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Abstract—Smart healthcare is based on the electronic health 

and medical histories of residents, combined with information 

technology (IT) which can be used to construct a variety of 

systems including humanised health management systems and 

convenient medical service systems. The transparency, 

traceability, decentralization and security of BC technology and 

machine learning (ML) will enable the medical sector to upgrade 

and optimise different forms of quality and service. Therefore, 

this study introduces an artificial rabbit optimizer with deep 

learning for Blockchain Assisted Secure Smart Healthcare 

System (ARODL-BSSHS) technique. The presented ARODL-

BSSHS technique designs a new healthcare monitoring technique 

by using blockchain (BC) technology and classifies the presence 

of malicious activities in the healthcare system, and takes needed 

actions to predict the disease. For intrusion detection, the 

ARODL-BSSHS technique exploits the ARO algorithm with Hop 

field neural network (IHNN) model. On the other hand, the 

ARODL-BSSHS technique applies a deep extreme learning 

machine (DELM) model for disease detection purposes. Finally, 

the heap-based optimization (HBO) technique is exploited as a 

hyperparameter optimizer for the DELM model. The ARODL-

BSSHS technique involves BC technology for the secure 

transmission of healthcare data. A series of simulations were 

carried out on benchmark datasets: heart disease and NSL-KDD 

database for examining the performance of the ARODL-BSSHS 

technique. The experimental values highlighted that the ARODL-

BSSHS method obtains superior performance than other 

approaches.   
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I. INTRODUCTION 

 The connection of clinically related technologies will have 
a major impact on healthcare professionals and patients [1] . 
Along with the diversified nature and fast growth of the health 
care atmosphere, protection becomes a major problem as 
advanced security problems develop and earlier security 
problems become more acute. Data protection can be defined 
as the capability to transmit and store data without enabling 
unauthorized access to make sure confidentiality, data 
consistency, legality, and legitimacy [2]. Only authorized users 
have access to the protected data. Due to their unauthorized 
access and unauthenticated users, cybercrime develops and 
often affects healthcare sensors and systems [3]. A 
considerable amount of healthcare data is distributed, collected 
and gathered among various health care sectors. The data 
transmission must take place in a protected manner. The 

number of cyber-attacks is increasing drastically due to 
enormous data transformation. It denotes the demand for a 
reliable system for protecting health care datasets [4]. Potential 
mining methods are demanded to inspect clinical data to assist 
in enhancing patient care, disease discovery, and offering 
medical treatment [5]. ML can be a complex computational 
method that was employed in various fields like health care, 
image recognition, and language processing [6]. Still, ML 
methods obtain a higher level of accuracy with a large volume 
of the training set that can be vital in health care, where 
accuracy may, in some cases, denote the difference between 
losing and saving the life of the patient. In many cases, 
centralized training methods acquire a large quantity of data 
from robust cloud servers that result in major consumer privacy 
violations, particularly in the clinical domain [7]. As an 
accountable and open data protection system, the progression 
of the BC technology opens the way for novel ways to solve 
the main problems of ethics, privacy, and security in domains 
that require privacy, anonymity and security of records 
including  health care system [8] [9] . But BC has attained 
remarkable achievement for different smart healthcare 
technologies like patient record access control, data 
distribution, etc. [10]. 

Today, BC and ML technology are preferred [11]. The 
security, traceability, transparency, and decentralization of 
these two technologies will assist the healthcare sector to 
upgrade and optimize in several aspects [12]. The 
implementation of and making the functioning of the health 
care sector more efficient [13]. Few studies have explored the 
implementation of ML and BC. For instance, a health 
management platform based on BC can allow users to track 
personal data securely, and smart contracts are utilized in 
clinical detection to automatically manage emergencies [14].  

This research is driven by the urgent need to address the 
growing vulnerabilities in healthcare systems due to escalating 
cyber threats and the rapid advancements in healthcare 
technologies. This study introduces an Artificial Rabbit 
Optimizer with Deep Learning for Blockchain-Assisted Secure 
Smart Healthcare System (ARODL-BSSHS) technique. This 
novel technique focuses on creating a secure and intelligent 
healthcare system, specializing in intrusion detection and 
disease diagnosis. It strategically employs the Artificial Rabbit 
Optimizer (ARO) algorithm and the Hopfield Neural Network 
(HNN) model for intrusion detection, and a Deep Extreme 
Learning Machine (DELM) model for accurate disease 
detection, with Blockchain technology incorporated to secure 
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data transmission. The efficacy and improved performance of 
the ARODL-BSSHS technique have been validated through 
extensive experiments on recognized datasets, showcasing its 
potential for real-world applications in enhancing healthcare 
security and efficiency.   

II. LITERATURE REVIEW 

In [15], the authors introduced a smart BC Manager (BM) 
depends on the DRL for optimizing the BC behavior of the 
network in real-time while concerning clinical data needs, like 
security levels and urgency. Utilizing 3 RL-related methods 
like Dueling Double Deep Q-Network (D3QN), Double Deep 
Q-Networks (DDQN), and DQN, the optimization approach 
can be developed as a Markov Decision Process (MDP). 
Lakhan et al. [16]  present a DRLBTS abbreviated as DRL-
aware BC-related task scheduling structure with various goals. 
The presented method offers security and makespan potential 
scheduling for medicinal purposes. Singh et al. [17] modelled a 
DL-related IoT-based structure for the secured smart city 
where BC offers a dispersed atmosphere at the transmission 
stage of CPS, and SDN established the protocol for 
transporting data. A DL–related cloud was applied at the 
application layer of the presented structure to solve scalability, 
centralization, and communication latency. 

