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Abstract—Accurate energy consumption forecasting and 

assessing retrofit options are vital for energy conservation and 

emissions reduction. Predicting building energy usage is complex 

due to factors like building attributes, energy systems, weather 

conditions, and occupant behavior. Extensive research has led to 

diverse methods and tools for estimating building energy 

performance, including physics-based simulations. However, 

accurate simulations often require detailed data and vary based 

on modeling sophistication. The growing availability of public 

building energy data offers opportunities for applying machine 

learning to predict building energy performance. This study 

evaluates Support Vector Regression       models for 

estimating building heating load consumption. These models 

encompass a single model, one optimized with the Transit Search 

Optimization Algorithm (TSO) and another optimized with the 

Coot optimization algorithm (COA). The training dataset 

consists of 70% of the data, which incorporates eight input 

variables related to the geometric and glazing characteristics of 

the buildings. Following the validation of 15% of the dataset, the 

performance of the remaining 15% is evaluated using five 

different assessment metrics. Among the three candidate models, 

Support Vector Regression optimized with the Coot optimization 

algorithm (SVCO) demonstrates remarkable accuracy and 

stability, reducing prediction errors by an average of 20% to 

over 50% compared to the other two models and achieving a 

maximum R2 value of 0.992 for heating load prediction. 

Keywords—Heating load demand; prediction models; building 

energy consumption; support vector machine; metaheuristic 
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I. INTRODUCTION 

Residential energy consumption accounts for 
approximately     of the total energy used [1,2]. 
Consequently, the precise forecasting of energy consumption 
during the design phase and the assessment of retrofit options 
emerge as critical endeavors in the adventure for energy 
conservation and emissions reduction. The prediction of energy 
usage in buildings presents a formidable challenge, given its 
reliance on numerous factors, including building attributes, 
control, characteristics and maintenance, meteorological 
parameters, and occupants' behavior, among other sociological 
variables [3,4]. In response to this challenge, significant efforts 
from the scientific community, governmental entities, and 
industry stakeholders have spurred numerous research 
initiatives, resulting in various approaches, methodologies, and 
tools for estimating building energy performance. Building 

energy simulation tools, notably those based on physics, such 
as Energy Plus [5], have gained widespread adoption for 
investigating and evaluating building energy efficiency. 
However, achieving precise simulations necessitates detailed 
building information, including specific space characteristics, 
which can be challenging to obtain [6]. Moreover, research has 
demonstrated substantial variations in outcomes based on the 
level of sophistication, both in terms of physical modeling and 
mathematical complexity, applied in the energy of building 
models [7]. 

In order to forecast total energy consumption or particular 
end uses, researchers have complemented physics-based 
models with a variety of statistical techniques [8]. By taking 
into account the characteristics of the building and its 
occupants and comparing the outcomes with simulations, 
regression-based approaches have become popular for 
forecasting energy consumption. Catalina et al. [9] used 
polynomial regression with a model displaying a maximum 
variance of 5% from simulated data across scenarios for 
estimating heating demand. Due to their ability to handle 
complicated interactions, more current advanced machine 
learning algorithms like Artificial Neural Networks       
and Support Vector Machines       have been deployed. By 
taking into account the features of the building and its 
occupants and comparing the outcomes with simulations, 
regression-based approaches have become popular for 
estimating energy use. Xifara and Tsanas [10] demonstrated 
the superiority of Random Forest      over regression in 
estimating heating load      and cooling load     . The study 
employed a statistical machine learning framework to analyze 
how eight input variables affect    and     in residential 
buildings. It systematically investigated the association 
strength between each input variable and the output variable 
star using classical and non-parametric statistical tools. 
Comparisons were made between classical linear regression 
and    for estimating    and   . Simulations on 768 
residential buildings demonstrated the capability to predict    
and    with low mean absolute error deviations. Overall, the 
study supported the use of machine learning for accurate 
building parameter estimation in the context of energy-efficient 
design and operation. Li et al. [11] employed     and     to 
predict cooling demand, with    -based predictions having 
roughly half the errors compared to     predictions when 
matched against simulation data. They established an hourly 
building    prediction model using     and applied it to an 
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office building located in Guangzhou, China. The simulation 
results indicated that the     method outperformed the 
traditional back-propagation      neural network model in 
terms of accuracy and generalization. Neto and Fiorelli [12] 
found similar performance between Energy Plus and an     
model for energy consumption estimation. These studies 
collectively indicate the effectiveness of empirical methods in 
capturing complex achieving and relationship accuracy similar 
to or better than regression-based models compared to 
simulation results. 

