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Abstract—This paper presents a holistic reliability evalua-
tion framework for Agri-IoT based on real-world testbed and
mathematical modeling of network failure prediction. A testbed
has been designed, implemented, and deployed in the real-
world in the experimental farm at Saint-Louis/Senegal as a
representative area of Sahel conditions. Data collected has been
used for real-world reliability analysis and to feed mathematical
modeling of network reliability based on energy and environ-
mental conditions data with Kaplan Meier and Nelson Aalen
estimators. Key factors affecting the network’s lifespan, such
as network coverage and density, are explored, along with a
comprehensive evaluation of energy consumption to understand
node discharge rates impact. The survival analysis, employing
Kaplan-Meier and Nelson-Aalen estimators, establishes network
stability and the probability of node survival over time. The
findings contribute to the understanding of Agri-IoT reliability
in a real-world Sahel environment, offering practical insights for
system optimization and environmental challenge mitigation in
real-world deployments.
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I. INTRODUCTION

IoT is increasingly adopted in agriculture (Agri-IoT) to
improve management methods, performance, and productivity
of agricultural farms[1]. In particular, Agri-IoT provides tools
for input management, automatic irrigation management, re-
mote control of agricultural fields, yield forecasting, and input
prediction.

Deployed Agri-IoT systems are very common in many
European and American countries (North and South) and Asia
[2], [3]. In developing countries, especially in Africa, more par-
ticularly in the Sahelian zone, the deployment of such systems
is needed for food security purposes [4]. However, to reproduce
the same results of Agri-IoT as elsewhere, reassessments of the
reliability of IoT are needed in the specific environment of the
Sahel.

Indeed, the Sahel has many white areas without a network,
the sector power is not ensured in agricultural areas, and a dry,
dusty environment is sometimes rainy which has an impact on
the reliability of the electronic devices, the sensors, and the
maintenance in the event of a fault is not always possible.

Limited power resources in the IoT network devices, can
cause failures due to internal instability or external distur-
bances. Identifying vulnerabilities and using reliability analysis
[5] and fault diagnosis techniques [6] can enhance system
stability and resilience.

This reliability assessment is necessary for good network
lifespan and data sensor reliability knowing food security
issues if an Agri-IoT device fails. More importantly, most of
the proposed research is theoretical or in lab tests.

The reliability of IoT systems can be assessed using
different metrics such as power consumption and its impact
on the network lifetime, network lifespan, sensors data trust-
worthiness (error rate), network availability, and environmental
impact.

This paper aims to provide a holistic reliability analysis
framework on a Sahel area based on real-world data collection
from the experimental farm and mathematical modeling of
network failure prediction.

The main contributions of this paper are: begin

• Design, implement, and deploy real-world Agri-IoT
deployment in the experimental farm at Gaston Berger
University in Saint-Louis (Senegal).

• Collect real data for reliability evaluation.

• Experiment with different environmental constraints in
IoT operation.

• Modeling mathematically the network reliability based
on energy and environmental conditions data with
Kaplan Meier and Nelson Aalen estimators.

This paper is organized as follows: Section I gives a
brief background on IoT and the problem statements. Sec-
tion II presents a related work on IoT power evaluation
and modelization strategies. Section III looked at reliability
assessment tools, especially the mathematical techniques on
lifetime evaluation. Section IV presents an experimentation of
Agri-IoT system deployment and, in that same way, presents
the results of our power evaluation and survival analysis for a
centralized Agri-IoT Network in real-life deployment. Section
V presents the evaluation, analysis, and discussion and Section
VI, finally presents the Conclusion.

II. RELATED WORK

Deploying Agri-IoT systems is challenging in terms of
hardware, network architecture density (topology and density),
type of power supply, and environment. Battery drain is a
parameter of reliability related to network lifespan.