Mantey et al. [18] presented a BC privacy system (BPS) as 
DL for diet recommendation mechanisms for patients. This 
study applied DL and ML approaches like MLP, RNN, LR 
etc., to the Internet of Medical Things (IoMT) data obtained. 
The product section contains a collection of eightattributes. 
The IoMT dataset features are examined with BPS and 
encoded in advance to the implementation of DL and ML-
related structures. In [19], presented a BC-orchestrated DL 
method (BDSDT) for Secured Data transmission in IoT-based 
healthcare systems. First, a new scalable BC structure is 
devised to ensure secure data transmission and data integrity 
using Zero Knowledge Proof (ZKP) system. Afterwards, 
BDSDT integrated with the off-chain storage IPFS abbreviated 
as InterPlanetary File mechanism, to solve problems with data 
storing costs to solve data security problems. Sammeta and 
Parthiban  [20] developed a new method HBESDM-DLD 
abbreviated as hyperledger BC-based secure clinical data 
management with DL-related diagnosis method. This method 
includes different stages of operations such as hyperledger BC-
based secure data management, encryption, diagnosis and 
optimal key generation. For encryption, SIMON block cipher 
method can be implemented. For optimal key generation, a 
group teaching optimization algorithm (GTOA) was adopted. 

In [21], the authors proposed a Decentralized Interoperable 
Trust framework (DIT) based on BC for the Internet of Things 
(IoT) platform. The DIT IoHT employs a private BC ripple 
chain to establish secure and reliable data transmission by 
authenticating nodes in relation to their interoperable 
structures. Purbey, Khandelwal, and Choudhary in [22] 
introduced a method for secure and efficient ontology 
generation using BC, named BOGMAS. This approach 
employs a semi-supervised technique to generate ontologies 
from structured or unstructured datasets. It combines 
techniques such as extra trees (ET) stratification and linear 
support vector machine (LSVM) for predicting variances. 

Almaiah et al. [23] proposed a Deep Learning (DL) 
architecture integrated with BC to ensure dual levels of privacy 
and security. Firstly, they establish a BC model where 
participating entities undergo registration, validation, and 
verification through smart contracts using Proof of Work. 
Subsequently, they model BiLSTM for intrusion detection and 
apply a DL method incorporating a Variational Autoencoder 
(VAE) technique for privacy preservation. 

The reviewed studies, despite their innovative contributions 
to blockchain and deep learning in healthcare, exhibit several 
overarching limitations. Many face issues related to scalability, 
adaptability, and specificity, which can restrict their 
applicability across diverse healthcare environments and 
requirements. Several solutions also struggle with the balance 
between complexity and user-friendly implementation, posing 
challenges in deployment and interpretation. Additionally, the 
methods proposed often focus narrowly on specific aspects of 
healthcare or technology, neglecting a holistic approach that 
addresses the multifaceted nature of healthcare systems, thus 
necessitating further holistic and integrative research 
endeavors. 

III. PROPOSED MODEL 

In this study, the ARODL-BSSHS technique has been 
developed to accomplish security in the healthcare system. The 
presented ARODL-BSSHS technique involves the design of 
secured and smart healthcare system using two major 
processes, namely intrusion detection and disease diagnosis. To 
accomplish this, the ARODL-BSSHS technique follows a 
series of processes: HNN based intrusion detection, ARO 
based parameter tuning, DELM-based disease detection, and 
HBO based parameter optimization. Fig. 1 illustrates the 
workflow of ARODL-BSSHS algorithm. 

A. BC Technology 

In this work, the ARODL-BSSHS technique involves BC 
technology for secure transmission of healthcare data. 
Electronic Health Records (EHR) are well functioning on 
smart contracts [24]. It developed the framework for a 
decentralized medical service stage and aids as an interface to 
the patient records that can be shared by suppliers and patients. 
BC is separated into research-centric and patient-centric BC 
network classes, as stated by “BC Technology in Healthcare”. 
The security concern regarding EHR is tackled by the patient-
centric BC network, which gives the authority over sharing 
medicinal data with multiple users. BC technology can be able 
to modernize healthcare management by permitting 
unambiguous and transparent data access through every 
stakeholder involved, comprising hospitals, therapists, medical 
experts, and general practitioners [25]. In such cases, several 
medicinal stakeholders do not necessarily use resource- and 
time-consuming information and verification progressions.  

Furthermore, this approach could contribute to the early 
detection of health-related issues, thereby reducing instances of 
medical malpractice arising from coordination issues [26]. It 
instills trust in individuals regarding their comprehensive care, 
as the integrity of healthcare records from previous visits to 
different medical practitioners remains intact within the 
network. Additionally, BC serves as a valuable tool for 
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constructing patient-centric networks through various means, 
such as augmenting data availability, thereby enhancing data 
liquidity, establishing unique patient identifiers, and 
implementing digital access control. The Hyperledger Fabric 
system can be leveraged to establish a permissioned BC 
network. Within this system, two distinct types of peers exist: 
validating peers, responsible for ledger management, 
consensus procedures, and transaction validation. The data is 
stored within a distributed system, facilitating the upload of 
patient medical histories, verification of healthcare records, and 
the facilitation of data access requests and permissions. 

 

Fig. 1. Workflow of ARODL-BSSHS approach. 