Instead of relying exclusively on simulated results, it is 
crucial to evaluate how well these sophisticated statistical 
models anticipate the precise energy performance of buildings 
in the future [13]. Significant differences between original 
design simulations and actual energy calculations have been 
found in prior studies. These differences have mostly been 
related to modeling assumptions, building quality, weather 
variations, operating practices, and occupant behavior [14]. A 
variety of opportunities exist to use cutting-edge approaches 
for examining the complicated relationship between building 
and occupant features and real energy performance through the 
analysis of large datasets as a result of the increasing 
availability of data regarding actual energy usage [15]. 

Numerous case studies have used sophisticated algorithms 
and previous data to predict the energy performance of 
buildings. For instance, Gonzalez and Zamarreno [16] 
presented a novel approach for short-term load prediction in 
buildings. The method relied on a specialized artificial neural 
network (ANN) that incorporated feedback from a portion of 
its outputs. The training of this ANN utilized a hybrid 
algorithm. The new system incorporated current and forecasted 
values of temperature, the current load, and the hour and day as 
inputs. The performance of this predictor underwent evaluation 
using real data and results from international contests. The 
obtained results demonstrated the high precision achieved with 
this system. Dong et al. [17] investigated the use of SVM for 
predicting building energy consumption in the tropical region, 
which is crucial for baseline model development and 
measurement and verification protocols. Four commercial 
buildings in Singapore were studied, employing weather data 
and monthly utility bills. SVM's performance, influenced by 
parameters C and ɛ, was analyzed using a radial basis function 
(RBF) kernel. Results indicated SVM's effectiveness, 
producing predictions with coefficients of variance under 3% 
and percentage errors within 4%. The study demonstrated 
SVM's feasibility and applicability in building load forecasting, 
offering valuable insights for accurate energy consumption 
predictions in tropical climates. Tso and Yau [18] conducted an 
empirical study comparing regression, decision tree, and     
and decision tree models to beat regression techniques in 
forecasting power use in residential buildings. Collectively, 
these case studies demonstrate that machine learning 
algorithms offer dependable outcomes. They possess the ability 
to model non-linear relationships, and many are non-
parametric, obviating the need for specific probability 
distribution assumptions [19]. It is important to remember that 
earlier examinations sometimes concentrated on a single 
structure or a small group of buildings in a particular place. 
Because of this, there is still a gap in the development of 

generalized prediction models based on Machine Learning 
     algorithms, making it difficult to use these techniques to 
fully examine the relevance of different architectural and 
occupant features for building energy efficiency [20]. 

Bashir and Alotaibi [21] underscored the crucial role of 
implementing effective building cooling and heating load 
prediction models for enhanced energy efficiency. In recent 
years, several research studies addressed challenges in 
determining efficient input parameters and developing accurate 
prediction models. Various data-driven approaches were 
proposed to optimize energy consumption systems and ensure 
indoor comfort. Despite existing reviews on prediction models, 
gaps remained in assessing cooling and heating load 
predictions. This study critically reviewed recent models, 
focusing on performance and accuracy. Comparative analysis 
revealed specific advantages for each model, yet shortcomings 
persisted in input parameters and implementation techniques. 
The review aimed to highlight and compare existing models' 
disadvantages in cooling and heating load predictions. Gong et 
al. [22] investigated the prediction of heating energy 
consumption in residential structures in Tianjin. They used a 
variety of methods, such as Support Vector Regression (SVR), 
Multilayer Perceptron (MLP), RF, and Light Gradient Boosted 
Machine (LGBM). The results showed that the LGBM model 
beat its competitors in a variety of assessment measures, 
demonstrating its potential for exact energy consumption 
predictions. Nebot and Mugica the [23] investigated prediction 
of heating and cooling loads in residential constructions 
utilizing fuzzy logic approaches such as fuzzy inductive 
reasoning (FIR) and adaptive neural fuzzy inference system 
(ANFIS). In their study, thirteen machine learning algorithms 
were compared to various fuzzy approaches, and SVR, ANFIS, 
and FIR performed better. Moradzadeh et al. [24] concentrated 
on estimating cooling and heating loads using SVR and MLP 
models. The MLP model had an incredible R