Regarding that, several research [7], [8], [9] evaluated
power consumption in different LPWAN technologies. In [7],
an analytical approach is proposed to assess individual sensor
node power consumption, providing insights for optimizing
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sensor node design with a focus on energy autonomy. In [8],
the authors presented an energy model for NB-IoT, considering
power-saving modes and discontinuous reception mechanisms.
In [9], the authors compared the power consumption im-
pact of SF7 and SF12 and their respective applications in a
LoRaWAN-based IoT system.

In [10], the authors evaluated the energy usage of LPWAN
wireless technologies (LoRaWAN, DASH7, Sigfox, and NB-
IoT) to determine battery lifetimes. They found that actual bat-
tery lives can differ from ideal scenarios and provide insights
on selecting appropriate technologies and battery capacity to
improve IoT applications.

Banti et al. [11] identified challenges in designing an
energy-efficient LoRaWAN communication protocol. Their
findings guide research toward a GreenLoRaWAN protocol
that is robust, scalable, and energy efficient. The authors
emphasized the need for independent power sources for IoT
nodes, as studies often overlook network lifetime constraints
by assuming gateways are connected to the grid.

In [12], the authors proposed a node lifetime estimation
approach applicable to both static and dynamic loads, inves-
tigating the influence of parameters such as self-discharge,
discharge rate, age, and temperature on Alkaline and Nickel-
Metal-Hydride (NiMH) batteries.

Based on reviews, many energy models simplify analysis
for manageability, potentially overlooking real-world complex-
ities and leading to inaccuracies in predictions. Some studies
assume grid power for gateways, but in the Sahel, where
reliable power is rare, overlooking network lifetime constraints
in IoT system design can affect practicality. Dynamic factors
impacting energy consumption over time, like environmental
conditions and hardware variations, may not align with as-
sumed ideal conditions. In this study, battery consumption
estimation relies on node voltage measurement and payload
tests, using real-world testbed data under actual conditions in
the Sahel. This approach is based on modeling mathematically
of network reliability on Kaplan Meier and Nelson Aalen
estimators.

III. BACKGROUND PROBABILISTIC IOT RELIABILITY
PREDICTION

In statistics, survival analysis [13], [14], [15] is for analyz-
ing life expectation and lifetime based on an event occurring
such as the death or failure of a mechanism in a system. This
topic is also called reliability analysis.

Reliability analysis determines the probability of a popula-
tion that survives past a specific time, the rate of the population
that survived or died at any given time, or how an event impacts
the population’s lifetime. In the Agri-IoT context, it enables
modeling network nodes’ survival by predicting it.

In mechanical systems, determining the cause of death or
failure of a component is required. In survival analysis, this is
considered an ”event” and involves time-to-event data. Time
is defined as the beginning or end of an observation period.
Censored observation focuses on an individual’s survival time,
even if the information is incomplete or imprecise.

In 1958, Kaplan and Meier introduced the Kaplan-Meier
estimator [15], which has since become widely used for esti-
mating and summarizing survival curves. This approach is the
most common way to estimate and summarize survival curves
for being a highly cited statistic paper. The survival function,
S(t), gives the probability that a device or a mechanism
survives after a specific time t. The non-parametric estimator
functions will be used to analyze the survival data from field
experiments and to evaluate two related probability paradigms.

1) The survival probability using the Kaplan-Meier es-
timator (KME).

2) The Hazard rate denoted H(t) using the Nelson-
Aalon estimator(NAE) [16], [17].

The Kaplan-Meier distribution estimates the probability of
the event of interest not happening at time t. At the same time,
the NAE Hazard probability gives a visualization of the event
occurring on the subject within an interval of time.

S(t) is the probability that a given population member
has a lifetime greater than t. For a sample of size N in
this population, the time until each death of the members of
population N is represented as follows:

t1 ≤ t2 ≤ t3 ≤ · · · ≤ tN . (1)

The KME function S(t) is express as following :

Ŝ(t) =
∏
ti<t

ni − di
ni

(2)

The NAE function H(t) is expressed as following :

Ĥ(t) =
∑
ti<t

di
ni

(3)

where ni is the number of subjects ”at risk” just before
time ti, and di is the number of deaths at time ti. The KME
is not used to estimate the cumulative hazard, plus the NAE
hazard function has a better small-sample performance than
the KME [18] function. An empirical comparison of the two
solutions has been broadly studied by Colosimo et al.[19].

