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Abstract—With the continual evolution of cybersecurity
threats, the development of effective intrusion detection systems
is increasingly crucial and challenging. This study tackles these
challenges by exploring imbalanced multiclass classification, a
common situation in network intrusion datasets mirroring real-
world scenarios. The paper aims to empirically assess the
performance of diverse classification algorithms in managing
imbalanced class distributions. Experiments were conducted us-
ing the UNSW-NB15 network intrusion detection benchmark
dataset, comprising ten highly imbalanced classes. The evaluation
includes basic, traditional algorithms like the Decision Tree, K-
Nearest Neighbor, and Gaussian Naive Bayes, as well as advanced
ensemble methods such as Gradient Boosted Decision Trees
(GraBoost) and AdaBoost. Our findings reveal that the Decision
Tree surpassed the Multi-Layer Perceptron, K-Nearest Neighbor,
and Naive Bayes in terms of overall F1-score. Furthermore,
thorough evaluations of nine tree-based ensemble algorithms were
performed, showcasing their varying efficacy. Bagging, Random
Forest, ExtraTrees, and XGBoost achieved the highest F1-scores.
However, in individual class analysis, XGBoost demonstrated
exceptional performance relative to the other algorithms. This
is confirmed by achieving the highest F1-scores in eight out of
the ten classes within the dataset. These results establish XGBoost
as a predominant method for handling multiclass imbalance
classification with Bagging being the closest feasible alternative,
as Bagging gains an almost similar accuracy and F1-score as
XGBoost.

Keywords—Multiclass imbalanced classification; ensemble al-
gorithm; network attack; UNSW-NB15 dataset; F1-score

I. INTRODUCTION

Following the COVID-19 pandemic, accelerated advance-
ments in information technology have reshaped organizational
operations, interpersonal interactions, and service delivery
methods. The Internet and cyber technology have facilitated a
highly interconnected global society, significantly influencing

almost every facet of the modern world. This revolutionizes
human lifestyles, transforms various industries, and promotes
global innovation. The shift towards remote work and virtual
platforms has surged, prompting the development of new tools
and technologies to accommodate these changes. Additionally,
the healthcare sector has experienced a growth in telemedicine
and digital health solutions, enabling remote patient consulta-
tions and monitoring. However, these advancements also in-
crease vulnerability to cybersecurity attacks, as cybercriminals
view the rapid expansion of IT applications, especially in e-
commerce, as lucrative targets. The European Union Agency
for Cybersecurity (ENISA) noted a notable rise in cybersecu-
rity incidents during the latter part of 2022 and the first half of
2023, as referenced in [1]. These developments underscore the
urgent need for effective, reliable, and robust defense systems
against such attacks. Concurrently, with the proliferation of AI,
machine learning and deep learning algorithms have emerged
as powerful tools for network security.

The effectiveness of machine learning and deep learning
models in detecting network attacks hinges on the quality and
relevance of the training data. Inadequate or irrelevant training
data can yield inaccurate or unreliable outcomes. Therefore, it
is essential to ensure the training data for these models is high-
quality and representative of actual network attack scenarios.
Typically, network traffic remains normal until a cyberattack or
network failure occurs, causing a deviation from usual patterns.
Machine learning and deep learning models are capable of
identifying and learning these anomalies, thereby precisely
detecting and classifying network attacks.

Consequently, most of the training data will consist of
normal network traffic. The abnormal network traffic dataset,
representing potential network attacks, includes various cate-
gories of network assaults. Rare or novel attack types might
have limited sample sizes, potentially smaller than those found
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in common attack types or normal traffic data. This leads
to a significant imbalance in class composition, potentially
introducing model bias, rendering predictions unreliable, and
hindering the detection of rare or new attacks. As noted by
[2], most network intrusion datasets are inherently multiclass
imbalanced, reflecting real-world conditions. In such datasets,
class distribution is uneven (as depicted in Fig. 1), with some
classes being minority and others majority.

𝑦

𝑥

Class 1 Class 2

Class 3

Class 4

Fig. 1. Example of multiclass imbalanced classification.

Imbalanced datasets can skew classifiers, biasing them
toward the majority class [3]. This presents a significant
challenge, as most classifiers are inherently designed for bal-
anced scenarios. One simplistic approach could be to exclude
minority classes with insufficiently sized samples from the
dataset. However, this could result in models that are outdated
with respect to the latest cyberattacks. We continuously update
and retrain these models with fresh data to enhance their
adaptability to evolving attack techniques and ensure sustained
effectiveness.

Addressing the imbalance often involves sampling so-
lutions. Techniques such as Random Oversampling [4] or
Synthetic Minority Oversampling Technique (SMOTE) [5]
augment infrequent cases, while methods like Random Un-
dersampling [6] or Tomek links [7] reduce redundancies in
the dataset by decreasing majority samples. Hybrid techniques
like SMOTEENN [8], which combine oversampling and un-
dersampling, and ROSE (Random OverSampling Examples)
[9], which create synthetic spaces between classes, are also
utilized. However, oversampling risks overfitting, and under-
sampling may lead to information loss. SMOTEENN and
ROSE, while versatile, are also prone to overfitting. Moreover,
the continually changing nature of new attacks complicates the
use of these methods, given the dynamic class distributions.
Thus, these methods can temporarily achieve balance but have
limitations in long-term applicability and robustness. Conse-
quently, this paper does not focus on sampling solutions but
rather on the inherent capabilities of classification algorithms
to address imbalanced class problems effectively.

While various machine learning approaches have been
proposed for network attack classification, a predominant focus
remains on enhancing overall accuracy—a metric poorly suited
for imbalanced multiclass datasets. Accuracy measures the
proportion of correct predictions made by the model, but
it fails to adequately represent minority classes, particularly
those with low sample sizes. An accuracy-centric model might
disregard minority classes, classifying all instances as the ma-
jority class, thereby achieving high overall accuracy but poor
detection of rare, yet critical, cases. This oversight necessitates

a more nuanced, class-specific evaluation. Additionally, there is
a notable research gap concerning the effectiveness of different
algorithms in addressing multiclass imbalances.