B. Intrusion Detection using Optimal HNN Model 

For intrusion detection process, the HNN classifier is used. 
The HNN exhibits abundant dynamical behavior owing to its 
hyperbolic tangent function and special network structure [27]. 
The HNN with 𝑛 neurons is defined by the series of 
dimensionless non-linear ordinary differential equations as in 
the following: 

𝑥̇ =  −𝑥 + 𝑌𝑡𝑎𝑛ℎ(𝑥) + 𝐼  (1) 

Where 

𝑥 =

[
 
 
 
 
 
𝑥1
𝑥2
⋮
𝑥𝑖
⋮
𝑥𝑛]
 
 
 
 
 

, 𝐼 =

[
 
 
 
 
 
𝐼1
𝐼2
⋮
𝐼𝑖
⋮
𝐼𝑛]
 
 
 
 
 

 

Y=

[
 
 
 
 
 
𝑦11 𝑦12 … 𝑦1𝑗 … 𝑦1𝑛
𝑦21 𝑦22 … 𝑦2𝑗 … 𝑦2𝑛
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝑦𝑖1 𝑦𝑖2 … 𝑦𝑖𝑗 … 𝑦𝑖𝑛
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑦𝑛1 𝑦𝑛2 … 𝑦𝑛𝑗 … 𝑦𝑛𝑛]

 
 
 
 
 

 (2) 

In Eq. (2), tanh (𝑥) shows the neuron activation function, 
𝑥𝑖 embodies the 𝑖‐𝑡ℎ neuron membrane voltage, 𝑌 
characterizes the synaptic weight matrix, and 𝑦𝑖𝑗  denotes the 

synaptic weight between 𝑗‐𝑡ℎ and 𝑖‐𝑡ℎ neurons. Moreover, 𝐼𝑖  
characterizes 𝑖‐𝑡ℎ neuron external stimulate current. In recent 
times, improved model has been created on the basis of 
original HNN models, namely HNN with time delay, fractional 
HNN, discrete HNN, HNN with dissimilar active functions, 
etc. 

The ARO algorithm can be applied to improve the 
detection rate of the HNN model. The ARO can be stimulated 
by the survival skills of the rabbit [28]. Rabbits are herbivores 
which mainly consume leafy weeds and grass. Rabbits 
wouldn’t eat the grass nearby the holes; rather, they find food 
far away from their nests to avoid predators identifying the 
nest. These foraging strategies are determined as exploration. 
Furthermore, to lessen the possibility of being captured by 
hunters or predators, they are skilled at digging a lot of holes 
for the nest and randomly choose one as a shelter. This random 
hiding approach can be assumed as exploitation in ARO. 
Rabbits must run faster to avoid dangers from the predator 
owing to their low level in the food chain, resulting in a decline 
in their energy, so they should shift between random hiding 
and detour foraging based on their energy status. The 
mathematical model of ARO is constructed with previous 
knowledge about the natural behaviors of rabbits, such as 
exploitation, exploration, and transition from exploration to 
exploitation.  

Consider that every individual in the population has an 
individual area with burrows and few grass. In foraging 
activity, the rabbit has a tendency to move towards the faraway 
area of other rabbits in finding food and overlook what lies 
nearby, same as an old Chinese proverb says: “A rabbit doesn’t 
eat grass close to their nests”. These behaviors are named 
detour foraging, and they can be mathematically formulated as: 

𝑋𝑖(𝑡 + 1) = 𝑋𝑗(𝑡) + 𝐴 × (𝑋𝑖(𝑡) − 𝑋𝑗(𝑡)) + 𝑟𝑜𝑢𝑛𝑑(0.5 ×

(0.05 + 𝑅1)) × 𝑛1,   (3) 

𝑖, 𝑗 = 1,… , 𝑁 𝑎𝑛𝑑 𝑖 ≠ 𝑗 

𝐴 = 𝐿 × 𝑐   (4) 

𝐿 = (𝑒 − 𝑒(
𝑡−1

𝑇
)2) ×  sin (2𝜋𝑅2)  (5) 

𝑐(𝑘) = {
1, 𝑖𝑓 𝑘 == 𝑔(𝑙)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑘 = 1,… , 𝐷 𝑎𝑛𝑑 𝑙 = 1,… , ⌈𝑅3 × 𝐷⌉

      (6) 

𝑔 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝐷)  (7) 

𝑛1 ∼ 𝑁(0,1)   (8) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 9, 2023 

938 | P a g e  

www.ijacsa.thesai.org 

Where 𝑋𝑖(𝑡) and 𝑋𝑗(𝑡) signify the location of 𝑖‐ 𝑡ℎ and 

𝑗‐ 𝑡ℎ rabbits at the 𝑡 existing iteration,  𝑋𝑖(𝑡 + 1) indicates the 
candidate location of 𝑖‐ 𝑡ℎ rabbit at 𝑡 + 1 the next iteration 
correspondingly. 𝑇 denotes the higher iteration counts.  𝑁 
shows the size of population. 𝑡 represents the existing iteration. 
⌈∙⌉ refers to the ceiling function. 𝐷 symbolizes the dimensional 
of specific problem. 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(∙) shows the arbitrary value 
within 1 and D. 𝑅1, 𝑅2, and 𝑅3 indicates the random integer 
within [0,1]. round (∙) indicates rounding to the nearby integer. 
𝐿 stands for the length of movement stage while implementing 
the detour foraging. 𝑛1 follows the uniform distribution.  

Here, rabbits tend to conduct continuous detour foraging at 
the beginning of iteration; then, they often implement random 
hiding. The idea of rabbit energy 𝐸 was introduced to retain a 
better balance between exploitation and exploration that is 
gradually reduced over time: 

𝐸(𝑡) = 4 (1 −
𝑡

𝑇
) ln 

1

𝑅4
  (9) 

In Eq. (9), 𝑅4 indicates the random integer having range of 
[0, 1]. The value of 𝐸 energy co-efficient differs from zero to 
two. If 𝐸 ≤ 1, it shows that rabbit has lesser energy for 
physical activities. Hence it is necessary to carry out random 
hiding to escape from the predators, and the ARO method 
enters the exploitation stage. If 𝐸 > 1, it shows that rabbit has 
sufficient energy to discover the foraging region of other 
individuals such that the detour foraging takes place, and this 
stage can be determined by the exploration. Rabbits are 
generally met with attack and chase from the hunters. To 
survive, they should dig several holes nearby their nests for 
shelter. 