The IoT systems are hardware and software deployed to
monitor specific parameters. In some cases, human interven-
tion can be a requirement for provisioning and maintenance
reasons or as an oracle. Then, the reliability of IoT systems
can be assessed in three ways:

• Hardware reliability;

• Software or operation reliability;

• External reliability.

Hardware reliability is the failure rate of the hardware
component system. It has been assessed in many ways in
the literature [20], [6], [21]. The software reliability involves
protocols, logistic support, and the system’s operationality. Ex-
ternal reliability is correlated to the maintenance of the system
or human intervention and the impact of outside parameters in
the system. The system reliability can be expressed as follows:
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Rsystem =
Rgateway(

∑
(Rmn) +Rsoftware +Rhuman

3
)

(4)

Where Rgateway is the reliability of the gateway, which
centralizes the network and all the system depends on. Rmn

is the reliability of the network participant, the member nodes.
Rsoftware is the software reliability of participants. Rhuman

is the human reliability.

In this study, the Rsoftware is not considered, same for the
Rhuman on the system reliability. Consequently, in this work,
several evaluation and prediction results are achieved. This is
based on an IoT system’s energy consumption behavior during
its operation with on-field collected data from the testbed:
Node Lifespan; Network lifespan; Impact of activity level on
the system; Network density, and participants’ death over time
for maintenance and human intervention time prediction.

The next section presents the simulation part and how the
reliability analysis is executed and correlated to the on-field
implemented system’s observations.

IV. CONTRIBUTIONS: EXPERIMENTATIONS AND
MODELING

A. Context and Test Bed Architecture Design

The test bed site is located at Gaston Berger University’s
(UGB) experimental farm in northern Senegal, specifically in
Saint-Louis (see Fig. 1).

This site has been set up for practical training and research
activities focusing on animal and crop production techniques.
It covers an area of 26 ha and is irrigated with a drip irrigation
system and two submerged pumps in the Djeuss River, Senegal
River, with flow rates of 160 and 196 m3 per hour. It has a
storage and recovery basin measuring 15 meters by 10 meters
by 8 meters, a filtering station with sand tanks, multiple control
heads, distribution ramps, and conduits supporting the drip
emitters. This infrastructure enables a controlled water supply
for agricultural experimentation on the farm.

The Agi-IoT test bed installation was done between August
and September 2021. Meteorological conditions during this
period are characterized by the rainy season, sunny days,
and daytime temperatures ranging from 28°C to 33°C during
the day and 24°C and 27°C during the night, while relative
humidity levels consistently exceed 70% based on on-field
measurements and from National Agency for Civil Aviation
and Meteorology [22], [23].

The architecture of the test bed consists of one Gateway
and four sensor nodes deployed into an okra exploitation. The
system provides sensing and analyzing functions (Fig. 2). The
aim is to monitor environmental parameters (temperature and
soil humidity) and infer the need for irrigation actioning.

The sensing part consists of a digital temperature and
humidity sensor, a controller, and an energy source from a
finite battery. Moreover, the sensor used in this work incor-
porates an integrated temperature sensor to gauge the soil’s
temperature accurately. The collected data is transmitted to the
gateway using BLE technology. Bluetooth Low Energy (BLE)

technology is known for providing reliable communication
over relatively short distances.

The IoT’s Cisco Reference Model defines the gateway as
a Level 3 and 4 component that acts as a hub for receiving
all data collected from sensor nodes [24]. The gateway pro-
cesses the packets to extract relevant information, generates
customized irrigation plans for each sensor node, and transmits
refined data to a database. This makes it accessible to various
applications and services for the end-users.

