software product lines: comparison of two
approaches,” Softw. Qual. J., vol. 20, no. 3–4, pp. 605–643, 2012, doi:
10.1007/s11219-011-9160-9.

[31] M. Z. Sahid, A. B. M. Sultan, A. A. A. Ghani, and S. Baharom,
“Combinatorial Interaction Testing of Software Product Lines: A
Mapping Study,” J. Comput. Sci., vol. 12, no. 8, pp. 379–398, 2016, doi:
http://dx.doi.org/10.3844/jcssp.2016.379.398.

[32] R. Santana, P. Larranaga, and J. A. Lozano, “Learning factorizations in
estimation of distribution algorithms using affinity propagation,” Evol.
Comput., vol. 18, no. 4, pp. 515–546, 2010.