2
-value of 0.9993 

for heating load prediction, while the SVR model excelled with 
an R-value of 0.9878 for cooling load prediction, yielding 
outstanding results for their study. These findings illustrate the 
level of precision that may be achieved using machine learning 
algorithms. Karijadi and Chou [25] addressed the challenge of 
accurately predicting building energy consumption, which is 
crucial for effective building energy management systems. Due 
to the non-linear and nonstationary nature of energy 
consumption data, conventional prediction methods faced 
difficulties. The research introduced a novel hybrid approach, 
combining RF and Long Short-Term Memory (LSTM) based 
on Complete Ensemble Empirical Mode Decomposition with 
Adaptive Noise (CEEMDAN). The method transformed the 
original energy consumption data into components using 
CEEMDAN, where RF predicted the highest frequency 
component and LSTM predicted the rest. Combining the 
predictions yielded superior results compared to benchmark 
methods, as demonstrated in experiments using real-world 
building energy consumption data. 

In the current study, inspired by prior successful results 
demonstrating the superior performance of     over other 
models, support vector regression-based models were 
developed to predict heating loads      in buildings. Another 
advantage of this study is the utilization of numerous datasets, 
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including various input variables related to building geometry 
and glazing status, which were collected from previous 
literature for training predictive models. The predictive 
performance of a single SVR model was assessed, and in 
optimizing the training process, two distinct optimizers, 
namely the Transit Search Optimization Algorithm        
and the Coot optimization algorithm        were employed. 
The predicted results of the three models were compared using 
performance metrics, including R

2
,     ,    ,    , and 

    . Subsequently, the most optimal hybrid model for 
predicting    in buildings was determined. 

The novelty of this study lies in its application of SVR 
models for predicting HL in buildings, driven by prior 
evidence showcasing the superior performance of SVR over 
other modeling techniques. Additionally, the study introduces a 
unique aspect by incorporating a diverse range of datasets that 
encompass various input variables associated with building 
geometry and glazing status. These datasets, sourced from 
existing literature, contribute to the comprehensive training of 
predictive models. 

Moreover, the study distinguishes itself by evaluating the 
predictive performance of a singular SVR model and 
introducing innovation in the optimization of the training 
process. Specifically, the study employs two distinct 
optimizers, the TSOA and the COA, to enhance and fine-tune 
the efficiency of the SVR model training. This dual-pronged 
approach toward model optimization adds a novel dimension to 
the study, contributing to its overall uniqueness in addressing 
the prediction of heating loads in buildings. 

In Section II, data, models, and optimizers will be 
introduced. In Section III, the evaluation models are developed, 
and the metrics used for evaluation are discussed. Finally, in 
Section IV, the conclusion of the study is mentioned along with 
the limitations and future study. 

II. MATERIALS AND METHODS 

A. Data Collection 

To guarantee the validity and efficacy of the approaches 
described in this study, the availability of reliable and 
substantial data is crucial. The dataset created to train the 
intelligent models from earlier research was utilized in this 
investigation. This dataset provides the crucial data needed to 
put the suggested strategies into practice and evaluate how well 
they anticipate building heating needs. Eight significant 
factors, including relative compactness (which represents the 
building's surface area-to-volume ratio), roof area, surface area, 
wall area, overall height, orientation, glazing area (which 
includes glazing, frame, and sash components), and glazing 
area distribution, have an impact on the analysis of the input 
parameters in this study. The key criteria used for the statistical 
analysis of the dataset are shown in Table I, together with 
metrics such as data averages      , standard deviation 
         , minimum      , and maximum       values. 