B. Hardware Design, Implementation, and Deployment

The IoT Network test bed consists of a gateway and sensor
nodes. These components encompass a controlling board, a
communication module (integrated into the controller), sen-
sors, and the power supply. The nodes, including gateway and
sensor nodes, are implemented using the Raspberry Pi 3B+
as the main electronic board (Fig. 3). Nodes use BLE 4.2
for network, power bank, solar panels, soil sensors for data
collection, UM25C Meter for energy monitoring, and an 8-
inch display, keyboard, and mouse for RPIs.

The Cypress CYW43455 Bluetooth Chipset and BLE 4.2
are used for the Network Communication interface between
the nodes. The BLE 4.2 module is built in the RPi 3B+ for
communication among the Network’s nodes. In this context,
the Gateway is the master, and simple nodes are slaves.

A solar power bank with a battery capacity of 36, 000mAh
is connected to the nodes (gateway and simple node). The
power bank has a USB output for the devices’ power supply.
A 24 by 6 cells poly-crystalline silicon solar panel is coupled
to the gateway battery. The criteria for choosing the battery
model were durability, robustness to the outdoor conditions,
and water resistance in accordance with the deployment area
conditions.

The UM25C Meter [25] is a device that measures electrical
quantities, such as voltage, current, resistance, capacitance, and
temperature. It has a large display screen and can be connected
to a computer or smartphone via Bluetooth. It is connected to
the RPI via USB 2.0. It is used to monitor our field ambient
temperature and nodes’ electrical metrics quantities.

A WiFi connection was also used to establish Internet
connectivity for the gateway. However, this connection was
deliberately not kept continuously active in order to reduce
power consumption. Instead, the connection was established
twice daily to transmit data to the database and was subse-
quently disconnected. The data acquired from the sensor node
was stored using Google Sheets as the storage platform.

In the experimental farm, five(5) nodes have been deployed
on the field in a star topology to collect data. The Gateway
is in the center with a solar panel and enclosure at 1m up to
the ground (Fig. 4). It coordinates communication and has two
network interfaces: One with BLE to communicate with the
sensor nodes in WI-FI to be connected to the Internet. The
four(4) Sensor nodes are in the perimeter of a chosen area to
collect temperature and humidity and send data to the gateway
(Fig. 5).
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Fig. 1. Location of the outdoor experimental farm of UGB located at UGB, Saint-Louis, Senegal.
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Fig. 2. Agri-IoT deployment architecture diagram.

V. EVALUATION, ANALYSIS, AND DISCUSSION

A. Reliability Evaluation Results

This section presents the main results and learned lessons
from the testbed related to reliability. The on-field testbed
deployment further highlights the importance of designing and
simulating scenarios with detailed realism, ensuring accurate
and representative results regarding the hostile Sahel environ-
ment.

Table I presents the status of various parameters that
impact energy consumption in a node. The gateway plays
the role of a server. Several experiments were realized to

TABLE I. THE GATEWAY INTERNAL ACTIVITIES

Status
Server Gateway
Platform RPI 3B+
Running Tasks 156
User Python3.7
Memory 873.3/1000
Network BLE
Display None

observe the system’s activity level and running tasks. The
running software is implemented in Python with the BLE
communication protocol.
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Fig. 3. Gateway and sensor basic components lab integration and testing. (1) Raspberry Pi 3B+ with built-in BLE 4.2, (2) UM25C Meter, (3) Battery power
bank, (4) STEMMA soil moisture and temperature sensor.

Fig. 4. (1) Gateway’s initial deployment: Solar power bank responsible for energy supply. This setup lacks protection against the sun, significantly impacting
board operations due to enforced sleep mode during high temperatures within the enclosure. (2) Enclosed gateway setup featuring an RPI, a body with a fan,

and a UM256C meter for energy behavior monitoring during node activities.

1) Network Coverage: Considering a node as dead once it
stops operating. The operation time of the field experiment
is 72 hours testing period. The maximum communication
distance for the BLE connection was about 11 meters in line
of sight. The BLE range of the Raspberry Pi is limited without
an external antenna. For any distance beyond 7 to 10 meters
or another use case that involves reasonable communication
distance, adding an antenna might suit best.