Therefore, this research has a dual focus. First, it seeks
to identify which conventional machine learning algorithms
are best suited for addressing the unique challenges of mul-
ticlass imbalanced classification, specifically in the context
of network attack classification. Second, it explores which
ensemble algorithms are most effective in these scenarios.
Following guidance from [10], potential solutions include sam-
pling techniques, ensemble methods, cost-sensitive learning,
and deep learning methods. This paper, however, concentrates
on the application of ensemble approaches to manage im-
balanced data scenarios. We compare and experiment with
a range of machine learning algorithms, from simpler ones
like decision trees and K-nearest neighbors to more complex
ensemble algorithms such as Gradient Boosted Decision Trees
(GraBoost) and AdaBoost. The objective is to ascertain the
most effective algorithm for addressing the complexities of
imbalanced datasets in network intrusion detection.

The experimental evaluation utilizes the publicly avail-
able UNSW-NB15 dataset [11], characterized by a highly
imbalanced class distribution. Initial experiments compared the
performance of a single Decision Tree (DT) against instance-
based methods like K-Nearest Neighbor (KNN), function-
based models including Multilayer Perceptron (MLP), and
Bayesian-based approaches exemplified by Naive Bayes (NB).

Despite the initial success of the Decision Tree, there is a
need for more precision, particularly in identifying tree-based
ensemble algorithms that excel in multiclass imbalance classi-
fication. This research thus focuses on discovering the most ef-
fective tree-based ensemble algorithms for managing the chal-
lenges posed by imbalanced multiclass datasets. In addition to
a single Decision Tree, we conducted experiments comparing
nine tree-based ensemble learning algorithms: Bagging with
a Decision Tree as the base classifier, Random Forest (RF),
Extremely Randomized Trees (ExtraTree), Adaptive Boosting
(AdaBoost), Gradient Boosting (GraBoost), Histogram-based
Gradient Boosting (HistGraBoost), Extreme Gradient Boosting
(XGBoost), Light Gradient Boosting Machine (LightGBM),
and Categorical Gradient Boosting (CatBoost).

To summarize, the paper’s primary contributions are as
follows. First, preliminary results indicate the superiority of
the Decision Tree over other traditional machine learning
algorithms. Second, XGBoost has been determined as the
optimal tree-based ensemble method for multi-class imbal-
anced classification with Bagging being the closest feasible
alternative. Third, this paper offers practitioners a powerful ap-
proach to address the issues often encountered with imbalanced
multi-class datasets effectively. Consequently, this improves
the overall efficacy of cybersecurity protocols.

The structure of this paper is as follows. Section II explains
the related work. Section II describes the methodology. Section
IV illustrates the dataset, algorithms and performance metrics
used in this research, while Section V describes results of
the algorithms. Finally, in Section VI the conclusions and the
future works are being discuss.
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II. LITERATURE REVIEW

Network attack detection datasets are often multiclass
imbalanced [2]. Nevertheless, despite this observed pattern,
many research efforts continue to pay attention to tackling the
issue of imbalanced classification problems. Typical solutions
to dealing with imbalanced dataset issues include utilising sam-
pling approaches [12], [13]. The first sampling approach is to
apply the oversampling technique to address the imbalance in
minority classes. Random Over-sampling involves the random
duplication of cases from the minority class [4]. SMOTE [5],
which stands for Synthetic Minority Over-sampling Technique,
is a method used to create synthetic samples comparable to
the minority data cluster. The second sampling approach is by
under-sampling majority classes. For example, the Random
Under-sampling [6] randomly removes the majority of class
examples, and Tomek links [7] work by removing overlap
between class sample distributions. Finally, hybrid/ensemble
sampling refers to a technique that combines multiple sampling
methods or models to improve the accuracy and reliability
of the sampling process. For instance, SMOTEENN [8] is a
technique that combines SMOTE over-sampling with edited
closest neighbour under-sampling. ROSE(Random OverSam-
pling Examples) sampling [9] generates smooth distributions
by creating synthetic spaces between minority and majority
examples.

Nevertheless, the deliberate process of oversampling mi-
nority classes can lead to over fitting of the model due to the
replication and noise. On the contrary, by undersampling the
majority classes, there is a risk of losing valuable information
crucial for precise classification. Hybrid or ensemble sampling
techniques, such as SMOTEEN and Rose sampling, prove
helpful in generating more balanced sample distributions.
However, class distribution patterns in complex real-world
contexts are rarely uniform or evenly distributed. In addition,
they inherit the overfitting and losing valuable issues from
oversampling and undersampling, respectively. Another key
challenge is class distribution concept drift in the dynamic
network traffic data. It is possible that novel network attacks
will emerge, each with a limited sample size. As relative class
frequencies change over time, a previously balanced data set
may become outdated.

Hence, this paper aims to identify the best algorithm
without considering any sampling approaches. In many studies
[14], [15], [16], the classification of network attacks from an
imbalanced binary class distribution has been looked at without
taking sampling methods into account. Binary classification
refers to classification problems where there are only two
target classes. Imbalanced binary classification problems occur
when one class has many more training examples than the
other. Typically, the normal traffic class has a majority, while
the abnormal (under attack) traffic class has a significantly
smaller minority. The research by [14] aimed to build a
classifier to determine whether a Distributed Denial of Service
(DDoS) attack occurs on the network. The study employs
a range of classifiers, including Extreme Gradient Boosting
(XGB), Support Vector Machine (SVM), Logistic Regression
(LR), K-Nearest Neighbor (KNN), and Decision Tree (DT).
Evaluation metrics such as F1-score, Precision, Recall, and
Accuracy indicate XGBoost’s strength as the top-performing
classifier, achieving an accuracy of 98.24%. In another study

for DDoS attack detection, the authors of [15] applied Logistic
Regression, K-Nearest Neighbour, Multi-layer Perceptron, and
Decision Tree to investigate the best detection model. Notably,
KNN and DT demonstrate superior accuracy, especially for
TCP and ICMP flooding attacks, while for UDP, DT exhibits
a better accuracy of 77.23% with an almost equivalent F1-
score.

Concurrently, there exists a group of researchers actively
addressing the challenges associated with multiclass imbal-
anced scenarios in network attack classification. Examples of
instances include [17], where the F1-score remains suboptimal,
indicating the model is not achieving adequate performance
on the minority class, even though overall accuracy appears
high. In a study employing the UNSW-NB15 dataset [11],
even though the dataset is multiclass imbalanced, the primary
emphasis lies on presenting overall performance rather than
individual class results. The findings demonstrate that Random
Forest attains the best Area Under the Curve (AUC) and
F2 scores. Additionally, [18] utilizes the NSL-KDD dataset,
comparing the performance of Naive Bayes and SVM. Despite
SVM’s accuracy exceeding 90%, the F1-score remains around
0.69.