In Eq. (9), the variable 𝑅4 represents a randomly generated 
integer within the range [0, 1]. The energy coefficient 𝐸 
assumes values from zero to two. When 𝐸 ≤ 1, it indicates that 
the rabbit possesses limited energy for engaging in physical 
activities. As a result, the rabbit adopts a strategy of random 
hiding to evade predators, marking the onset of the exploitation 
stage in the ARO method. Conversely, when 𝐸 > 1, the rabbit 
possesses sufficient energy to explore the foraging regions of 
other individuals. This condition triggers detour foraging and 
signifies the exploration stage. In their natural environment, 
rabbits often encounter threats from predators, leading to 
pursuits and attacks. To ensure survival, they create several 
burrows in close proximity to their nests, offering shelter from 
potential threats. 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝐴 × (𝑅5 × 𝑏𝑖,𝑟(𝑡) − 𝑋𝑖(𝑡)) (10) 

𝑏𝑖,𝑟(𝑡) = 𝑋𝑖(𝑡) + 𝐻 × 𝑔𝑟(𝑘) × 𝑋𝑖(𝑡) (11) 

𝑔𝑟(𝑘) = {
1, 𝑖𝑓 𝑘 == ⌈𝑅6 × 𝐷⌉

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (12) 

𝐻 =
𝑇−𝑡+1

𝑇
× 𝑛2   (13) 

𝑛2 ∼ 𝑁(0,1)   (14) 

Where the parameter 𝐴 is evaluated by Eqs. (4)-(7), 𝑅5 and 
𝑅6 shows two random integers within [0,1], 𝑏𝑖,𝑟(𝑡) signify the 

arbitrarily chosen burrow of 𝑖‐ 𝑡ℎ rabbits in 𝐷 burrows applied 

to hide at 𝑡 existing iteration,  and 𝑛2 follows the uniform 
distribution. 

Fitness selection is a crucial component of the ARO 
technique. Encoded outcomes are utilized to assess the quality 
of solution candidates. In this context, the accuracy value 
serves as the primary criterion for designing a fitness function 
(FF). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)  (15) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (16) 

Where 𝑇𝑃 denote the true positive and 𝐹𝑃 specifies the 
false positive value. 

C. Disease Detection using DELM Model 

At this stage, the DELM model is used to detect the 
presence of the disease. ELM is the first presented by Huang et 
al. that is utilized for SLFNs [29]. An input weighted and 
hidden layer (HL) biases can be arbitrarily allocated at first, so 
the trained databases for determining the resultant weighted of 
SLFNs are integrated. For 𝑁 random various instances (𝑥𝑖 , 𝑡𝑖), 
𝑖 = 1,2, … ,𝑁, whereas 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]

𝑇 , 𝑡𝑖 =
[𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑚]

𝑇. Thus, the ELM technique is expressed as: 

∑𝛽𝑗

𝐿

𝑗=1

𝑔𝑗(𝑥𝑖) =∑𝛽𝑗

𝐿

𝑗=1

𝑔(𝑤𝑗 ⋅ 𝑥𝑖 + 𝑏𝑗)

= 0𝑖(𝑖 = 1,2, … , 𝑁),    (17) 

Whereas 𝛽𝑗 = [𝛽𝑗1, 𝛽𝑗2, … , 𝛽𝑗𝑚]
𝑇 states the 𝑗𝑡ℎ hidden node 

weighted vector, but the weighted vector among the 𝑗𝑡ℎ hidden 
node and the resultant layer is defined as 𝑤𝑗 =

[𝑤1𝑗 , 𝑤2𝑗 , … , 𝑤𝑛𝑗]
𝑇. The threshold of 𝑗𝑡ℎ hidden node is 

expressed as 𝑏𝑗, and 0𝑖 = [011, 012, … , 0𝑖𝑚]
𝑇  refers to the 𝑖𝑡ℎ 

resultant vector of ELM. 

It is estimated the resultant of DELM when the activation 
function 𝑔(𝑥) with 0 error that implies as Eq. (18): 

∑ |𝑁
𝑖=1 |0𝑖 − 𝑡𝑖|| = 0.  (18) 

Thus, Eq. (17) is termed as Eq. (19): 

∑ 𝛽𝑗
𝐿
𝑗=1 𝑔𝑗(𝑥𝑖) = ∑ 𝛽𝑗

𝐿
𝑗=1 𝑔(𝑤𝑗 ⋅ 𝑥𝑖 + 𝑏𝑗) = 𝑡𝑖(𝑖 = 1,2, … ,𝑁).

 (19) 

Eventually, Eq. (19) is easily defined as Eq. (20): 

𝐻𝛽 = 𝑇,   (20) 

whereas, 𝐻 defines the HL resultant matrix, and 𝐻 =
𝐻(𝑤1, 𝑤2, 𝑤𝐿 , 𝑏1, 𝑏2, 𝑏𝐿 , 𝑥1, 𝑥2, 𝑥𝑁). So, ℎ𝑖𝑗 , 𝛽, and 𝑇 are 

demonstrated as: 

[ℎ𝑖𝑗] = [
𝑔(𝑤𝐿 ⋅ 𝑥1 + 𝑏𝐿) … 𝑔(𝑣𝑣𝐿 . 𝑥1 + 𝑏𝐿)

⋮ ⋱ …
𝑔(𝑤𝐿 ⋅ 𝑥𝑁 + 𝑏𝐿) … 𝑔(𝑣𝑣𝐿 ⋅ 𝑥𝑁 + 𝑏𝐿)

], (21) 

𝛽 = [
𝛽11 𝛽12 … 𝛽1𝑚
⋮ ⋮ ⋱ ⋮
𝛽𝐿1 𝛽𝐿2 … 𝛽𝐿𝑚

] (22) 

and 
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𝑇 = [

𝑡11 𝑡12 … 𝑡1𝑚
⋮ ⋮ ⋱ ⋮
𝑡𝑁1 𝑡𝑁2 … 𝑡𝑁𝑚

]. (23) 

