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Abstract—This research investigates the escalating issue of
adversarial attacks on neural networks within AI security, specif-
ically targeting image recognition using the MNIST dataset. Our
exploration centered on the potential of a combined approach
incorporating feature masking and gradient manipulation to
bolster adversarial defense. The main objective was to evaluate
the extent to which this integrated strategy enhances network
resilience against such attacks, contributing to the advancement
of more robust AI systems. In our experimental framework, we
utilized a conventional neural network architecture, integrating
various levels of feature masking alongside established training
protocols. A baseline model, devoid of feature masking, func-
tioned as a comparative standard to gauge the efficacy of our
proposed technique. We assessed the model’s performance in
standard scenarios as well as under Fast Gradient Sign Method
(FGSM) adversarial assaults. The outcomes provided significant
insights. The baseline model demonstrated a high test accuracy
of 98% on the MNIST dataset, yet it showed limited resistance
to adversarial incursions, with accuracy diminishing to 60% un-
der FGSM onslaughts. Conversely, models incorporating feature
masking exhibited a reciprocal relationship between masking
proportion and accuracy, counterbalanced by an enhancement in
adversarial resilience. Specifically, a 10% masking ratio achieved
a 96% accuracy rate coupled with a 75% robustness against
attacks, a 30% masking led to a 94% accuracy with an 80%
robustness level, and a 50% masking threshold resulted in a
92% accuracy, attaining the apex of robustness at 85%. These
results affirm the efficacy of feature masking in augmenting
adversarial defense, highlighting a pivotal equilibrium between
accuracy and resilience. The study lays the groundwork for
further investigations into refined masking methodologies and
their amalgamation with other defensive strategies, potentially
broadening the scope of neural network security against adver-
sarial threats. Our contributions are significant to the realm of
AI security, showcasing an effective strategy for the development
of more secure and dependable neural network frameworks.
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I. INTRODUCTION

Enhancing adversarial defense in neural networks, partic-
ularly for image recognition tasks like those involving the
MNIST dataset, can be effectively addressed by integrating
feature masking and gradient manipulation. This combined
approach leverages the strengths of both methods to fortify
the network against adversarial attacks.

Feature Masking: This technique modifies or conceals
certain features in the input data. In the context of the MNIST
dataset, which comprises images of handwritten digits, feature
masking could involve partially obscuring these digits. This

strategy prevents the neural network from becoming overly
reliant on specific features, thus reducing its vulnerability
to adversarial attacks. Research has shown that diversifying
the features used by a model for classification enhances its
robustness [18][19][20].

Gradient Manipulation: Neural networks adjust their pa-
rameters based on the gradient of the error relative to their
current parameters. Adversarial attacks often manipulate these
gradients to deceive the model. Altering the gradients, through
methods like noise addition, modification, gradient clipping,
or smoothing, can make the network less susceptible to minor
input variations typical in adversarial attacks [5][12].

By combining feature masking and gradient manipulation,
a more resilient defense against adversarial attacks can be
achieved. Feature masking ensures the model does not fixate
on certain input features, and gradient manipulation renders the
learning process less predictable and more resistant to gradient-
based adversarial methods. This holistic approach is crucial
for tasks like the MNIST dataset, where inputs are relatively
simple and uniform, necessitating a robust and generalizable
model.

The fundamental challenge lies in the vulnerability of neu-
ral networks to adversarial perturbations. Adversarial attacks
exploit the model’s reliance on specific features and manipulate
gradients during the learning process, leading to misclassifica-
tions. The aim of this research is to fortify neural networks
against such attacks, particularly in the context of the MNIST
dataset, by integrating feature masking and gradient manip-
ulation. This paper discusses the importance of diversifying
features to prevent overreliance on specific aspects of the input
data and explores various gradient manipulation techniques,
such as noise addition, modification, gradient clipping, or
smoothing, and their potential to enhance model resilience
[13][14][15][16].