An additional study in [17] developed a model to classify
benign network traffic versus malicious attack categories like
Distributed Denial of Service (DDoS) attacks that leverage
malicious TCP ACK or PSH-ACK packet flows.The results
highlight the superiority of logistic regression over other
classifiers used in the paper. The study in [19] applied the
CICIDS2017 network intrusion detection benchmark to assess
an array of both classical (Decision Tree, K-nearest Neigh-
bours, and Support Vector Machine) and ensemble classifiers
(Random Forest, GraBoost, and AdaBoost) for identifying
malicious network behaviours within realistic traffic. The
study reported that GraBoost outperformed other classifiers in
terms of accuracy, precision, recall, and F1-score. Meanwhile,
AdaBoost struggles with dataset complexity, lagging other
classifiers significantly across all metrics.

Network security operates in a dynamic realm where cyber-
security threats continually evolve in complexity and diversity.
The deployed classifier must constantly adapt to new attacks.
However, a notable proportion of cybersecurity research con-
centrates on the development of machine learning models
without considering the accurate detection of new attacks with
a small sample size (minority classes). While studies like
[14] and [15] offer insights into algorithmic performance in
binary contexts, there exists a significant gap in understanding
whether these algorithms retain their effectiveness amid the
complexities of multiclass imbalanced datasets. Moreover, the
interaction between different algorithms and metrics, such as
the F1-score, remains underexplored. Therefore, a comprehen-
sive investigation is needed to identify the high-performance
algorithm that overcomes the imbalanced class distribution in
the absence of sampling methods to rebalance the distribution.
Additionally, the limited reporting of individual class results,
as observed in [11], poses a gap in our understanding of
algorithmic vulnerabilities and strengths across diverse attack
types. Lastly, despite extensive algorithm testing, a systematic
exploration of the suitability of different machine learning al-
gorithm families for multiclass imbalanced datasets is lacking.
Addressing these research gaps is imperative for advancing
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the field, guiding algorithm selection, and advancing network
intrusion detection in complex, real-world scenarios.

III. METHODOLOGY

A series of experiments followed the procedure outlined in
Fig. 2. Initially, the dataset was partitioned into two segments
for training and testing purposes. Subsequent experiments
evaluated the performance of four distinct traditional machine
learning algorithms to identify the optimal base algorithm
for the ensemble. Upon determining the optimal conventional
algorithm, further tests were conducted to ascertain the most
effective ensemble method, utilizing the previously selected
traditional algorithm.

UNSW-NB15
Dataset

Training Dataset, T1
(70% of the UNSW-

NB15 dataset)

Testing Dataset, T2
(30% of the UNSW-

NB15 dataset)

Conventional Machine 
Leaning Training 

DT

MLP

NB

KNN

Identify best conventional 
algorithm

Ensemble Machine Learning 
Training based on the best 

Conventional Machine  
Learning families

Class 
Identification

Fig. 2. Experimental evaluation flow.

A. Dataset

In this research, we strategically utilize a highly imbalanced
network intrusion dataset, reflective of real-world network
anomaly scenarios, as our primary training resource. The
dataset selected for this study is the publicly accessible and
extensively recognized UNSW-NB15 dataset. It comprises
ten different attack categories, represented by 43 features as
detailed in Table I. This dataset includes a total of 257,673
instances, categorized into ten distinct classes, as delineated in
Table II.

Table II highlights a notable characteristic of the UNSW-
NB15 dataset: its classification as a multiclass imbalanced
dataset. There are substantial variations in the frequency of
different attack categories. These differences mirror the com-
plexity of real-world scenarios, where certain network attacks,
although less frequent, may be of higher significance. Cate-
gories such as Analysis, Backdoor, Reconnaissance, Shellcode,
and Worms, each accounting for less than 6% of the total
instances, are thus identified as minority classes in this study.

In order to demonstrate the skewed and highly imbalanced
class scenario that exists within this dataset, we present the

TABLE I. FEATURES OF THE UNSW-NB15 DATASET

No. Features Data types No. Features Data types
1 id int64 23 dtrcpb int64
2 dur float64 24 dwin int64
3 proto object 25 tcprtt float64
4 service object 26 synack float64
5 state object 27 ackdat float64
6 spkts int64 28 smean int64
7 dpkts int64 29 dmean int64
8 sbytes int64 30 trans-depth int64
9 dbytes int64 31 response-body-len int64

10 rate float64 32 ct-srv-src int64
11 sttl int64 33 ct-state-ttl int64
12 dttl int64 34 ct-dst-ltm int64
13 sload float64 35 ct-src-dport-ltm int64
14 dload float64 36 ct-dst-sport-ltm int64
15 sloss int64 37 ct-dst-src-ltm int64
16 dloss int64 38 is-ftp-login int64
17 sinpkt float64 39 ct-ftp-cmd int64
18 dinkpt float64 40 ct-flw-http-mthd int64
19 sjit float64 41 ct-src-ltm int64
20 djit float64 42 ct-src-dst int64
21 swin int64 43 is-sm-ips-ports int64
22 stcpb int64 44 attack-cat object

disparity between classes by utilising two metrics that are
distinct from one another but interconnected metrics. Firstly,
the Fraction to Majority Class was calculated using Eq. (1) as
shown below:

Fraction to Majority Class (%) =
TNIPC

TNIMMC
× 100 (1)

This metric aligns with the challenges identified in the
practical scenario of network intrusion detection. Under these
circumstances, some classes may have a low occurrence rate
yet present a substantial risk. Eq. (2) was applied to calculate
the Fraction to Total Instances is shown below:

Fraction to Total Instances (%) =
TNIPC

TNIWD
× 100 (2)

For both Eq. (1) and Eq. (2), TNIPC represents the total
number of instances for a specific class, TNIMMC is the
total number of instances for the most majority class (the
class with the highest number of instances), and TNIWD
indicates the total number of instances for the whole dataset.
Instead of being mere mathematical equations, these equations
also provide a clear understanding of the complex, imbalanced
distribution of the dataset, which is also the problem found in
the real-world situation.

By closely analyzing the imbalance and complexity of the
dataset, a strong understanding of the complications of the
dataset is established. This is crucial as it will ensure the
techniques to be used are able to be utilized accurately and
correctly when facing the imbalanced problem.