B. Overview of Machine Learning (ML) Methods and 

Optimizers 

1) Support Vector Regression (SVR): In the early steps of 

pattern recognition research, support vector machines (SVM) 

were used to identify patterns. This approach was initially 

proposed by Vapnik [26] and later advocated utilizing the 

SVM to address issues about function approximation. The 

SVR methodology involves a dataset comprising  ̅ elements 

                  ̅ , where   represents the amount of 

training examples. The variable    denotes the      section 

of an   dimensional vector, where                   , 

and      presents the actual value related to   . 

The underlying principle of the SVR involves utilizing a 
ML technique to chart train data opinions, denoted as precisly 
  , onto a nose space that typically has   dimensions. 

TABLE I.  THE STATISTICAL PROPERTIES OF THE INPUT MUTABLE OF HEATING 

Variables 
 Indicators 

Category Min Max Avg St. Dev. 

                     Input 0.62 0.98 0.76 0.11 

             (m2) Input 514.50 808.50 671.71 88.09 

Wall Area (m2) Input 245.00 416.50 318.50 43.63 

          (m2) Input 110.25 220.50 176.60 45.17 

                   Input 3.50 7.00 5.25 1.75 

            Input 2.00 5.00 3.50 1.12 

                 Input 0.00 0.40 0.23 0.13 

                          Input 0.00 5.00 2.81 1.55 

             Output 6.01 43.10 22.31 10.09 
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An optimized hyperplane that precisely depicts the non-
linear relationship between the output and the current input 
independent variables is created by carefully designing the 
feature space. One formal way to represent the expression for 
    is as shown in Eq. (1): 

              (1) 

Here,   is the variable factor,       is the predicted ideals, 
and   is the               weight factor.      represents 
the arrangement of every component      into a feature space 
with in height dimensions. Eq. (2) represents the way the 
  insensitive loss function is expressed. 

|      |         |      |     (2) 

The residual is denoted by Eq. (3) as the disparity among 
the definite value,  , and the estimated cost,     . 

               (3) 

The ideal model is determined by incorporating the entire 
remaining element within a predefined variety of  , as follows: 

            (4) 

Eq. (4) provides the hypothesis for the complete training 
data. Hence, the data displays the highest disparity from the 
hyperplane when the remaining adheres to the condition 
         . The physical distance among a specific data 
point       and the hyperplane          is calculated as 
|      | ‖  ‖ obtained in the following manner: 

            (5) 

The hypothesis of this study suggests that the most 
significant movement among the dataset       and the 
hyperplane          can be expressed as the adjustable  . 
Hence, it can be inferred that the complete train dataset meets 
the criteria specified in Eq. (6). The attainment of the 
maximum value of   implies that the     model can 
demonstrate the best performance of generalization. 

|      |   ‖  ‖ (6) 

The highest distance is reached where the value of the 
       generations a predefined   value. Following this, Eq. 
(6) can be formulated again and expressed as Eq. (7). In order 
to reach the maximum value of  , it is crucial to minimize 
‖  ‖, and as ‖  ‖   ‖ ‖   , the problem of optimization 
is transformed into minimizing ‖ ‖. 

   ‖  ‖ (7) 

Despite efforts made over the train phase to minimize 
errors in the variety of       , there is still a possibility that 
specific errors may exceed this limit. Errors occurring during 
training that are less than    are denoted as   , whereas 

training errors greater than ε are represented as   
 
. The 

notations    and   
 
 are clarified based on following equations: 

   {
                                       

                                        
 (8) 

  
 
 {

                                       

                                           
 (9) 

The primary aim of     algorithm is to identify the 
hyperplane that yields the optimal result though reducing the 
disparity among the error of training and the hyperplane. This 
is accomplished by utilizing the   insensitive loss purpose. Eq. 
(10) presents the objective function for optimizing SVR. 

               
 
 
  

 

 
‖ ‖   ∑        

 
  

    (10) 

With the restrictions: 

                                ̅ 

                 
 
             ̅ 

       
 
                ̅  

Parameter C plays an essential role in achieving a equility 
between minimizing training errors and an optimal separation 
among the hyperplane space and the data points in     
involves preserving an ideal margin. 

In Eq. (10), the initial part penalizes excessive weight 
values to maintain a flat regression function. The second part 
balances error margins and experience risk using the  -
insensitive loss function. 