Also the synergistic effects of integrating feature masking
and gradient manipulation for a more comprehensive defense
strategy are studies to see the impact of combining feature
masking and gradient manipulation in creating a holistic
defense mechanism against adversarial threats. This research
aims to contribute to the development of robust neural network
models, particularly for image recognition tasks like those
involving the MNIST dataset. By addressing the vulnerability
of neural networks to adversarial attacks through the combined
approach of feature masking and gradient manipulation, the
proposed methodology seeks to enhance the overall security
and reliability of image recognition systems.As the field of
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neural network security advances, it becomes imperative to
devise comprehensive defense strategies. This paper introduces
a novel approach that leverages feature masking and gradient
manipulation to fortify neural networks against adversarial
attacks, with a specific focus on image recognition tasks using
the MNIST dataset. The research questions and objectives
outlined in this paper guide the investigation into the ef-
fectiveness of this combined approach, aiming to contribute
to the ongoing efforts in enhancing the security of neural
networks in practical applications. The objective of the our
research is to investigate the effectiveness of feature mask-
ing in preventing neural networks from fixating on specific
features in the MNIST dataset. Describes the experimental
setup for evaluating feature masking and its impact on model
fixation,explore various gradient manipulation techniques to
render the learning process less predictable and more resistant
to adversarial attacks and to evaluate the combined approach of
feature masking and gradient manipulation in creating a more
resilient defense against adversarial attacks on neural networks
trained on the MNIST dataset. Significance of the our research
highlights the contribution of the proposed methodology in
advancing the field of neural network security, particularly
in the context of image recognition tasks. Emphasizes the
potential impact on real-world applications and the broader
implications for enhancing the reliability of neural network
systems. This research article establishes itself as a cornerstone
in advancing neural network security, presenting a holistic
and innovative approach that transcends the immediate context
of the MNIST dataset. The integrated feature masking and
gradient manipulation methodology stands as a transformative
blueprint for enhancing the security and reliability of neural
network systems, with broad applications across diverse do-
mains.

II. BACKGROUND AND MOTIVATION

Evolution of Neural Networks: Neural networks have
evolved remarkably over the last few decades, becoming more
complex and powerful. They are particularly adept at image
recognition tasks, outperforming traditional algorithms in most
benchmarks.Rise of Adversarial Attacks: With the growing
reliance on neural networks, their susceptibility to adversarial
attacks has become evident. An adversarial attack involves
subtly altering the input data (like images) in a way that
leads the network to make incorrect predictions or classifi-
cations, while the changes remain imperceptible to the human
eye.The MNIST dataset, comprising hand-written digits, is a
foundational benchmark in the field of machine learning for
image recognition tasks[21][35]. The simplicity and uniformity
of this dataset make it an ideal testbed for studying neural
network behaviors, including their vulnerability to adversar-
ial attacks.The primary motivation is to ensure the security
and reliability of neural networks in critical applications.
In contexts like medical diagnosis, autonomous driving, or
facial recognition, the consequences of erroneous decisions
due to adversarial attacks can be severe.Improving adversarial
defense helps in understanding the limitations and weak-
nesses of current neural network models. This understanding
is crucial for developing more robust and generalizable AI
systems.Enhancing adversarial defense aligns with the broader
goals of AI safety and ethics. It ensures that AI systems
perform reliably and safely, even in the presence of poten-

tially malicious inputs.Addressing the challenge of adversarial
attacks inspires new research directions in neural network
architecture design, training methodologies, and general AI
robustness.As AI becomes more pervasive, regulatory bodies
are increasingly focusing on the robustness and security of AI
systems. Enhancing adversarial defense is thus also motivated
by the need to comply with emerging regulations and standards
in AI governance. The drive to enhance adversarial defense
in neural networks is fueled by the need for secure, reliable,
and ethical AI systems, particularly in applications where the
stakes are high. The MNIST dataset serves as a fundamental
platform for testing and developing these enhancements due
to its simplicity and widespread use in the AI community.

III. RELATED WORK

In recent times, the security of machine learning models
has been increasingly threatened by a phenomenon known as
adversarial attacks. These attacks cleverly manipulate the mod-
els by introducing subtle, often undetectable alterations, known
as ”adversarial examples”. These alterations are designed to
mislead the models into making erroneous predictions. In
response to this critical issue, the scientific community has
been proactive in devising a range of defensive strategies to
mitigate the risks posed by these attacks.

A. Machine Learning Security

In the field of machine learning security, recent research
has introduced innovative methods to counteract adversarial
attacks.

Frequency Domain Analysis (FDA), a technique that ad-
vances the principles of Spectral Signature Matching (SSM).
FDA analyzes the frequency components of both input data and
gradients, showcasing heightened sensitivity in detecting subtle
adversarial perturbations. This method marks a significant
improvement over traditional SSM approaches, particularly in
identifying less perceptible adversarial attacks[33].

Complementing FDA, Outlier Detection with Autoencoders
(ODAE), which employs autoencoders to reconstruct what
is considered clean data. Adversarial examples, characterized
by significant reconstruction errors, are effectively identified
by ODAE. This method emphasizes a data-driven approach
in anomaly detection, harnessing the distinct reconstruction
capabilities of autoencoders [32].

Another novel approach with Explainable Gradient Consis-
tency (EGC). EGC merges Interpretable Gradient Consistency
(IGC) with interpretable saliency maps, thus enabling the
identification of specific regions in input data that have been
manipulated in adversarial examples. EGC stands out for its
transparency and fairness in the detection process, offering
visual explanations for identified adversarial inputs. Together,
these methods represent significant strides in the ongoing
effort to secure machine learning models against sophisticated
adversarial threats [22].