B. Data Preparation

Before initiating the model training process, several
preparatory steps are essential for the UNSW-NB15 dataset
to ready the classifiers for subsequent stages. As indicated in
Table I, the datatypes of the attack classes were initially in an
object format. Consequently, the initial step in this research
was to assign a numerical value to each class. This transfor-
mation is crucial as it not only standardizes representations but
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TABLE II. NUMBER OF INSTANCES IN EACH ATTACK CLASS IN THE
UNSW-NB15 DATASET

Classes Total number of Fraction to Fraction to
(attack-cat) instances Majority class Total instances

(Percentage,%) (Percentage,%)
Analysis 2,677 2.9 1.0
Backdoor 2,329 2.5 0.9

DoS 16,353 17.6 6.3
Exploits 44,525 48.9 17.3
Fuzzers 24,246 26.1 9.4
Generic 58,871 63.3 22.8
Normal 93,000 100 36.1

Reconnaissance 13,987 15.0 5.4
Shellcode 1,511 1.6 0.6

Worms 174 0.2 0.1
Total 257673

TABLE III. DATASET DISTRIBUTION

Classes Assigned Total number Number of Number of
(attack-cat) Number of Instances Instances in Instances in

in UNSW-NB15 Training Testing
dataset dataset dataset

Analysis 0 2,677 1,874 803
Backdoor 1 2,329 1,630 699

DoS 2 16,353 11,447 4,906
Exploits 3 44,525 31,167 13,358
Fuzzers 4 24,246 16,972 7,274
Generic 5 58,871 41,210 17,661
Normal 6 93,000 65,100 27,900

Reconnaissance 7 13,987 9,791 4,196
Shellcode 8 1511 1,058 453

Worms 9 174 122 52
Total 257,673 180,371 77,302

also ensures compatibility with machine learning algorithms.
Furthermore, features such as proto, service, and state, which
are initially in an object format, have also been encoded.

After assigning numerical values to the classes, the dataset
underwent a stratified 70:30 split. Seventy percent of the data
was allocated as the training dataset, enabling the classifier
to learn patterns and relationships within the data. The re-
maining 30% served as the testing dataset, used to evaluate
the performance of the trained classifiers in this research. The
stratified split ensures equitable representation of all classes in
both training and testing datasets, preventing any class from
being overrepresented and potentially misleading classifier
performance.

The detailed composition of the dataset split is presented in
Table III. Employing the aforementioned stratified 70:30 split,
instances for each class were proportionately divided between
the training and testing datasets. This approach provides a
more equitable and accurate assessment of the performance of
the algorithms used in this research, particularly in addressing
multiclass imbalanced classification challenges.

C. Conventional Machine Learning Algorithms

This paper evaluates four distinct conventional machine
learning algorithms, each representing a different family of
algorithms: tree-based, instance-based, function-based, and
Bayesian-based. These algorithms were chosen for their sim-
plicity and computational efficiency, a desirable trait given
the need for rapid training in scenarios involving frequently

updated network attacks. The assessed algorithms are: Deci-
sion Tree (DT) from the tree-based family, K-nearest neighbor
(KNN) from the instance-based family, Multilayer Perceptron
(MLP) from the function-based family, and Naive Bayes (NB)
from the Bayesian-based family. Initially, the performance of
these algorithms is evaluated to identify the most effective
family-based classifier for addressing the multiclass imbal-
anced problem. A brief description of these algorithms is as
follows:

1) Decision Tree (DT): A well-known approach used in
the field of network intrusion detection. It constructs
a hierarchical tree with decision leaves and data
element nodes to solve the classification problem.
Although [20] has raised concerns about the necessity
for numerous splits in a skewed distribution dataset,
some researchers [21], [22], [23] have proved the
efficiency of DT in this field.

2) K-nearest neighbor (KNN): An instance-based algo-
rithm, KNN classifies dataset instances using Eu-
clidean distance to measure the proximity between
training and testing instances [24]. It is simple and
robust against noisy data [25], albeit with some
efficiency drawbacks, particularly in selecting the
optimal “k” value [26]. In our experiment, k = 10
was chosen as the most suitable value after fine-
tuning.

3) Multilayer Perceptron (MLP): As a neural network, or
function-based algorithm, MLP consists of multiple
interconnected neuron layers [27], [26]. The number
of hidden and output layers determines its structure
[28]. In our experiments, we configured the MLP
with 100 hidden layers, using the Rectified Linear
Unit (ReLU) as the activation function and Adam
as the optimizer with a learning rate of 0.001. The
maximum number of iterations was set to 200.

4) Naive Bayes (NB): Naive Bayes classifier is a family
of simple probabilistic classification algorithms based
on Bayes’ theorem. In contrast to Bayes theorem,
it is designed based on naive assumption that fea-
tures are independent from each other to simplify
the algorithm. In this experiment, we implemented
Gaussian variant which uses Gaussian Distribution
for the feature values of each class [29]. Instead of
solely relying on the Euclidean distance from the
class mean, this algorithm takes both into account.
Yet, it does have the drawback of only modeling
each dimension independently, as it neglects the joint
distribution of weight and height [30].

D. Tree-based Ensemble Algorithms

The research employed a selected set of ensemble algo-
rithms, with a specific focus on tree-based families in which
the decision tree serves as the primary classifier for these
methods. The choice was made due to the decision tree’s
ability to handle the imbalanced dataset, as was discussed in
Section V-A.

The following nine tree-based ensemble algorithms were
applied in this study:

1) Bagging: Bagging (Bootstrap Aggregating) is an
effective technique that is able to solve the high
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variance problem faced by some algorithms, such as
decision trees. It involves constructing several trees
without prunning and is able to show reliable results
[31].

2) Random Forest (RF): An improved version of Bag-
ging that is able to reduce noise, solve outliers,
and overfit problems, which are common challenges
found in a dataset. By reducing correlations between
individual classifiers, RF effectively eliminates and
deals with these difficulties, creating a robust and
reliable model [31], [32].

3) Extremely Randomized Tree (ExtraTree): As com-
pared to RF, this algorithm, which is also an evolution
of Bagging, constructs random trees by using the
instances of the dataset [31]. An enhanced robustness
and increased resilience were able to be guaranteed
with this intentional injection of diversity, which also
strengthened the overall ensemble.

4) Adaptive Boosting (AdaBoost): It is a weighted-
assigned ensemble algorithm that modifies the weight
of the instances of the dataset dynamically. By do-
ing so, the algorithm is able to allocate attention
strategically during the construction of subsequent
models, which enhances its capabilities in handling
the different complexities present in the network
intrusion data.