2) Impact of Density in Network Lifespan: It is very
important to have a global view of the impact of network
density on the network to provide energy-saving and optimized
operation. Fig. 6(2) shows how the network size impacts the

network’s longevity. The experiment was run five times and
plotted the mean values of the network lifetime against the
network size. Then, observations were made based on the
activity and the node’s role(sensor node or gateway) to obtain
a concise evaluation of its lifespan. Node density was set to
5, 10, 15, 20, and 25 participant nodes with one gateway in a
centralized architecture.

Two important facts were deducted from the evaluation of
Network Density over Node Lifetime. The red curve represents
the lifespan of ’at-risk’ nodes over time, which are nodes that
are more prone to failure. On the other hand, the blue curve
illustrates the lifespan of ’died nodes’ over time, which are
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Fig. 5. Field deployment of the testbed IoT network, emphasizing a sensor node, its energy source.

(2)
Fig. 6. (1) Node discharge rate effect on lifetime. (2) Influence of network density on node lifetime: The red curve represents the lifespan of ’at-risk’ nodes

over time, while the blue curve illustrates the lifespan of ’died nodes’ over time.

the nodes that have experienced failure events. This analysis
provides a valuable understanding of the network’s stability,
reliability, and overall performance.

3) Impact of energy in network lifespan and reliability
: The reliability evaluation encompassed a comprehensive
assessment of discharge rate impact and inclusion of factors
such as transmission, reception, idling periods, duty cycling,
data, and the node’s designated tasks. This comprehensive eval-
uation allowed us to estimate the node’s lifespan, as depicted
in Fig. 6(1). Thus, the figure illustrates that with a discharge
rate of up to 0.054Ah, the projected node lifetime could extend
beyond 25hours. As demonstrated through indoor testing, this
prolonged node lifespan translates to approximately 22hours
of sustained gateway operation connected to a finite power
source of 36000mA. This is a way to predict network fail-
ure and anticipate self-healing methods to minimize network

failures.

This observation highlights the critical role of gateway
efficiency and longevity in overall network performance by
deepening our understanding of the correlation between node
discharge rates and lifespan.

The battery capacity can be expressed as a function of the
time it takes to charge fully (see Eq. 5):

Cn =
A(chargingordischarging)

Capacity
(5)

• Where Cn or C/n, expressed in ampere-hours (Ah),
measures the speed of charging or discharging the
battery, and the n stands for the number of hours the
discharging takes.
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• A is the electrical current.

• The capacity is the amount of current held in the
battery; it is different from the power.

To find out this quantity of energy (which is expressed in Watt-
hours - Wh), the capacity must be multiplied by the voltage
of the battery:

Ah× V = Wh (6)

The current (A) can fluctuate depending on the charging
style or type, and different parameters like heat, dust, wear-
out, and activity load can affect battery charging and discharge
speed. Hence, All battery parameters are affected by the battery
charging and recharging cycle. The current can be expressed
in Eq. 7.

A =
capacity

H
(7)

From Eq. 5 and 7,the lifetime is deduce as follows:

H =
1

Cn
(8)

4) Mitigating environmental-related issues:: Nodes went to
sleep after sending measurements, making data collection im-
possible. The gateway received data only the next morning. No
protection against the sun heat in Fig. 3 affected performance.
High temperatures triggered sleep mode, posing a deployment
challenge.

The temperature was 46◦C in the field. High temperature
triggers sleep mode and reduces charging efficiency. More
energy is required for proper recharging. High temperatures
slow down charging. Our batteries come with a less-efficient
amorphous solar panel.

The power bank’s operational temperature range spans
from 0◦ to 45◦, with a cautionary recommendation not to
exceed 60◦. During the deployment phase, high temperature
consequently impacted the battery’s performance. This ex-
plains the occurrence of node failures in the field due to the
influence of heat.