Concentrating on adversarial training, the regularization
into Graph Neural Networks (GNNs) by considering the
inherent structure of the underlying graph. The potential of
adversarial training in bolstering the robustness of GNNs. The
robustness of GNNs and offers a comprehensive overview
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of current research on adversarial attacks, providing valuable
insights into both challenges and opportunities for fortifying
GNN security. Emphasizing the necessity for collaborative
efforts among experts in graph theory, machine learning, and
cybersecurity, the study underscores the intricate challenges
presented by adversarial attacks on GNNs. Bridging this
interdisciplinary gap holds the promise of developing more
thorough and effective defense mechanisms [37].

In the evolving landscape of machine learning security,
recent studies have introduced innovative approaches to en-
hance model robustness against adversarial attacks. A method
that involves pruning weights that are particularly sensitive
to adversarial perturbations during the training phase. This
technique aims to improve the model’s robustness without
incurring a significant loss in accuracy. By selectively elim-
inating weights that contribute to vulnerabilities, the model
becomes more resilient to adversarial manipulations [25].

In a different approach, focused on training models with
adversarial examples that are generated from a diverse set of
pre-trained models. This strategy significantly enhances the
model’s ability to generalize and defend against a wide range
of unseen adversarial attacks. The diversity in the training
process ensures that the model is exposed to a wide spectrum
of potential threats, thereby fortifying its defenses [26].

A method that employs an ensemble of models with dy-
namically adjusted weights. These weights are calibrated based
on adversarial confidence scores, which enables the ensemble
to adaptively respond to varying degrees of adversarial threats.
This method not only improves the robustness of the model
but also its adaptability, allowing it to effectively counteract
evolving adversarial tactics [10].

Collectively, these studies represents the significant con-
tributions to the field, offering novel strategies to strengthen
machine learning models against the continuously advancing
nature of adversarial attacks [25][26][31].

The field of adversarial attack mitigation in machine learn-
ing continues to evolve with innovative strategies. A method
specifically targeting the mitigation of Carlini and Wagner at-
tacks through a technique known as Feature Disentanglement.
This approach involves separating the features that are essential
for the task prediction from those that are susceptible to adver-
sarial manipulations. By isolating and protecting the vulnerable
features, this method effectively counters the sophisticated
mechanisms employed in Carlini and Wagner attacks. This
separation not only enhances the model’s resistance to these
specific types of attacks but also maintains the integrity and
effectiveness of the model in its primary predictive tasks [22].

In a parallel development, a defense mechanism against
DeepFool attacks, employing a technique termed Adaptive
Smoothing. This method involves applying a smoothing filter
to the input data, which essentially blurs the potential points of
attack. By doing so, it becomes significantly more challenging
for DeepFool attacks to precisely alter the input data in a
way that misleads the model. The key advantage of Adaptive
Smoothing is its ability to mitigate attacks without compromis-
ing the fidelity of the clean data. This ensures that the model’s
performance on legitimate data is not adversely affected while
enhancing its resilience against these adversarial attacks [22].

Together, the methods developed represents significant ad-
vancements in safeguarding machine learning models. They
address the dual need of maintaining model accuracy and
robustness against increasingly sophisticated adversarial at-
tacks, thus contributing to the overall reliability and security
of machine learning systems [8].

The susceptibility of deep learning models lacks emphasis
on fostering interdisciplinary collaboration. Closing the gap
between machine learning experts, security researchers, and
domain-specific professionals is vital for crafting holistic ad-
versarial defense strategies.To address these gaps, the research
community needs to delve deeper into the intricate chal-
lenges of adversarial attacks. This involves considering diverse
application contexts and constructing adaptive, interpretable,
and collaborative defense mechanisms. Integration of technical
expertise across disciplines is essential for developing compre-
hensive strategies that mitigate adversarial threats effectively
[38].

Utilizing formal verification techniques to mathematically
prove the robustness of models against specific attack types
offers a promising direction for future research. Incorporating
human expertise into detection and mitigation strategies can
enhance defense effectiveness, particularly against novel at-
tacks. Evolving Attack Landscape: Continuous adaptation and
improvement of defense mechanisms are crucial as attackers
develop new and more sophisticated techniques.

A method that focuses on the logit outputs, which are the
model’s raw predictions before the final activation function
like softmax. This method detects adversarial examples by
comparing the logit outputs for both the original and the
perturbed samples. A significant discrepancy in these logits
is indicative of a potential adversarial attack. This approach
is particularly effective as it doesn’t just rely on the final
prediction but probes deeper into the model’s processing,
making it a more nuanced way to detect subtle adversarial
manipulations [1][4].

A defense mechanism leveraging the capabilities of
Meshed Tensorflow. This advanced framework is utilized to
compute gradients in a way that efficiently detects adversarial
examples. The strength of this method lies in its high accu-
racy, as Meshed Tensorflow allows for a more intricate and
detailed analysis of the gradients, which are key to identifying
adversarial perturbations [2].