5) Gradient Boosting (GraBoost): GraBoost is a very
complex and sophisticated ensemble algorithm. De-
spite its complexity, GraBoost stands as one of the
most formidable ensemble methods, particularly dis-
tinguished for its efficacy in elevating classification
performance amidst the challenges posed by imbal-
anced datasets [31].

6) Histogram-based Gradient Boosting (HistGraBoost):
HistGraBoost, an innovative boosting algorithm, ad-
dresses a key limitation of the GB algorithm—lengthy
training times on large datasets. This is remedied
by discretizing continuous input variables, optimizing
efficiency. The critical hyperparameter is the learning
rate, with extensive optimization through multiple
rounds of tuning [33].

7) Extreme Gradient Boosting (XGBoost): XGBoost, a
highly scalable tree boosting system, is renowned
for state-of-the-art performance in machine learning
challenges. Leveraging sparsity-aware techniques and
insights into cache access patterns, data compression,
and sharding, XGBoost excels in efficiency. It out-
performs comparable systems on large datasets while
optimizing resource utilization [34].

8) Light Gradient Boosting Machine (LightGBM):
LightGBM, a robust framework implementing Gra-
dient Boosted Decison Tree (GBDT), emphasizes
efficient parallel training. With features like acceler-
ated training speed, reduced memory consumption,
and support for distribution, LightGBM excels in
accuracy and swift processing of massive datasets
[35].

9) Category Gradient Boosting (CatBoost): CatBoost,
an innovative algorithm, automatically treats categor-
ical features as numerical characteristics. Utilizing
a combination of category features enriches feature
dimensions, while a perfectly symmetrical tree model

reduces overfitting, enhancing accuracy and gen-
eralizability [36]. This categorical-centric approach
positions CatBoost as a sophisticated solution for
handling categorical features within gradient boosting
algorithms.

The strategic evaluation of these ensemble algorithms is
necessary to tackle the intricate challenges posed by imbal-
anced datasets. Section V-A will showcase the preliminary
outcomes that demonstrate the proficiency of each traditional
machine learning algorithm. This will provide an understand-
ing of the factor influences the selection of algorithms in this
research project.

IV. EVALUATION METRICS

The F1-score is crucial in evaluating the effectiveness of the
tree-based ensemble methods used in this work. The F1-score
is instrumental in situations where imbalances are common.
It offers a balanced evaluation that considers the constraints
of accuracy, which can often give too much weight to classes
with a high number of instances or overlook differences within
classes. The decision to prioritize the F1-score as the primary
evaluation metric is based on its inherent insensitivity to class
imbalance. It is a suitable tool for assuring an unbiased and
impartial assessment [37].

The F1-score is mathematically defined in Eq.(3).

F1-score =
2 · precision · recall
precision+ recall

(3)

where precision refers to the measure of how accurate
positive predictions are. It is calculated by dividing the number
of true positive (TP ) by the sum of true positive and false
positive (FP ) predictions. Recall, also known as sensitivity or
the true positive rate, gauges the ability to accurately identify
positive instances, measured as the ratio of true positive (TP )
predictions to the sum of true positive and false negative (FN )
predictions.

The F1-score ranges between 0 and 1, with 1 denoting
optimal performance. A higher F1-score signifies superior
performance, achieving an equilibrium between precision and
recall [38]. This paper also reports the F1-score for each
class to provide insights into class-specific performance. Un-
derstanding how well the model performs for each class is
essential in real-world applications. Beyond complementing
the F1-score per class, we also provided the Weighted F1-
score and the Macro Average F1-score to analyze the overall
performance of the algorithms.

The macro average F1-score assigns equal importance to
each class, so preventing the dominance of larger classes from
overshadowing the performance of smaller ones. Additionally,
it offers valuable insights into the performance of each class
separately, which is particularly useful in situations when
the performance of each class is of utmost importance. The
weighted F1-score enables the allocation of distinct weights
to classes according to their significance, so effectively ad-
dressing imbalances in a manner better to macro averaging.
In this experiment, the weights are allocated according to the
sizes of the classes. Note that this research excludes the use
of micro average F1-score due to its susceptibility to being
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influenced by classes with bigger sizes, which may result in
the performance of smaller classes being disregarded.

The equation for the Weighted F1-score is provided in Eq.
(4), whereas the equation for the Macro Average F1-score is
given in Eq. (5).

Weighted F1-score =

∑
i F1-scorei × Weighti∑

i Weighti
(4)

where F1-scorei is the F1-score for class i, and Weighti is
the weight assigned to class i which refers to the proportion
of instances in class i in the dataset.

Macro Average F1-score =

∑N
i=1 F1-scorei

N
(5)

where F1-scorei is the F1-score for class i and N is the
number of classes.

In addition to the F1-score, we also deliver the results based
on the accuracy value.

Accuracy(%) =
TP + TN

TP + TN + FP + FN
× 100 (6)

where TP + TN denotes the total number of instances
correctly classified in that class, and TP + TN + FP + FN
represent the total number of instances in that class in the
testing dataset.

In summary, the chosen evaluation measures, with the
F1-score as the leading indicator, provide a thorough and
informative insight for evaluating the effectiveness of the
measured algorithms on imbalanced multiclass datasets. The
F1-score enables us to assess the efficacy better. The method
aimed to improve classification performance, especially for
rare classes in real-world situations.

V. RESULTS AND DISCUSSION

A. Preliminary Results

Four machine learning methods from different families
were utilized to train the classifier on the training dataset and
then test it on the testing dataset. The algorithmic selection
consisted of representatives from various families, including
Decision Tree (DT) from the tree-based family, K-nearest
neighbour (KNN) from the instance-based family, Multilayer
Perceptron (MLP) from the functions-based family, and Naive
Bayes (NB) from the Bayesian-based family. The purpose of
this selection process was to identify the most suitable machine
learning algorithm families for tackling the complex task of
multiclass imbalanced classification.