Furthermore, an important observation concerning the new
gateway’s design. It featured a wider solar panel (refer to Fig.
4(1)) that served as a protection against sun heat, effectively
preventing node overheating. The system’s efficiency is im-
proved by adjusting the battery supply and raising the solar
panel. This created better airflow, resulting in a cooling effect.
The change was needed because inconsistent data reception
was experienced from the end nodes. Initially, attempts were
made to enhance the gateway’s power supply, but upon further
investigation, it was determined to be unnecessary. As a result,
the gateway functions optimally in cooler environments with
average temperatures ranging from 25◦ to 30◦.

B. Network Survival Analysis

A thorough survival analysis was performed to explore
the correlation between network density and the lifespan of
the network. This investigation enabled us to make accurate
predictions about the network’s behavior in response to a 10%
increase or decrease in workload or network size. Fig. 7 is
a visual representation of our findings. Network expansion
impacts payload and data processing at the gateway. This data
was analyzed using Python 3.7 and the Lifelines library, with
the Kaplan Meier distribution fitter method - a widely accepted
approach.

During the investigation, time-to-event data was analyzed
using two non-parametric survival function estimator tech-
niques: the Kaplan-Meier Estimator (KME) and the Nelson-
Aalen Estimator (NAE) to consecutively estimate S(t) and
H(t).

The KME was used to estimate the probability of nodes
surviving over time. This estimator is represented as a step
function, which shows discontinuities at the occurrence of
events. Initially, the probability of a node’s survival remains
at 100%, indicating network stability during the first 18 hours,
between the intervals of t0 and t18, as shown in Fig. 8(2). This
interval represents a period of network stability. Additionally,
the median survival time indicates that nodes can operate
reliably for at least 22 hours, providing valuable information
for proactive network maintenance planning.

Due to the limited amount of data, the Kaplan-Meier
estimate was not applicable. Consequently, the Nelson-Aalen
estimator, more accurate for a limited amount of data, was
utilized to assess the cumulative hazard rate. This involves
calculating the total number of node failures during specific
time intervals to determine the cumulative count. Refer to Fig.
8(2) for the results.

Our analysis found no ”early node mortality.” Our metric
for assessing node performance was battery depletion. Failures
became more prevalent as the network aged, suggesting that
nodes performed well initially but gradually became less
reliable over time.

In the scope of the study, the metric related to battery
depletion in the network component was closely monitored.
It is important to note that no subjects were censored in this
investigation. This can be visualized in Fig. 8(1) and 8(2).

VI. CONCLUSION

This paper evaluates the reliability of an Agri-IoT system
deployed in the challenging Sahel environment. Accurately
simulated on-field scenarios provided valuable insights. Mon-
itoring the gateway’s internal activities revealed critical data
impacting node energy consumption. Network coverage and
density emerged as key factors affecting the network’s lifes-
pan. The comprehensive evaluation of energy consumption
provided crucial insights into node discharge rates and their
correlation with lifespan, aiding in predicting and mitigating
network failures.

The study addressed environmental challenges, highlight-
ing the impact of high temperatures on node performance and
the successful design adaptation of the gateway for improved
efficiency in cooler environments.
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Fig. 7. Network density and duty-cycling impact on the network lifetime.

(2)(1)
Fig. 8. (1) Kaplan Meier estimate survival function, S(t) described in Eq. 2. It is the probability that a node survives from the time it is switched on to a

specific future time t. (2) Nelson-Aalen Estimator cumulative hazard rate. It is denoted H(t) described in Eq. 3. It represents the probability a node, in our
case, who is under observation at a time t, has died at that time.

Survival analysis, utilizing Kaplan-Meier and Nelson-
Aalen estimators, established network stability and the proba-
bility of node survival over time. The absence of ”early node
mortality” indicated initial reliability, gradually decreasing
over time.

These results enabled to better understanding of Agri-IoT
reliability in typical Sahel Environment, providing practical
insights for optimizing system performance and addressing
environmental challenges in real-world deployments.
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