The methods that transform input data into a space where
the model exhibits increased robustness to adversarial perturba-
tions. Techniques such as random cropping, color jittering, and
various forms of data augmentation are employed to achieve
this. These transformations effectively create a more complex
training environment, teaching the model to focus on the
most relevant features and thereby reducing its sensitivity to
adversarial modifications [3].

B. FGSM Attack

The need for sophisticated defenses against stronger at-
tacks. This includes ensemble methods or robust optimization
techniques, which are essential to withstand these advanced
adversarial methods.Many defense methods struggle to gen-
eralize against novel or varied attack types. It’s crucial for
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defenses to be evaluated against a diverse array of attacks
to ensure their effectiveness in real-world scenarios.Some de-
fense mechanisms require significant computational resources
or memory. Balancing efficiency with effectiveness is vital,
especially in practical applications where resources may be
limited [28].

The field of adversarial defense is characterized as an
ongoing race between attackers and defenders. Continuously
developing new, robust defense mechanisms is essential to
stay ahead of increasingly sophisticated attacks.Choosing the
most appropriate defense strategy depends on various factors,
including the type of attack, the specific model architecture
in use, and the desired balance between accuracy and robust-
ness.While significant strides have been made in developing
defenses against adversarial attacks, the field remains dynamic
and challenging, with a constant need for innovation and
adaptation to new threats.

SSM, focuses on analyzing the power spectrum of both
the input and its gradient. Adversarial noise often disrupts the
natural data patterns, which can be detected using SSM. This
method is particularly effective in identifying subtle noise that
deviates from the expected spectral characteristics of legitimate
data [6].

Input Gradient Consistency, IGC checks for the consis-
tency of gradients across different input channels. Adversarial
manipulations, which typically introduce inconsistencies in
these gradients, are effectively flagged by IGC. This method
hinges on the premise that legitimate inputs would maintain
a certain level of gradient consistency, unlike their adversarial
counterparts [7].

Kernel Deep Density Estimators (K-DDEs), learn the un-
derlying distribution of the data and are adept at identifying
outliers indicative of adversarial perturbations. This approach
is grounded in statistical learning and provides a robust way to
detect anomalies that stray from the learned data distribution
[8].

A research on DAT involves training the model with a
diverse set of adversarial examples. This enhances the model’s
resilience to future attacks by exposing it to a wide range of
potential adversarial tactics during the training phase [9].

C. Generative Adversarial Attack (GAN)

A method that co-trains the model alongside a GAN, which
generates realistic adversarial examples. This joint training
enables the model to better distinguish between legitimate and
adversarial inputs, thereby improving its robustness [2].

MAT, which utilizes meta-learning algorithms to develop
a generalizable strategy for adapting to various types of
adversarial attacks. This approach allows models to quickly
adapt to new and unseen adversarial tactics based on learned
meta-strategies. Each of these methods contributes to a more
comprehensive and multi-faceted approach to defending ma-
chine learning models against the ever-evolving landscape of
adversarial attacks, focusing on both preemptive training and
active detection to enhance model robustness and security [11].

A method that utilizes multi-scale gradient filtering to
defend against DeepFool attacks. This approach focuses on

modifying the gradient information at multiple scales, effec-
tively mitigating the impact of these attacks. A key advantage
of this method is its ability to preserve the fidelity of the input
data, ensuring that the defensive process does not degrade the
quality of legitimate inputs [30].

Certified robustness methods, aiming to guarantee model
robustness against adversarial examples within specific norm
bounds. These methods provide a mathematical assurance of
robustness, offering a more reliable and quantifiable defense
against adversarial manipulations [2][10][17][27][31][36].

A novel feature pruning technique to enhance the efficiency
of adversarial training. By pruning less relevant features, this
technique reduces the computational cost associated with train-
ing models on adversarial examples, while still maintaining a
high level of robustness against attacks [23][32][37].

The concept of ensemble learning, utilizing a collection
of diversified models to improve the detection and mitigation
of adversarial examples. This approach bases its defense on
the confidence scores from different models, enhancing the
overall accuracy and reliability of detecting adversarial attacks
[22][24][29][33][38].

Wasserstein distance divergence in the generation of ad-
versarial examples. This method produces more diverse and
realistic adversarial inputs for robust training, thereby improv-
ing the model’s generalizability to unseen attacks. The use
of Wasserstein distance helps in creating more challenging
and varied adversarial scenarios, which is crucial for com-
prehensive and effective adversarial training. Each of these
studies contributes uniquely to the field of adversarial defense,
showcasing the diverse range of approaches being developed
to safeguard machine learning models against the continuously
advancing techniques of adversarial attacks [34].