The thorough assessment, as depicted in Tables IV and
V, showcases the results of our study. The performance of
the machine learning algorithms varies considerably across
different attack categories. The Decision Tree (DT) approach
demonstrated the maximum accuracy in the “Generic” class
with 98.31% and the “Normal” class with 91.26%. Neverthe-
less, the Multilayer Perceptron (MLP) exhibited higher accu-
racy in the ”Normal” class with 99.60%. When working with

classes that have a small number of instances, like “Worms”
and “Shellcode,” even a single misclassification might have a
large impact on the accuracy results due to the low size of the
sample. The results show that in overall, the MLP exhibits
inferior accuracy compared to other algorithms, indicating
that it may encounter difficulties handling the complex nature
of specific attack patterns. The mean accuracy for DT is
48.55%; for KNN, it is 31.57%; for MLP, it is 3.08%; and
for NB, it is 16.76% across all attack classes. These results
provide a perspective on the performance of algorithms. Still,
the interpretation should be done carefully, considering the
presence of class imbalances.

The tree-based classifiers, specifically the Decision Tree
(DT) with the highest Weighted F1-score of 0.80, clearly
outperformed the algorithms from other families regarding
overall F1-scores and accuracy. The Weighted F1-score of
KNN is 0.65, which is the second highest among the models.
Naive Bayes is entirely ineffective in detecting Analysis and
Denial of Service (DoS) threats. The KNN, MLP and NB
were facing difficulties in accurately detecting and categorizing
threats such as Analysis, Backdoors, Shellcode, and Worms as
the F1-score for each class is below 0.15. The MLP exhibited
poor results with all classes except for the “Normal” class,
achieving an F1-score of 0.1 or lower. This demonstrates that
the MLP is only capable of recognizing regular network traffic
and lacks the ability to identify network attacks.

The experiment strongly suggests a greater efficacy of
the decision tree, as evidenced by the substantial findings.
Furthermore, a per-class analysis reveals that it surpassed
other traditional algorithms in performance for all classes.
This discovery yields a vital inference: tree-based algorithms
demonstrate superior performance when addressing multiclass
imbalanced classification issues compared to conventional
techniques. This analysis clarifies the reasoning for choosing
tree-based ensemble techniques and explores the further find-
ings.

B. The Evaluation of Tree-based Ensemble Algorithms Perfor-
mance

In this part, we will further investigate the most appropriate
tree-based technique for practical application in the problem
of multiclass imbalanced classification. This analysis is based
on the findings presented in Section V-A and focuses on com-
paring different tree-based ensemble algorithms. This section
offers an extended analysis of the tree-based ensemble algo-
rithms employed in this study. Similar to the previous section
(Section V-A), the selected tree-based ensemble algorithms
were evaluated based on the accuracy, F1-score per class,
Weighted F1-score and Macro Average F1-score as explained
in Section IV.

The tables labelled as VI and VII include valuable in-
formation about how well these ensemble approaches, built
on trees, perform in classifying instances for each category.
XGBoost outperforms other algorithms, demonstrating excep-
tional results across the majority of classes with a classification
accuracy of 50%. However, it is essential to note that there are
outliers within the Analysis, Backdoor, and Denial of Service
(DoS) attack categories. All the algorithms used in this study
exhibit reduced accuracy in those instances.
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TABLE IV. ACCURACY RESULTS FOR FOUR CONVENTIONAL MACHINE LEARNING ALGORITHMS FOR EACH ATTACK CLASS IN UNSW-NB15 DATASET

Attack Number of instances per Accuracy (%)
class classes in test dataset Decision Tree(DT) K-nearest neighbor(KNN) Multilayer Perceptron(MLP) Naive Bayes(NB)

Analysis 803 12.07 2.74 0.62 0.00
Backdoor 699 9.16 0.14 0.29 0.29

DoS 4,906 33.87 30.54 6.38 0.18
Exploits 13,358 73.87 50.94 0.91 2.00
Fuzzers 7,274 58.62 26.23 1.94 21.37
Generic 17,661 98.31 97.42 0.05 97.99
Normal 27,900 91.26 79.73 99.60 45.67

Reconnaissance 4,196 75.92 33.92 0.00 43.07
Shellcode 453 59.02 7.95 0.00 1.33

Worms 52 53.85 0.00 0.00 3.85
Average 48.55 31.57 3.08 16.76

TABLE V. F1-SCORE RESULTS FOR FOUR CONVENTIONAL MACHINE LEARNING ALGORITHMS FOR EACH ATTACK CLASS IN UNSW-NB15 DATASET

Attack Number of instances per F1-scores
class classes in test dataset Decision Tree(DT) K-nearest neighbor(KNN) Multilayer Perceptron(MLP) Naive Bayes(NB)

Analysis 803 0.17 0.05 0.01 0.00
Backdoor 699 0.15 0.00 0.01 0.01

DoS 4,906 0.33 0.30 0.10 0.00
Exploits 13,358 0.69 0.43 0.02 0.04
Fuzzers 7,274 0.61 0.30 0.04 0.25
Generic 17,661 0.99 0.98 0 0.64
Normal 27,900 0.91 0.78 0.54 0.61

Reconnaissance 4,196 0.82 0.49 0.00 0.15
Shellcode 453 0.59 0.12 0.00 0.02

Worms 52 0.47 0.00 0.00 0.01
Macro Average F1-score 0.63 0.31 0.06 0.16

Weighted F1-score 0.80 0.65 0.21 0.40

For the Analysis class, RF, XGBoost, and Bagging perform
better than other models, attaining the highest F1-scores of
0.19. The F1-scores for DT and ExtraTree are both 0.17.
XGBoost outperforms other models in terms of F1-score with a
value of 0.17 for the Backdoor class. Bagging, Decision Trees
(DT), and Random Forest (RF) exhibit similar performance,
with F1-scores almost equal to 0.16. ExtraTree and DT demon-
strate the most robust performance in terms of F1-score (0.33)
for the DoS attack. Bagging and Random Forest (RF) perform
strongly, achieving F1-scores ranging from 0.30 to 0.33. We
found that XGBoost and CatBoost achieved the highest F1-
score of 0.74 in the Exploit class. Other methods such as
Bagging, RF, ExtraTree, GraBoost, and HistGraBoost produce
comparable scores ranging from 0.72 to 0.73. For Fuzzer
attacks, Bagging demonstrates the most significant F1-scores,
precisely 0.66. Other algorithms, such as Random Forest
(RF) and ExtraTree, attain scores about equal to 0.65. The
results also show that most algorithms perform exceptionally
in categorizing generic traffic, as evidenced by their high F1-
scores of approximately 0.99. For Normal traffic, the results
show that XGBoost, Bagging, RF, and ExtraTrees exhibit the
most outstanding F1-scores of 0.93. Bagging and XGBoost
achieve the highest F1-scores for the Reconnaissance and
Shellcode classes, with 0.84 and 0.69, respectively. Regarding
the class with the smallest number of samples, Worms, it is
observed that XGBoost attains the highest F1-scores, precisely
0.63.