Upon effectively resolving the quadratic optimization, 
which involves disparity constraints, the factor   is derived 
using the guidelines explained in Eq. (1) and Eq.  (11). 

  ∑(   
 
   )

 

   

      (11) 

To calculate   
 
      , it is necessary to solve a quadratic 

programming problem that identifies the Lagrangian 
multipliers. 

Eq. (12) represents the SVR function: 

     ∑(   
 
   )

 

   

          (12) 

The kernel function, denoted as        , possesses the 
ability to nonlinearly project the train data onto a various 
characterized by a high dimensional space with   dimensions. 

The Kernel function         possesses the proficiency to 
non-linearly project the train data onto a various with many 
dimensions (l-dimensions), rendering it well-suited for tackling 
issues associated with non-linear relationships. This is 
particularly valuable within the context of electrical 
forecasting. Fig. 1 demonstrates the schematic representation 
of the SVR’s workflow. 
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Fig. 1. Flowchart of SVR model. 

2) Coot Optimization Algorithm (COA): The COA uses a 

metaheuristic optimization approach inspired by Coots' 

collective behaviors. Coots display various movements in 

water, like chain, random, leader-driven, and leader-adjusted, 

to reach food sources or specific locations. The COOT 

algorithm incorporates these behaviors and initiates by 

choosing a population using Eq. (13) [27]: 

                                 (13) 

           is the spatial organizes of an individual coot, 
while   represents the problem's dimensionality or the quatity 
of involved variables.    and    are the       and       
limits of the exploration space, individually. 

   [             ]    
 [             ] 

(14) 

Following the initial population setup, the positions of the 
coots are subsequently modified according to four patterns of 
movement. 

a) Random-Movement: The position   for this particular 

movement is firstly randomized: 

                       (15) 

Then, the position is updated to prevent getting stuck in 
local optima: 

                             
             

(16) 

The value    is number within the range [   ], and   is 
defined as follows: 

       
 

    
  

(17) 

Here,      is the maximum acceptable number of iterations, 
while   represents the present iteration number. 

b) Chain-Movement: To perform the chain program, 

one can determine the mean position of   coot birds utilizing 

the formula outlined in Eq. (18). 

           
                       

 
 

(18) 

Here,              presents the position of the next 
coot in the sequence. 

c) Adjusting position following the leader: In each 

group, a coot bird adjusts its location according to that of the 

leader, bringing the follower closer to the leader. The equation 
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given in Eq. (19) is used to determine the leader selection 

procedure. 

               (19) 

  represents the leader's index,   denotes the follower 
coot’s number, and    is the amount of group’s leaders. 

A coot's current location is getting updated applying Eq. 
(20): 

                                     
                           

(20) 

           denotes the position of the coot bird, while 
             is the position of the chosen leader.    
represents a random number within [   ], and   is a random 
number within the range [    ].  

d) Leader-Movement 

Leader locations are updated with Eq. (21) aimed at 
shifting from local optimal locations to global optimal 
positions. 

             

 {
              (                  )                 

              (                  )                 
 

 (21) 

The symbol       represents the optimal attainable 
position, while    and    are randomly chosen numbers 
selected from the interval [0, 1]. B is determined using the Eq. 
(22). 

       
 

    
  

(22) 

3) Transit Search Optimization Algorithm (TSOA): In the 

TSOA algorithm, there are two key parameters: the number of 

host stars      and the signal-to-noise ratio     , determined 

based on the transit model. Noise is estimated using standard 

deviation from observations outside the transit phase. The 

product of    and SN sets the initial population size for TS 

[28]. 
This section discusses the five crucial phases of the TSOA 

as follows: 

a) Galaxy phase: The algorithm begins by opting a 

galaxy and a random center within the search space. It then 

identifies habitable zones (life belts) within the galaxy by Eq. 

evaluating   *SN random regions.    using Eq. (23) to Eq. 

(25). The top    regions with the best fitness, indicating a high 

probability of hosting life, are selected for further algorithmic 

steps. 