Despite significant advancements in adversarial defense
mechanisms for machine learning models, there remain chal-
lenges in developing universally robust, computationally ef-
ficient, and adaptable defense strategies that can effectively
counter a wide range of adversarial attacks, including novel
and sophisticated ones.

IV. METHODOLOGY

The MNIST dataset is a collection of grayscale images of
handwritten digits (0 through 9). Each image is 28 pixels in
height and 28 pixels in width, resulting in a 2D array of pixel
values representing the digit.

Let X ∈ RM×N represent an image in the MNIST dataset.
Here, M is the height of the image (number of rows), and N
is the width of the image (number of columns). Each element
Xij of the matrix X corresponds to the intensity value of the
pixel at row i and column j. The intensity values are real
numbers in the range of 0 to 255, where 0 represents black
(no intensity) and 255 represents white (maximum intensity).
The intensity values are typically integers ranging from 0 to
255, with 0 being completely dark and 255 being fully illumi-
nated. This grayscale representation captures the variations in
pixel intensity without considering color information. - Xij :
Intensity value of the pixel at row i and column j. - M :
Height of the image (number of rows). - N : Width of the
image (number of columns). - Each image in the MNIST
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dataset is essentially a 2D grid of pixels, forming a matrix
X . - The grayscale intensity values provide information about
the darkness or brightness of each pixel. - The size of the
matrix (M ×N ) is fixed for all images in the MNIST dataset
(28x28 pixels). - This representation is suitable for machine
learning algorithms that can learn patterns and features from
the pixel values to recognize handwritten digits.

- If X12 = 150, it means the pixel at the 1st row and 2nd
column has an intensity value of 150, which corresponds to a
shade of gray.

Understanding the input data representation is crucial for
preprocessing and feeding the data into machine learning
models to effectively learn and make predictions based on the
patterns within these pixel values.

A. Feature Masking Process

1) Setting pixels to constant value: This can be achieved
by setting pixel values in specific regions to a constant value.
For example, you can set a rectangular region of the image to
0 or 255. Mathematically:

X ′
ij =

{
c if (i, j) is in the masked region
Xij otherwise

(1)

Here, X ′
ij represents the modified pixel value, and c is the

constant value.

2) Applying filters: Filters, such as blurring or distortion
filters, can be applied to certain areas of the image. Let F be
a filter matrix, and ∗ denotes the convolution operation. The
masked image can be obtained as:

X ′ = X ∗ F (2)

3) Dropout: Dropout is a technique where certain pixels
are randomly set to zero during training. Mathematically:

X ′
ij = Xij ·Mij (3)

where Mij is a binary mask with elements randomly set to 0
or 1.

B. Reducing Dependency on Specific Features

Feature masking disrupts the input data in a controlled
manner, preventing the neural network from relying too heavily
on specific pixels for classification. During feature masking,
specific pixels are modified or set to constant values, introduc-
ing controlled perturbations to the input data. Mathematically,
this disruption is represented by modifying the pixel values,
such as in the setting pixels to a constant value or applying
filters.The controlled disruption reduces the model’s depen-
dence on individual pixel values, promoting a more generalized
understanding of the features in the data. By reducing the
network’s reliance on specific pixels, the model becomes less
sensitive to noise or variations in those pixels.This helps
the model focus on more relevant features, leading to better
generalization on unseen data. Particularly useful in scenarios
where certain pixels may be subject to noise or variations that
are not indicative of the overall pattern.

C. Regularization Effect

Feature masking acts as a form of regularization during
training, preventing overfitting and encouraging the model to
learn more robust and generalizable features. The disruption in-
troduced by feature masking, such as setting pixels to constant
values or applying filters, adds noise to the training process.
This regularization effect is achieved by modifying the input
data in a controlled manner. During dropout, random zeros are
introduced in the input, preventing the network from relying
too heavily on specific pixel values. Regularization helps
prevent overfitting, where the model memorizes training data
rather than learning the underlying patterns.Feature masking
introduces a level of uncertainty, forcing the model to be more
flexible and less prone to memorizing noise.The regularization
effect contributes to a more robust model that performs well
on unseen data. Feature masking disrupts the input data in a
controlled manner, preventing the neural network from relying
too heavily on specific pixels for classification. Feature mask-
ing acts as a form of regularization during training, preventing
overfitting and encouraging the model to learn more robust and
generalizable features.

D. Promoting Invariance

Feature masking encourages the neural network to be
invariant to certain changes in the input, making it more
resilient to variations in irrelevant features. Let x be the
input image represented as a matrix of pixel values. Feature
masking is performed by applying a masking function M(x)
to x.The masking function selectively alters or ignores certain
pixel values in x, promoting invariance to those specific
changes.Mathematically, the result of this operation is repre-
sented as:

y = M(x)

where y is the masked image. Feature masking aims to make
the neural network less sensitive to variations in specific
regions or features of the input image. The masking function
M(x) introduces controlled changes to the input, encouraging
the network to focus on more relevant and discriminative
features.Invariance to certain changes enhances the model’s
ability to generalize across different instances of the same
class, making it more robust to variations that are irrelevant
for classification.