The F1-score data shown in Table VI demonstrates that
advanced ensemble approaches, namely Bagging, Random
Forest, XGBoost, and ExtraTrees, exhibited superior perfor-
mance compared to the conventional Decision Tree. Bagging,
Random Forest, XGBoost, and ExtraTree obtained the highest

Weighted F1-score. Bagging attains its highest macro average
F1-score of 0.63, denoting outstanding overall performance.
Additional algorithms, such as XGBoost and DT, exhibit
similar performance with macro F1-scores ranging from 0.60
to 0.63. Bagging, Random Forest, ExtraTrees, and XGBoost
demonstrate superior performance in addressing imbalanced
classes, as evidenced by their highest weighted F1-scores
of 0.82. Several other algorithms, such as DT, GraBoost,
HistGraBoost, LightGBM, and CatBoost, achieve weighted
F1-scores in the range of 0.79−0.80. The weighted F1-score
offers a more accurate evaluation by taking into account both
the performance of each class and the distribution of classes.

The results suggest that the algorithm’s efficacy is signif-
icantly influenced by the distinctive properties of each class,
thereby necessitating an understanding of attack characteris-
tics. After analyzing Table VII, it is evident that XGBoost
emerges as the most robust choice, outperforming all other
tree-based ensemble algorithms by attaining the highest F1-
score for eight out of ten classes. While Bagging demonstrates
comparable Weighted F1-scores and Macro Average F1-scores,
an in-depth analysis indicates that XGBoost surpasses in par-
ticular categories (except for DoS and Fuzzers). Furthermore,
the accuracy results presented in Table VIII conclusively
indicate that XGBoost exceeded other algorithms in terms of
accuracy, with Bagging being an equally strong candidate.

The data presented in this paper suggest that XGBoost and
Bagging is the best tree-based ensemble method for multiclass
imbalanced classification in the particular scenario of network
attack detection. The study’s results emphasize the algorithm’s
effectiveness in tackling the difficulties posed by imbalanced
datasets, making it a highly appropriate choice for practical
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TABLE VI. F1-SCORE RESULTS FOR DECISION TREE AND NINE TREE-BASED ENSEMBLE MACHINE LEARNING ALGORITHMS FOR EACH ATTACK CLASS
IN THE UNSW-NB15 DATASET

Attack Number of instances per F1-scores
class classes in test dataset DT Bagging RF ExtraTree AdaBoost GraBoost HistGraBoost XGBoost LightGBM CatBoost

Analysis 803 0.17 0.19 0.19 0.17 0.11 0.08 0.13 0.19 0.13 0.09
Backdoor 699 0.16 0.16 0.16 0.15 0.01 0.12 0.14 0.17 0.09 0.12

DoS 4,906 0.33 0.32 0.30 0.33 0.08 0.12 0.08 0.20 0.25 0.17
Exploits 13,358 0.69 0.72 0.72 0.72 0.22 0.72 0.73 0.74 0.70 0.74
Fuzzers 7,274 0.61 0.66 0.65 0.65 0.29 0.58 0.52 0.64 0.59 0.61
Generic 17,661 0.99 0.99 0.99 0.99 0.93 0.99 0.99 0.99 0.99 0.99
Normal 27,900 0.91 0.93 0.93 0.93 0.60 0.91 0.91 0.93 0.90 0.92

Reconnaissance 4,196 0.82 0.84 0.83 0.82 0.51 0.83 0.83 0.84 0.80 0.83
Shellcode 453 0.61 0.69 0.67 0.64 0.39 0.65 0.53 0.69 0.52 0.61

Worms 52 0.47 0.62 0.20 0.20 0.01 0.17 0.14 0.63 0.13 0.17
Macro Average F1-score 0.60 0.63 0.59 0.58 0.33 0.54 0.53 0.62 0.54 0.55

Weighted F1-score 0.80 0.82 0.82 0.82 0.53 0.79 0.79 0.82 0.79 0.80

TABLE VII. ALGORITHMS WITH HIGHEST F1-SCORE PER CLASS

Class DT Bagging RF ExtraTree AdaBoost GraBoost HistGraBoost XGBoost LightGBM CatBoost
Analysis ✓(0.19) ✓(0.19) ✓(0.19)
Backdoor ✓(0.17)

DoS ✓(0.33) ✓(0.33)
Exploits ✓(0.74) ✓(0.74)
Fuzzers ✓(0.66)
Generic ✓(0.99) ✓(0.99) ✓(0.99) ✓(0.99) ✓(0.99) ✓(0.99) ✓(0.99) ✓(0.99)
Normal ✓(0.93) ✓(0.93) ✓(0.93) ✓(0.93)

Reconnaissance ✓(0.84) ✓(0.84) ✓(0.83)
Shellcode ✓(0.69) ✓(0.69)

Worms ✓(0.63)

implementation in cybersecurity and network intrusion detec-
tion.

VI. CONCLUSION AND FUTURE WORKS

The findings indicate that tree-based ensemble methods,
including Bagging, Random Forest, XGBoost, and ExtraTrees,
have achieved a high Weighted F1-score, despite the constraint
of an imbalanced training dataset. These qualities make them
very suitable for identifying network intrusions in the UNSW-
NB15 dataset. XGBoost surpassses other tree-based algorithms
in terms of per-class F1-scores, which is a useful performance
measure for addressing multiclass imbalance problems. Never-
theless, the overall accuracy of XGBoost is about equivalent to
that of Bagging. These findings confirm that XGBoost is the
most effective approach for addressing multiclass imbalance
classification, with Bagging being the most viable option. In
summary, the results highlight the effectiveness of Decision
Tree (DT) and tree-based ensemble algorithms in handling the
problem of imbalanced multi-class datasets.

This study has offered valuable insights into the efficacy
of tree-based ensemble algorithms for multiclass imbalanced
classification in network intrusion detection. However, it is
crucial to recognise the underlying constraints and difficulties.
Although ensemble strategies have been used to address class
imbalance, the problem persists. The disproportionate alloca-
tion of classes, specifically pertaining to minority categories
such as Analysis, Backdoor, and Denial of Service (DoS), still
poses substantial difficulties in detecting these classes.