Afterwards, the minimal norm least‐squares solution of Eq. 
(20) as: 

𝛽̂ = 𝐻†𝑇,  (24) 

Whereas 𝐻† implies the Moore Penrose generalization of 
the inverse of matrix H. The resultant of DELM is defined as 
Eq. (25): 

𝑓(𝑥) = ℎ(𝑥)𝛽 = ℎ(𝑥)𝐻†𝑇. (25) 

From the above mentioned, the procedure of ELM is 
defined as follows. Initially, DELM is arbitrarily allocated the 
input weighted and HL biased (𝑤𝑖 , 𝑏𝑖). Next, it can compute 
the HL resultant matrix 𝐻 based on Eq. (21). Afterward, by 
employing Eq. (24), it attains the resultant weighted vector 𝛽. 
Lastly, it classifies the novel database based on the above-
trained procedure. Fig. 2 represents the framework of ELM. 

 

Fig. 2. Architecture of ELM. 

D. Parameter Tuning using HBO Algorithm 

At the final stage, the HBO algorithm was utilized for the 
optimal parameter tuning of the DELM Model. HBO algorithm 
was inspired by the social behaviours of human beings 
according to the hierarchy of organization [30]. This approach 
stimulates the corporate rank hierarchy (CRH), which implies 
that the member of the teamwork in the specific organization 
should be organized in a hierarchical form for completing the 
specific task. The presented method exploits the CRH model 
for hierarchically arranging the search candidate according to 
the fitness of this candidate. For the hierarchy construction, the 
heap‐based data organization can be exploited. Besides the 
modeling of CRH, the whole concept involves three stages: (i) 
modeling of the collaborations between their direct manager 
and the subordinators; (ii) modeling of interactivity amongst 
the workers; and (iii) lastly, the modeling of self‐contribution 
of the subordinators to accomplish the required task.  

E. Modelling of the CRH Concept 

The presented approach can be conceptualized as a 
population. In this context, each searching agent within the 
search space can be likened to a heap node, with the fitness 

function (FF) of optimizer problems serving as the master key 
to access these heap nodes. 

In a large organization that operates under a centralized 
infrastructure, laws and regulations are enforced unilaterally, 
flowing from senior leadership down to employees. In such a 
setup, employees are expected to adhere to the instructions of 
their superiors. With upgrading the place of searching 
candidate, this stage is mathematically defined: 

𝑥𝑖
𝑘(𝑡 + 1) = 𝐵𝑘 + 𝛾(2𝑟 − 1)|𝐵𝑘 − 𝑥𝑖

𝑘(𝑡)| (26) 

In Eq. (26), 𝑥 indicates the position of search agent; 𝑡 and 𝑘 
show the existing iteration and the vector element, 
correspondingly; and 𝐵 shows the parental node. The term 
(2𝑟 − 1) symbolizes the 𝑘-𝑡ℎ components of the vector 𝛾 and 
is produced randomly and defined as follows: 

𝜆𝑘 = 2𝑟 − 1   (27) 

In Eq. (27), 𝑟 indicates the arbitrary parameter within [0,1] 
in a uniform distribution: 

𝛾 = |2 −
(𝑡𝑚𝑜𝑑

𝑇

𝐶
)

𝑇

4𝐶

|  (28) 

In Eq. (28), 𝑇 shows the maximal amount of iterations, and 
𝐶 indicates an adjustable parameter and relies on the iteration 
based on Eq. (29): 

𝐶 =
𝑇

25
   (29) 

Colleagues (Subordinators) in a specific organization co-
operate to accomplish official tasks. In the presented method, 
the nodes at a similar location from the heap are considered 
colleagues: 

𝑥𝑖
𝑘(𝑡 + 1) = {

𝑆𝑟
𝑘 + 𝛾𝜆𝑘|𝑆𝑟

𝑘 + 𝑥𝑖
𝑘(𝑡)|, 𝑓(𝑆𝑟) < 𝑓(𝑥𝑖(𝑡))

𝑥𝑖
𝑘 + 𝛾𝜆𝑘|𝑆𝑟

𝑘 − 𝑥𝑖
𝑘(𝑡)|, 𝑓(𝑆𝑟) ≥ 𝑓(𝑥𝑖(𝑡))

  (30) 

The self‐contribution of every sub-ordinator from the 
organization was defined as follows: 

𝑥𝑖
𝑘(𝑡 + 1) = 𝑥𝑖

𝑘(𝑡)  (31) 

In this section, the three position updating equation defined 
in the prior subsection is combined as one formula. A roulette 
wheel was exploited for making a balance among exploitation 
as well as exploration stages. The 𝑃1, 𝑃2, and 𝑃3 probabilities 
are used for achieving the balance between this phase. An 
initial probability p1 can be exploited to update the location of 
the searching agent from the population and is formulated as 
follows: 

𝑃1 = 1 −
𝑡

𝑇
   (32) 

The second proportion, 𝑝2 can be evaluated by Eq. (33): 

𝑃2 = 𝑃1 +
1−𝑃1

2
   (33) 

Lastly, the probability 𝑝3 was evaluated by Eq. (33): 

𝑃3 = 𝑃2 +
1−𝑃1

2
= 1  (34) 
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𝑥𝑖
𝑘(𝑡 + 1) =

{
 
 

 
 

𝑥𝑖
𝑘(𝑡), 𝑃 < 𝑃1

𝐵𝑘 + 𝛾𝜆𝑘|𝐵𝑘 − 𝑥𝑖
𝑘(𝑡)|, 𝑃1 < 𝑃 < 𝑃2

𝑆𝑟
𝑘 + 𝛾𝜆𝑘|𝑆𝑟

𝑘 − 𝑥𝑖
𝑘(𝑡)|,

𝑥𝑖
𝑘 + 𝛾𝜆𝑘|𝑆𝑟

𝑘 − 𝑥𝑖
𝑘(𝑡)|,

𝑃2 < 𝑃 < 𝑃3 𝑎𝑛𝑑 𝑓(𝑆𝑟) < 𝑓(𝑥𝑖(𝑡))

𝑃2 < 𝑃 < 𝑃3 𝑎𝑛𝑑 𝑓(𝑆𝑟) ≥ 𝑓(𝑥𝑖(𝑡))
(35) 

Where 𝑝 shows a random value within [0,1].  