E. Representation of the Input Image x

Assume the input image x is represented as a 2D matrix
[xij ] where i and j index the rows and columns, respectively.
A grayscale image is typically represented as a 2D array of
pixel values, where xij denotes the intensity value of the pixel
at row i and column j. The grayscale image can be represented
as:

x =


x11 x12 . . . x1N

x21 x22 . . . x2N

...
...

. . .
...

xM1 xM2 . . . xMN

 (4)

Each element xij represents the intensity value of a pixel in
the image. Grayscale images have a single channel, where pixel
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values range from 0 (black) to 255(white).This representation
is suitable for scenarios where color information is not crucial,
such as in the MNIST dataset.

In the case of a color image, x would typically be a 3D
matrix [xijk], where k indexes the color channel (e.g., RGB
channels). A color image is represented as a 3D array, where
xijk represents the intensity value of the pixel at row i, column
j, and color channel k. The color image can be represented
as:

x =




x111 x112 . . . x11N

x121 x122 . . . x12N

...
...

. . .
...

xM11 xM12 . . . xM1N

 ,


x211 x212 . . . x21N

x221 x222 . . . x22N

...
...

. . .
...

xM21 xM22 . . . xM2N

 ,

...,
x1M1 x1M2 . . . x1MN

x2M1 x2M2 . . . x2MN

...
...

. . .
...

xNM1 xNM2 . . . xNMN





(5)

Color images have multiple channels, typically represent-
ing Red, Green, and Blue (RGB) color information.The 3D
matrix captures color intensity values for each pixel in the
image.This representation is essential for tasks where color
information plays a crucial role, such as in natural images.

Understanding the representation of input images, whether
grayscale or color, involves considering the dimensionality
and intensity values associated with each pixel, providing the
foundation for image processing and analysis.

F. The Masking Function M(x)

The masking function M(x) is applied to the image x
and produces a mask matrix of the same dimensions as x.
The mask matrix, denoted as [mij ] for grayscale or [mijk] for
color images, is generated by M(x).Each entry in the mask
matrix is either 1 or 0, indicating whether to keep or mask the
corresponding pixel value in x. For a grayscale image:

mij =

{
1 if M(x) keeps the pixel at (i, j)
0 if M(x) masks the pixel at (i, j)

(6)

Similarly, for a color image, the mask is represented as
[mijk], where each mijk is 1 or 0. The masking function is
a key element in feature masking processes, such as setting
pixels to constant values, applying filters, or using dropout. The
binary nature of the mask matrix (1 or 0) signifies the decision
to retain or discard pixel information. By controlling which
pixels are masked or retained, the masking function influences
the model’s perception of features during training. Masks can
be generated based on different criteria, introducing flexibility
in selectively modifying or preserving image elements.

The masking function involves recognizing its role in
determining which pixels are retained or masked, providing a
mechanism for controlled feature manipulation during various
image processing tasks.

G. Applying the Mask

The masked image y is obtained by performing an element-
wise multiplication of the original image x and the mask
matrix M(x):

y = x⊙M(x) (7)

For a grayscale image, the element-wise operation is ex-
pressed as:

yij = xij ×mij (8)

Similarly, for a color image with three channels:

yijk = xijk ×mijk (9)

In this operation, mij (or mijk) takes values of 0 or 1.
When mij is 0, the corresponding pixel in y is effectively
masked (set to zero), and when it is 1, the original pixel
value is retained. The element-wise masking operation is a
fundamental step in feature masking processes, influencing
how specific regions or features in the image are modified
or retained. When mij (or mijk) is 0, the corresponding
pixel in the resulting masked image y is suppressed or set to
zero. This operation is essential for applying feature-specific
modifications, allowing the model to focus on relevant image
components while discarding or altering less important ones.
The masked image y retains the structure and features of the
original image x based on the applied masking strategy. The
element-wise masking operation provides insights into how
feature masking techniques selectively modify or retain pixel
values, influencing the learning process of neural networks and
other image processing applications.

H. Purpose and Effects

Feature masking is a technique commonly employed in
image processing and deep learning to direct a model’s atten-
tion to specific regions of an image, augment data, or simulate
occlusions during training for increased robustness.

Feature masking simplifies to selectively zeroing out cer-
tain pixels while leaving others unchanged. This is represented
by the element-wise multiplication of the original image x and
the mask matrix M(x):

y = x⊙M(x) (10)

For grayscale images:

yij = xij ×mij (11)

For color images:

yijk = xijk ×mijk (12)

Feature masking alters the input data fed into the model by
selectively modifying pixel values based on the mask. When
certain pixels are zeroed out (masked), the model focuses on
the remaining unmasked pixels during training. This allows
the model to learn features that are relevant for classification
or other tasks while ignoring or being less sensitive to specific
regions.