                                            (23) 

  {
                                                  

                                                 
 (24) 

          
     (25) 

In the equations mentioned above,         denotes the 

central position of the galaxy, while    represents a randomly 
selected location within the exploration space. Additionally, 

there are     coefficients, both ranging from   to  , which 
denote a random number (  ) and a random vector (  ) with a 
dimension equal to the number of variables in the optimization. 
Parameter   quantifies the difference between the study's 
context and the galaxy's center, whether in the front (positive) 
or back (negative) region. The zone parameter ( ) is a random 
number (1 or 2) for precise positioning. To enhance accuracy, 
the noise parameter is applied to filter signal-related noise. A 
power of 3 is applied to the coefficient    to minimize its 
computational impact, as noise levels are expected to be 
relatively close to the intended scenarios. 

In the subsequent step, the algorithm selects one star from 
each previously identified region, corresponding to a stellar 
system, using Eq. (26) to Eq. (28). Consequently, at this stage, 
the algorithm has    stars to explore. The positions of these 
stars are represented as    in Eq. (26). Notably, coefficients    
and    in these Eqs. are random numbers ranging from   to  , 
while the coefficient    is a random vector with values in [   ] 
interval. 

                                     (26) 

  {
                                                 

                                               
  (27) 

          
      (28) 

b) Transit phase: In the TSOA, categorizing stars by 

class is essential. Therefore, the algorithm approximates the 

star's luminosity using Eq. (29): 

   
     

    
 
                                       

(29) 

   √       
                       (30) 

Here,    represents star     luminosity while    denotes its 
rank.    signifies the distance among the telescope and star  . 
The telescope's location,   , is randomly selected at the outset 
of the algorithm and remains constant throughout optimization. 
To update the received light from a star, the algorithm adjusts 
   by applying Eq. (31) to Eq. (33). In these equations, 
coefficients    and    are assigned random values:    ranges 
from -1 to 1, and    is a random vector with values between   
and  . 

                                      (31) 

         (32) 

          
    (33) 

Ultimately, the star's brightness is computed based on the 
newly obtained    using the updated       . Subsequently, the 

new luminosity,       , is determined according to Eq. (34). 

       
         

         
                             

          

(34) 

The potential for a transit event can be ascertained by 
comparing    with       . The transit probability, denoted as 

  , is determined using Eq. (35), where it takes on values of 1 
(indicating a probability of transit) or 0 (indicating no transit). 
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If     , the algorithm proceeds with the planet phase; 
otherwise, it executes the neighbor phase in the current 
iteration.  

                                                

                                                   
 (35) 

c) Exploitation phase: In the Exploitation phase of the 

TSOA, the focus shifts to the planet's characteristics and 

potential for hosting life. Here,    (  ) pertains to the planet's 

attributes, including density, composition, and atmosphere. 

New knowledge ( ) is incorporated to modify the planet's 

characteristics SN times (where             ) using Eq. (36) 

and Eq. (37). These equations involve random coefficients, 

such as    ,    , and    , and parameter P, which specifies a 

random exponent between 1 and (       ). Additionally,    

signifies the knowledge index with 1, 2, 3, or 4 values. 

The algorithm's global solution is determined by selecting 
the best planet among all    detected planets. 

     {

                                
                                

                                
                               

       (36) 

       
      (37) 

III. RESULTS AND DISCUSSION 

A. Prediction Performance Analysis 

In this study, the SVR machine learning model was 
developed to predict HL. Furthermore, the study utilized two 
efficient optimization algorithms, TSOA and COA, to create 
hybrid SVR models, enhancing the capacity for fine-tuning 
model parameters. The dataset was divided into       subsets: 
train, validation, and test, with     of the data used for train, 
    for validation, and     for test [29]. The performance of 
these models was comprehensively assessed in Table II by 
comparing various metrics, including R

2
  coefficient of 

determination  ,       Root Mean Square Error  ,     
 Mean Absolute Error  ,      Root Standard Ratio  , and 
      Mean Relative Absolute Error , as defined in Eq. (38) 
to Eq. (42) [30]: 

   (
∑       ̅      ̅  

   

√[∑      ̅   
   ][∑      ̅   

   ]
)

 

  (38) 

     √
∑        

  
   

 
      (39) 

    
    

√
 

 
∑      ̅   

   

      (40) 

     
 

 
∑ ‖     ‖

 
         (41) 

     
 

 
∑

|     |

|    ̅|

 
        (42) 

where,   is the number of samples,    and    are the 

predicted and test results, respectively.  ̅ and  ̅ are the average 
of the test and prediction result values. 