The HBO technique not only grows a FF to attain higher 
accuracy of classifier and determines a positive integer to 
represent the greater efficacy of candidate solutions. The 
decline of classifier error rate is assumed as FF. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑛𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
∗ 100  (36) 

IV. RESULTS 

A. Results Analysis on Intrusion Detection Dataset 

In this section, the intrusion detection results of the 
ARODL-BSSHS approach were tested on the NSL database 
[31], including 2100 instances and five classes, as shown in 
TableI. 

TABLE I. DETAILS OF NSL DATASET  

Class No. of Instances 

Normal_Class 500 

DoS_Class 500 

Probe_Class 500 

R2-L_Class 500 

U2-R_Class 100 

Total Number of Instances 2100 

Fig. 3 illustrates the classifier outcomes generated by the 
ARODL-BSSHS technique when applied to the NSL dataset. 
Figs. 3(a) and 3(b) depict the confusion matrix derived from 
the ARODL-BSSHS method using a 70:30 split of Training 
and Testing Data Split (TRP/TSP). The outcomes indicate that 
the ARODL-BSSHS approach effectively identified and 
correctly categorized all five classes. Similarly, Fig. 3(c) 
showcases the Precision-Recall (PR) curve yielded by the 
ARODL-BSSHS approach. The findings suggest that the 
ARODL-BSSHS system achieved favorable PR performance 
across all five classes. Lastly, Fig. 3(d) displays the Receiver 
Operating Characteristic (ROC) curve resulting from the 
ARODL-BSSHS technique. This graph highlights that the 
ARODL-BSSHS approach yielded commendable results, 
exhibiting superior ROC values for all five classes. 

The intrusion detection outcomes of the ARODL-BSSHS 
technique under 70:30 of TRP/TSS are demonstrated in Table 
II. The results reported that the ARODL-BSSHS technique 
recognizes five class labels effectually. For instance, with 70% 
of TRP, the ARODL-BSSHS technique obtains average 𝑎𝑐𝑐𝑢𝑦 

of 99.73%, 𝑝𝑟𝑒𝑐𝑛 of 99.19%, 𝑠𝑒𝑛𝑠𝑦  of 99.18%, 𝑠𝑝𝑒𝑐𝑦 of 

99.83%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.19%. Additionally, with 30% of TSP, 
the ARODL-BSSHS method attains average 𝑎𝑐𝑐𝑢𝑦 of 99.75%, 

𝑝𝑟𝑒𝑐𝑛 of 99.45%, 𝑠𝑒𝑛𝑠𝑦  of 99.46%, 𝑠𝑝𝑒𝑐𝑦 of 99.83%, and 

𝐹𝑠𝑐𝑜𝑟𝑒 of 99.45%. 

 

Fig. 3. Classifier outcome on NSL dataset (a-b) Confusion matrices, (c) PR 

curve, and (d) ROC curve. 

TABLE II. INTRUSION DETECTION OUTCOME OF ARODL-BSSHS 

SYSTEM ON NSL DATASET 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝑺𝒄𝒐𝒓𝒆 

Training Phase (70%) 

Normal-

Class 
99.59 99.13 99.13 99.73 99.13 

DoS-Class 99.52 99.40 98.53 99.82 98.96 

Probe-
Class 

99.66 98.89 99.72 99.64 99.30 

R2-L Class 100.00 100.00 100.00 100.00 100.00 

U2-R Class 99.86 98.53 98.53 99.93 98.53 

Average 99.73 99.19 99.18 99.83 99.19 

Testing Phase (30%) 

Normal-

Class 
99.68 100.00 98.71 100.00 99.35 

DoS-Class 99.84 99.38 100.00 99.79 99.69 

Probe-

Class 
99.68 99.30 99.30 99.79 99.30 

R2-L Class 99.52 98.57 99.28 99.59 98.92 

U2-R Class 100.00 100.00 100.00 100.00 100.00 

Average 99.75 99.45 99.46 99.83 99.45 
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Fig. 4. Accuracy curve of ARODL-BSSHS system on NSL dataset. 

Fig. 4 examines the accuracy performance of the ARODL-
BSSHS algorithm through the training and validation phases 
on the NSL dataset. The findings indicate that the ARODL-
BSSHS system achieves peak accuracy values as the epochs 
progress. Notably, the higher validation accuracy in 
comparison to the training accuracy signifies the proficient 
learning capability of the ARODL-BSSHS system on the NSL 
dataset. 

The evaluation of loss during both training and validation 
stages of the ARODL-BSSHS algorithm on the NSL dataset is 
presented in Fig. 5. The results suggest that the ARODL-
BSSHS algorithm maintains similar values of training and 
validation loss. This observation underscores the effective 
learning of the ARODL-BSSHS approach on the NSL dataset. 

 
Fig. 5. Loss curve of ARODL-BSSHS system on NSL dataset. 

Table III and Fig. 6 reports the comparative intrusion 
detection results of the ARODL-BSSHS technique. The 
outcomes implied that the SVM model and LDA model 
achieves worse outcomes. Although the RF, NB, CART, and 
HNIDS models offer slightly improved results, the ARODL-
BSSHS technique outperforms the other existing models with 
maximum 𝑎𝑐𝑐𝑢𝑦 of 99.75%, 𝑝𝑟𝑒𝑐𝑛 of 99.45%, 𝑠𝑒𝑛𝑠𝑦  of 

99.46%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.45%. 