Feature masking directs the model’s focus to specific
features or regions, enabling it to learn discriminative patterns.
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Useful in scenarios where certain image components are more
critical for decision-making. By selectively altering pixels,
feature masking contributes to data augmentation, introducing
variations in the training data. This helps improve the model’s
generalization by exposing it to diverse instances of the same
class. Simulating occlusions during training with feature mask-
ing enhances the model’s robustness to partial or obscured
input images.The model learns to make predictions even when
parts of the input are hidden or occluded.

The purpose and mathematical significance of feature
masking provides a powerful tool for shaping the learning
process of models, enhancing their ability to generalize, and
improving robustness to variations in input data.

I. Feature Masking as Dimensionality Reduction

Consider a neural network with input features represented
by a vector X ∈ Rd, where d is the original dimensionality of
the input space. The feature masking process involves element-
wise multiplication of the input features by a binary mask
M ∈ {0, 1}d that determines which features are active (1)
or masked (0). The masked input X̃ can be mathematically
expressed as:

X̃ = M ⊙X (13)

X ∈ Rd represents the original input features, where d
is the dimensionality of the input space. M ∈ {0, 1}d is a
binary mask vector, indicating which features are active (1)
and which are masked (0). The element-wise multiplication
⊙ is performed between the input features X and the binary
mask M , resulting in a masked input X̃ . The element-wise
multiplication is expressed as:

X̃i = Mi ×Xi (14)

where i represents the index of each feature in the vectors.

The binary mask M provides control over which features
are allowed to contribute to the neural network’s computations.
Active features (where Mi = 1) retain their original values,
while masked features (where Mi = 0) are effectively set to
zero. Feature masking can be seen as a form of dimensionality
reduction, as it allows the network to focus on a subset of rel-
evant features. This is particularly useful when certain features
are noisy or irrelevant to the learning task. Feature masking
acts as a form of regularization by introducing sparsity in the
input space. Sparse inputs encourage the neural network to
learn more robust and generalizable features.

The feature masking process in a neural network involves
selectively modifying input features based on a binary mask,
influencing the model’s attention, reducing dimensionality,
and providing regularization. This process is valuable for
enhancing the network’s ability to learn meaningful patterns
from the input data.

J. Regularization Objective

Regularization is often expressed through an additional
term in the loss function. In the case of feature masking, the
regularization term encourages sparsity in the mask, penalizing
the model for relying too much on specific features. The
overall loss function (L) can be written as a combination of

the standard task-specific loss (Ltask) and a regularization term
(R):

L = Ltask + λR (15)

Ltask represents the standard task-specific loss, measuring
the model’s performance on the primary learning task. R
is the regularization term, which penalizes the model for
non-ideal behaviors, such as relying too heavily on specific
features. λ is a hyperparameter that controls the strength of the
regularization. It determines how much importance is given
to the regularization term relative to the task-specific loss.
The combination of Ltask and λR creates a trade-off: the
model aims to minimize the task-specific loss while keeping
the regularization term in check. The regularization term (R)
associated with feature masking might involve measuring the
sparsity of the mask:

R =

d∑
i=1

|Mi| (16)

where d is the dimensionality of the input features. The
regularization term encourages sparsity in the mask by penal-
izing non-zero entries. This leads to feature selection, allowing
the model to focus on a subset of relevant features. The hyper-
parameter λ controls the trade-off between minimizing task-
specific loss and minimizing the impact of the regularization
term. A higher λ encourages stronger regularization, limiting
the model’s reliance on specific features. By penalizing the
model for overfitting to certain features, feature masking
regularization improves the generalization capability of the
model. The model becomes less sensitive to noise or irrelevant
features in the input.

The incorporation of feature masking regularization in
the loss function provides a mechanism for controlling the
sparsity of the mask, balancing task-specific learning with the
encouragement of more generalized feature dependencies. This
regularization contributes to building models that generalize
well to new and unseen data.