Beyond the difficulties and constraints, the outcomes pro-
vide a solid groundwork for future studies in this domain.
Further investigations into feature engineering, advanced sam-
pling approaches, or algorithmic adaptations that can effec-
tively improve the identification of minority class occurrences

should be conducted. More advanced algorithms with adaptive
sampling capable of dealing with data changes over time are
likely needed. These efforts are necessary for creating resilient
and flexible solutions to address the constantly evolving cyber-
attack scenario.

Future research must consider developing and using
domain-specific evaluation metrics that improve the interpreta-
tion of algorithmic performance in situations with imbalances
across many classes. This evaluation metric should surpass
conventional performance metrics such as the F1-score. It
should provide a comprehensive assessment considering the
trade-off between false positives and false negatives in various
domains. This will result in a more thorough evaluation of
performance.
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[11] I. Fosić, D. Žagar, and K. Grgić, “Network traffic verification based on a
public dataset for ids systems and machine learning classification algo-
rithms,” in 2022 45th Jubilee International Convention on Information,
Communication and Electronic Technology (MIPRO), pp. 1037–1041,
2022.

[12] N. Abedzadeh and M. Jacobs, “A survey in techniques for imbalanced
intrusion detection system datasets,” International Journal of Computer
and Systems Engineering, vol. 17, no. 1, pp. 9 – 18, 2023.

[13] M. Kim and K.-B. Hwang, “An empirical evaluation of sampling
methods for the classification of imbalanced data,” PLoS One, vol. 17,
no. 7, p. e0271260, 2022.

[14] R. Raj and S. Singh Kang, “Mitigating ddos attack using machine learn-
ing approach in sdn,” in 2022 4th International Conference on Advances
in Computing, Communication Control and Networking (ICAC3N),
pp. 462–467, 2022.

[15] P. S. Patil, S. L. Deshpande, G. S. Hukkeri, R. H. Goudar, and
P. Siddarkar, “Prediction of ddos flooding attack using machine learning
models,” in 2022 Third International Conference on Smart Technologies
in Computing, Electrical and Electronics (ICSTCEE), pp. 1–6, 2022.

[16] M. A. Talukder, K. F. Hasan, M. M. Islam, M. A. Uddin, A. Akhter,
M. A. Yousuf, F. Alharbi, and M. A. Moni, “A dependable hybrid
machine learning model for network intrusion detection,” Journal of
Information Security and Applications, vol. 72, p. 103405, 2023.

[17] S. K. Naing and T. T. Thwel, “A study of ddos attack classification using
machine learning classifiers,” in 2023 IEEE Conference on Computer
Applications (ICCA), pp. 108–112, 2023.

[18] V. Santhi, J. Priyadharshini, M. Swetha, and K. Dhanavandhana, “A
hybrid feature extraction method with machine learning for detecting
the presence of network attacks,” in 2023 International Conference on

Intelligent Systems for Communication, IoT and Security (ICISCoIS),
pp. 454–459, 2023.

[19] R. Wen and K. Zhang, “Research on automated classification method
of network attacking based on gradient boosting decision tree,” in
2022 International Conference on Machine Learning and Knowledge
Engineering (MLKE), pp. 72–76, 2022.

[20] F. Shakeel, A. S. Sabhitha, and S. Sharma, “Exploratory review on
class imbalance problem: An overview,” in 8th International Conference
on Computer Communications and Networks Technologies (ICCCNT),
2017.

[21] N. Elmrabit, F. Zhou, F. Li, and H. Zhou, “Evaluation of machine
learning algorithms for anomaly detection,” in International Conference
on Cyber Security and Protection of Digital Services (Cyber Security),
pp. 1–6, 2020.

[22] D. Kurniabudi, D. Stiawan, M. Y. Bin Bin Idris, A. M. Bamhdi, and
R. Budiarto, “Improving the anomaly detection by combining pso search
methods and j48 algorithm,” IEEE Explore for Emerging Cyber Security
and Information Systems, pp. 119–126, 2020.

[23] D. Kurniabudi, D. Stiawan, M. Y. Bin Bin Idris, A. M. Bamhdi, and
R. Budiarto, “Cicids-2017 dataset feature analysis with information gain
for anomaly detection,” IEEE Access, vol. 8, pp. 132911–132921, 2020.

[24] N. Ali, D. Neagu, and P. Trundle, “Evaluation of k-nearest neighbour
classifier performance for heterogeneous data sets,” SN Applied Sci-
ences, vol. 1, pp. 1–15, 2019.

[25] P. K. Syriopoulos, N. G. Kalampalikis, S. B. Kotsiantis, and M. N.
Vrahatis, “k nn classification: a review,” Annals of Mathematics and
Artificial Intelligence, pp. 1–33, 2023.

[26] E. Y. Boateng, J. Otoo, and D. A. Abaye, “Basic tenets of classification
algorithms k-nearest-neighbor, support vector machine, random forest
and neural network: a review,” Journal of Data Analysis and Informa-
tion Processing, vol. 8, no. 4, pp. 341–357, 2020.

[27] H. Taud and J. Mas, “Multilayer perceptron (mlp),” Geomatic ap-
proaches for modeling land change scenarios, pp. 451–455, 2018.

[28] Q. Jiang, L. Zhu, C. Shu, and V. Sekar, “Multilayer perceptron neural
network activated by adaptive gaussian radial basis function and its
application to predict lid-driven cavity flow,” Acta Mechanica Sinica,
pp. 1–16, 2021.

[29] A. H. Jahromi and M. Taheri, “A non-parametric mixture of gaussian
naive bayes classifiers based on local independent features,” in 2017 Ar-
tificial Intelligence and Signal Processing Conference (AISP), pp. 209–
212, 2017.

[30] R. D. Raizada and Y.-S. Lee, “Smoothness without smoothing: why
gaussian naive bayes is not naive for multi-subject searchlight studies,”
PloS one, vol. 8, no. 7, p. e69566, 2013.

[31] J. Brownlee, Machine Learning Mastery with Python: Understand
Your Data, Create Accurate Models and Work Projects End-To-End.
v1.19 ed., 2020.

[32] R. Saravanan and P. Sujatha, “A state of art techniques on machine
learning algorithms: A perspective of supervised learning approaches in
data classification,” in 2019 2nd International Conference on Intelligent
Computing and Control Systems (ICICCS), pp. 945–949, 2019.
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