TABLE III. COMPARISION OF ARODL-BSSHS ALGORITHM WITH 

DIFFERENT METHODOLOGIES ON THE NSL DATASET 

Classification Method Accuracy Precision Sensitivity F-Score 

SVM Model 87.80 97.85 91.41 96.67 

LDA Model 91.57 96.78 90.57 96.32 

RF Model 97.50 97.85 94.67 97.48 

Naïve Bayes 94.66 95.62 93.55 95.08 

CART 94.59 96.55 92.78 95.62 

LR Model 92.31 91.26 90.11 91.26 

HNIDS 98.97 98.85 96.12 99.04 

ARODL-BSSHS 99.75 99.45 99.46 99.45 

 
Fig. 6. Comparative outcome of ARODL-BSSHS approach with other 

methods on NSL dataset. 

The computation time (CT) examination of the ARODL-
BSSHS technique with recent models on the intrusion 
detection process is reported in Table IV and Fig. 7. The 
outcomes reported that the ARODL-BSSHS approach gains 
least CT of 9.50s. On the other hand, the existing SVM, LDA, 
RF, NB, CART, LR, and HNIDS models obtain increased CT 
of 20.54s, 18.89s, 12.37s, 19.77s, 16.09s, 12.97s, and 11.21s 
respectively. 

TABLE IV. COMPARISON OF CT OUTCOME OF ARODL-BSSHS 

APPROACH WITH OTHERS ON NSL DATASET 

Classifier Computational Time (sec) 

SVM 20.54 

LDA 18.89 

RF 12.37 

Naïve Bayes 19.77 

CART 16.09 

LR 12.97 

HNIDS 11.21 

ARODL-BSSHS 09.50 
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Fig. 7. CT outcome of ARODL-BSSHS approach with other methods on 

NSL dataset. 

B. Results Analysis on Disease Diagnosis Dataset 

The Cleveland heart dataset (CHD) [32] contains of 303 
samples with 76 features, but only 14 features can be assumed 
that more appropriate for study experimental purposes. Table V 
illustrates the details on CHD. 

TABLE V. DETAILS ON CHD 

Class No. of Samples 

Absence 138 

Presence 165 

Total Number of Samples 303 

Fig. 8 presents the classifier outcomes achieved by the 
ARODL-BSSHS algorithm when applied to the CHD dataset. 
Sub-figures 8a and 8b display the confusion matrix generated 
by the ARODL-BSSHS system using a 70:30 split of Training 
and Testing Data Split (TRP/TSP). The outcomes indicate that 
the ARODL-BSSHS system effectively recognized and 
accurately classified both of the available classes. 

Similarly, Fig. 8(c) illustrates the Precision-Recall (PR) 
analysis performed by the ARODL-BSSHS model. The results 
reported demonstrate that the ARODL-BSSHS system 
achieved superior PR performance across the two classes. 
Lastly, Fig. 8(d) showcases the Receiver Operating 
Characteristic (ROC) analysis conducted by the ARODL-
BSSHS approach. This graph demonstrates that the ARODL-
BSSHS algorithm has delivered capable results, achieving 
maximum ROC values for the two classes. 

The classification outcome of the ARODL-BSSHS method 
under 70:30 of TRP/TSS is established in Table VI. The 
outcomes stated that the ARODL-BSSHS system recognizes 
five class labels effectively. For example, with 70% of TRP, 
the ARODL-BSSHS method attains average 𝑎𝑐𝑐𝑢𝑦 of 95.07%, 

𝑝𝑟𝑒𝑐𝑛 of 95.32%, 𝑠𝑒𝑛𝑠𝑦  of 95.07%, 𝑠𝑝𝑒𝑐𝑦 of 95.07%, and 

𝐹𝑠𝑐𝑜𝑟𝑒 of 95.19%. Furthermore, with 30% of TSP, the ARODL-
BSSHS method acquires average 𝑎𝑐𝑐𝑢𝑦 of 97.83%, 𝑝𝑟𝑒𝑐𝑛 of 

97.87%, 𝑠𝑒𝑛𝑠𝑦  of 97.83%, 𝑠𝑝𝑒𝑐𝑦 of 97.83%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 

97.80%. 

 
Fig. 8. Classifier outcome on CHD (a-b) Confusion matrices, (c) PR curve, 

and (d) ROC curve. 

TABLE VI. CLASSIFIER OUTCOME OF ARODL-BSSHS SYSTEM ON CHD 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝑺𝒄𝒐𝒓𝒆 

Training Phase (70%) 

Absence 93.48 95.56 93.48 96.67 94.51 

Presence 96.67 95.08 96.67 93.48 95.87 

Average 95.07 95.32 95.07 95.07 95.19 

Testing Phase (30%) 

Absence 95.65 100.00 95.65 100.00 97.78 

Presence 100.00 95.74 100.00 95.65 97.83 

Average 97.83 97.87 97.83 97.83 97.80 

 

Fig. 9. Accuracy curve of ARODL-BSSHS system on CHD. 
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Fig. 9 examines the accuracy performance of the ARODL-
BSSHS approach within the training and validation phases 
using the CHD dataset. The results highlight that the ARODL-
BSSHS system achieves its highest accuracy values as the 
epochs progress. Furthermore, the notably superior validation 
accuracy compared to the training accuracy underscores the 
efficient learning capacity of the ARODL-BSSHS algorithm 
on the CHD dataset. 

The analysis of loss during both the training and validation 
stages of the ARODL-BSSHS approach using the CHD dataset 
is depicted in Fig. 10. The findings suggest that the ARODL-
BSSHS algorithm maintains closely aligned values for both 
training and validation loss. This observation emphasizes the 
capable learning behavior of the ARODL-BSSHS algorithm on 
the CHD dataset. 