B. Evaluation of Developed Models 

The subsequent discussion provides a thorough 
examination of the model's effectiveness in predicting HL: 

 The SVCO hybrid model demonstrated remarkable 

performance with maximum R
2
 values of       

  
     ,            

        and      
       . These 

high R
2
 values signify a strong fit between the model 

and the data, underscoring the reliability of the chosen 
input variables as robust predictors of the expected 
output. Also, for both hybrid models, R

2
 for the testing 

stage is       than that for the train stage, which 
indicates inadequate training performance of developed 
models. 

 Regarding error metrics, which encompass RMSE, 
MAE, and MRAE, it is evident that the SVCO model 
exhibits significantly better accuracy when compared to 
the other models developed, demonstrating error values 
that are roughly half as large as those observed for the 
SVR single model. 

TABLE II.  THE RESULT OF DEVELOPED MODELS FOR SVR 

Model Phase 
Index values 

RMSE R
2
 MAE RSR MRAE 

SVR 

Train 1.575 0.977 1.363 0.155 0.225 

Validation 1.924 0.967 1.691 0.195 4.753 

Test 1.858 0.966 1.634 0.186 0.337 

All 1.676 0.973 1.453 0.166 0.255 

SVCO 

Train 0.861 0.994 0.607 0.085 0.098 

Validation 1.045 0.989 0.758 0.106 0.979 

Test 1.285 0.984 0.955 0.129 0.230 

All 0.964 0.992 0.682 0.096 0.117 

SVTS 

Train 1.201 0.988 0.896 0.118 0.134 

Validation 1.513 0.978 1.134 0.154 5.791 

Test 1.626 0.975 1.268 0.163 0.234 

All 1.322 0.984 0.987 0.131 0.160 
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A lower RSR value as a standard deviation ratio results in 
more accuracy of the model, so the least RSR value of 0.085 
for           confirms its accurate prediction performance. 

C. Comparison with Published Papers 

Table III shows the comparison between the presented and 
published papers. The comparison between the presented 
model and published articles focuses on key performance 
metrics, namely RMSE and R

2
. The present study exhibits 

competitive performance with an RMSE of 0.964 and an R
2
 of 

0.992. While RMSE is higher than in some references, the R
2
 

aligns closely with high values in the literature. Variability in 
results across studies underscores the need for future research 
to explore factors influencing predictive accuracy. The 
discussion emphasizes the balance between predictive accuracy 
and generalization, acknowledging differences in dataset 
characteristics, model complexity, and optimization 
techniques. The comparative analysis contributes valuable 
insights for refining and advancing predictive models for 
building heat demand. 

TABLE III.  COMPARISON BETWEEN THE PRESENTED AND PUBLISHED 

ARTICLES 

Articles 
Index values 

RMSE R
2
 

Moradzadeh et al. [31] 0.4832 0.9993 

Roy et al. [32] 0.059 0.99 

Gong et al. [33] 0.1929 0.9882 

Afzal et al. [2] 1.4122 0.9806 

Present Study 0.964 0.992 

D. Visualizing the Performance of Models 

The association between observed and expected values for 
the three prediction models is shown in a scatter plot in Fig. 2. 
Additionally, the test, validation, and training datasets' R

2 
and 

RMSE values for each model are supplied individually. The 
data points in the plot are positioned at a    degree angle to 
the horizontal axis, about     above and below the bold 
continuous line. This alignment denotes that the models 
perform well in terms of prediction, which leads to greater R

2
 

values. 

 

 

 
Fig. 2. Dispersion of evolved models. 

The R
2
 value would be one in a perfect world if all data 

points on the observation-prediction plot were perfectly aligned 
with the best-fit line. This would suggest that the model has 
correctly and error-free estimated all of the data. The SVCO 

model is shown in the illustration R
2
 values of       

  
                 

         and      
        for the heating 

loads. These numbers outperform those of the other models, 
showing that the SVCO model performs better in this situation 
than the other hybrid models. 

As shown in Fig. 3, a stacked bar plot is employed in this 
academic study to compare various metrics comprehensively. 
This visualization technique offers a clear and concise 
representation of the relationships among different metrics by 
stacking them atop one another within individual bars. Each 
metric is assigned a distinct color, enabling a straightforward 
visual assessment of their contributions to the overall outcome. 
Fig. 2 displays the different models' calculated RMSE, R

2
, and 

MAE values. On the basis of the measurements of RMSE and 
MAE, a deeper look indicates that the SVCO model exhibits 
reduced error rates. The SVTS and SVR models have 
comparably decreased error rates after SVCO. Additionally, 
the R

2
 measures prediction accuracy, and the SVCO model 

surpasses the other generated models in the research in this 
regard.
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Fig. 3. Stacked bar plot for comparing the metrics. 
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Fig. 4. Error percentage of the models based on the scatter plot. 

 
Fig. 5. The violin diagram for error percentage of proposed models. 
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In Fig. 4 and Fig. 5, the error percentages for the models 
are displayed through scatter plots and violin diagrams, with 
categorization into the training, validation, and test datasets. 
The density of data points close to zero in Fig. 3 shows how 
effective the strategy is. A greater concentration near zero 
indicates increased effectiveness. Notably, the training 
instances exhibit a significant preponderance of values close to 
zero, predominantly attributed to the SVCO method. Notably, 
the maximum error values for all three models are observed 
during the testing phase, with peak values of 32.24%, 16.11%, 
and 63.25% for SVR, SVCO, and SVTS, respectively. This 
observation underscores the beneficial fitting ability of the 
SVCO method. 

Furthermore, Fig. 4 confirms the high accuracy of SVCO, 
with 25-75% of errors confined to approximately (-5 to +5). It 
is also evident that errors associated with SVR and SVTS are 
approximately three and six times higher, respectively, 
compared to those associated with SVCO. This further 
emphasizes the superior performance of the SVCO method 
relative to its counterparts. 

IV. CONCLUSION 

In summary, this study addresses the critical imperative for 
precise energy consumption forecasting and the evaluation of 
retrofit strategies within the framework of building energy 
management. The complexities in predicting building energy 
usage, driven by multifaceted variables, including building 
attributes, energy systems, weather conditions, and occupant 
behavior, have historically posed formidable challenges. While 
physics-based simulations have provided valuable insights, 
their accuracy hinges on data comprehensiveness and modeling 
intricacy. In response, this research harnesses the expanding 
wealth of public building energy data to explore the potential 
of machine learning techniques, explicitly emphasizing 
Support Vector Regression       models. The research 
findings underscore the exceptional performance of the     
optimized with the Coot optimization algorithm (SVCO) 
model, consistently outperforming its counterparts by reducing 
prediction errors by an average of 20% to over 50% and 
achieving a maximum R

2
 value of       for heating load 

prediction. This highlights the substantial potential of machine 
learning, as SVCO exemplifies, to significantly enhance the 
precision of energy consumption forecasts. Consequently, it 
empowers decision-makers in energy conservation and retrofit 
strategies, contributing to the overarching goals of sustainable 
building operations and reduced environmental impact. The 
study has several limitations. These include potential 
challenges in generalizing findings across diverse datasets and 
real-world scenarios due to a singular focus on SVR models. 
The reliance on datasets from previous literature introduces 
concerns about data quality, consistency, and relevance. The 
sensitivity of the SVR model to hyperparameters and the 
impact of optimization algorithms may also affect 
generalizability. The study's limited scope on heating loads 
may restrict its applicability to broader aspects of building 
energy performance. Future studies in this field could enhance 
predictive models by exploring multi-modal predictions, 
dynamic and adaptive models, and incorporating diverse 
datasets, including real-time sensor data. The inclusion of 
human behavior aspects, uncertainty analyses, and the 

application of models for guiding energy-efficient 
interventions in buildings are additional avenues for 
investigation. Furthermore, validating predictive models in 
real-world settings through field studies would improve 
practical applicability. 
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