 
Fig. 10. Loss curve of ARODL-BSSHS system on CHD. 

V. DISCUSSION 

In Table VII and Fig. 11, the comparative outcome of the 
ARODL-BSSHS approach is reported in [33][34]. The results 
implied that the RF algorithm gains worse performance. But, 
the NB, LR, SMO, AdaBoostM1 + DS, and Bagging + 
REPTree approaches offer somewhat higher outcomes; the 
ARODL-BSSHS system demonstrates the other existing 
models with maximal 𝑎𝑐𝑐𝑢𝑦 of 97.83%, 𝑝𝑟𝑒𝑐𝑛 of 97.87%, 

𝑠𝑒𝑛𝑠𝑦  of 97.83%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.80%. 

TABLE VII. COMPARATIVE OUTCOME OF ARODL-BSSHS APPROACH 

WITH OTHER METHODS ON CHD 

Classifier 
Accura

cy 

Precisi

on 

Sensitivi

ty 

Specifici

ty 

F-

Measure 

NB Model 84.49 84.50 84.50 87.00 84.50 

LR Model 84.49 84.50 84.50 87.00 84.50 

SMO Model 86.14 86.20 86.10 90.00 86.10 

AdaBoostM1 + 

DS 
83.83 83.90 83.80 88.00 83.80 

Bagging + 

REPTree 
83.83 83.90 83.80 88.00 83.80 

RF Model 81.19 81.20 81.20 85.00 81.10 

ARODL-

BSSHS 
97.83 97.87 97.83 97.83 97.80 

 
Fig. 11. Comparative outcome of ARODL-BSSHS approach with other 

methods on CHD. 

The CT inspection of the ARODL-BSSHS approach with 
recent algorithms is reported in Table VII and Fig. 12. The 
outcomes inferred that the ARODL-BSSHS algorithm reaches 
a minimal CT of 8.17s. Also, the existing NB, LR, SMO, 
AdaBoostM1 + DS, Bagging + REPTree, and RF approaches 
reach maximum CT of 23.20s, 25.10s, 15.90s, 25s, 23.40s, and 
20.30s correspondingly. These results analysis assured the 
better performance of the ARODL-BSSHS technique on the 
smart healthcare system. 

TABLE VIII. CT OUTCOME OF ARODL-BSSHS APPROACH WITH OTHER 

METHODS ON CHD 

Classifier Computational Time (sec) 

NB 23.20 

LR 25.10 

SMO 15.90 

AdaBoostM1 + DS 25.00 

Bagging + REPTree 23.40 

RF 20.30 

ARODL-BSSHS 08.17 

The results of the comparative analysis illustrate the 
superior efficacy of the ARODL-BSSHS approach in securing 
healthcare systems over the studied alternative models. It was 
found that ARODL-BSSHS significantly outperforms other 
classifiers in terms of accuracy, precision, sensitivity, 
specificity, and F-measure, achieving a maximum accuracy of 
97.83% and a minimal Computational Time (CT) of 8.17s. 
This implies that the ARODL-BSSHS not only is more 
accurate in predictions and classifications but also is more 
efficient, making it a preferable choice for real-time 
applications in smart healthcare systems. This superior 
performance of ARODL-BSSHS emphasizes the critical role 
of sophisticated techniques in addressing the complexity and 
diversity of healthcare requirements and environments. The 
increased accuracy and reduced computational time are 
indicative of its capability to deal with the multifaceted and 
dynamic nature of healthcare data more effectively and 
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efficiently. The discussed results reinforce the viability and 
superiority of the ARODL-BSSHS approach in enhancing 
security and optimizing performance in smart healthcare 
systems, presenting it as a promising solution for future 
integrations and developments in healthcare technology. 

 
Fig. 12. CT outcome of ARODL-BSSHS approach with other methods on 

CHD. 

VI. RECOMMENDATIONS & FUTURE WORKS 

It is recommended that future research on the ARODL-
BSSHS approach should explore its adaptability across diverse 
sectors like finance, education, and supply chain management. 
Integration with emerging technologies such as Edge and 
Quantum Computing and 5G can be crucial to enhance the 
method's capabilities and to cater to the evolving needs of 
modern applications. Developing scalable and user-friendly 
implementations is imperative to ensure broader applicability 
and user acceptance. 

The integration with Edge and Quantum Computing is 
being explored to optimize computational processes and solve 
complex problems efficiently [35]. There is also a heightened 
emphasis on developing robust security and privacy-preserving 
protocols due to the escalating concerns related to data 
breaches and cyber-attacks in healthcare systems. The 
application of Federated Learning and Decentralized AI is 
gaining traction, addressing the need for decentralized model 
training and decision-making processes that adhere to data 
privacy standards. Moreover, the utilization of AI for 
personalized and predictive healthcare is becoming pivotal, 
allowing for the development of individualized treatment plans 
and early detection of diseases. 

VII. CONCLUSION 

The ARODL-BSSHS technique has been developed for 
accomplishing security in the healthcare system in this study. 
The presented ARODL-BSSHS technique involves the design 
of secured and smart healthcare system using two major 
processes, namely intrusion detection and disease diagnosis. To 
accomplish this, the ARODL-BSSHS technique follows a 
series of processes: HNN based intrusion detection, ARO 
based parameter tuning, DELM based disease detection, and 
HBO based parameter optimization. In addition, the ARODL-

BSSHS technique involves BC technology for secure 
transmission of healthcare data. A widespread experimental 
analysis is made on benchmark datasets: heart disease and 
NSL-KDD dataset to ensure the improved results of the 
ARODL-BSSHS technique. The experimental values 
highlighted that the ARODL-BSSHS technique obtains better 
performance than other approaches. In the upcoming years, the 
performance of the ARODL-BSSHS algorithm can be 
improved by multimodal DL techniques. 
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