K. Training with Masks

During training, different masks are applied to the input
data in a stochastic manner. This can be represented as a
probability distribution over masks. Let P (M) be the prob-
ability distribution of masks, and EM denote the expectation
over masks. The training objective can be expressed as the
minimization of the expected loss:

min
θ

EM [L(f(X ⊙M ; θ), y)] + λR(M) (17)

P (M) represents the probability distribution over masks.
Each mask M is a realization from this distribution dur-
ing training. - EM is the expectation operator over masks,
indicating that the training objective involves averaging the
loss over different mask realizations. L(f(X ⊙ M ; θ), y) is
the task-specific loss, measuring the model’s performance on
the primary learning task with a masked input. R(M) is
the regularization term that penalizes non-ideal behaviors,
such as sparsity in the mask. λ is a hyperparameter con-
trolling the trade-off between the task-specific loss and the
regularization term. The overall objective is to minimize the
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expected loss by considering the variability introduced by
different masks during training. Stochastic masking introduces
randomness during training by applying different masks in
a probabilistic manner. This randomness helps the model
generalize better and become more robust to variations in
input data. The expectation EM represents the average loss
over all possible masks, capturing the model’s performance
under diverse feature conditions. This averaging helps mitigate
the impact of individual masks that may be overly specific
or noisy. The regularization term R(M) encourages certain
properties in the mask distribution, such as sparsity. This helps
prevent the model from overfitting to specific features and
promotes a more generalized understanding of the input. The
stochastic feature masking during training involves considering
the variability introduced by different masks, the expectation
over masks, and the joint optimization of task-specific loss and
regularization. This approach contributes to the model’s ability
to adapt to diverse input conditions and enhances its overall
robustness.

L. Adversarial Robustness

The concept of adversarial robustness can be framed in
terms of the impact of perturbations on the masked input space.
If Xadv is an adversarial perturbation added to X , the masked
adversarial input X̃adv can be expressed as:

X̃adv = M ⊙ (X +Xadv) (18)

Xadv represents the adversarial perturbation added to the
original input X . The masked input space is modified by
element-wise multiplication ⊙ with the binary mask M . The
expression X + Xadv represents the addition of the original
input and the adversarial perturbation. The mask M selectively
applies perturbations to certain features, influencing the impact
of adversarial perturbations. The resulting X̃adv is the masked
adversarial input.

The element-wise multiplication with the mask M allows
for selective application of perturbations to the input features.
Certain features, determined by the mask, may be more or less
susceptible to adversarial perturbations. The mask M plays a
crucial role in shaping the adversarial robustness of the model.
By controlling which features are affected by perturbations, the
mask contributes to the model’s resilience against adversarial
attacks. Understanding the impact of adversarial perturbations
in the masked input space helps in developing models that
generalize well in the presence of adversarial examples. The
model learns to be robust to variations introduced by ad-
versarial perturbations while focusing on relevant features.
Framing adversarial robustness in the context of the masked
input space involves considering how perturbations selectively
impact features based on the binary mask, influencing the
model’s resilience against adversarial attacks. This approach
contributes to the development of more robust machine learn-
ing models.

M. Mathematical Framework of Feature Masking and Data
Augmentation

• Description: The stochastic application of masks dur-
ing training is a form of data augmentation. Mathemat-
ically, data augmentation introduces variability in the

training data to improve generalization. In the context
of feature masking, variability is directly injected into
the feature space through different masks, encouraging
the model to generalize better to diverse input patterns.

• Mathematical Significance:
◦ Data Augmentation as Variability Introduction:

Data augmentation is represented mathemati-
cally by introducing variability in the training
data. In feature masking, this variability is in-
troduced directly into the feature space through
the application of different masks during train-
ing. Mathematically, data augmentation can be
seen as modifying the input data X through a
stochastic process:

X ′ = Augmentation(X)

◦ Feature Masking Mathematical Framework:
Feature masking involves masks, regulariza-
tion terms, and expectations over mask dis-
tributions. During training, the masked input
X̃ is obtained by element-wise multiplication
with a mask:

X̃ = M ⊙X

The regularization term R(M) encourages
sparsity in the mask to prevent overreliance
on specific features. Expectations over mask
distributions are incorporated into the training
objective:

min
θ

EM [L(f(X̃; θ), y)] + λR(M)

• Insights:
◦ Diversity in Features for Decision-Making:

Feature masking encourages diversity in the
features used for decision-making during train-
ing. By applying different masks stochasti-
cally, the model learns to be invariant to vari-
ations in the input. This diversity enhances
generalization by exposing the model to a
broader range of input patterns.

◦ Formalization of Regularization: The regular-
ization term R(M) ensures that the model
does not overly rely on specific features, pro-
moting more robust and generalized learning.
The regularization effect is formalized in the
loss function, contributing to improved model
performance on unseen data.

◦ Alignment with Adversarial Robustness: Fea-
ture masking, by controlling the impact of
perturbations through masks, aligns with prin-
ciples of adversarial robustness. The model
learns to be resilient to adversarial attacks by
considering diverse feature spaces.

1) Random masking as a stochastic process: Consider the
training images as a set {x(1), x(2), . . . , x(n)}, where each x(i)

is an image. A random mask M (i) is applied to each image
during each epoch of training, which can be mathematically
represented as a stochastic process. The masked image is then
M (i)(x(i)), where the operation M (i) selectively alters pixel
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values in x(i) based on a random pattern. Let X represent the
set of training images: X = {x(1), x(2), . . . , x(n)}. A random
mask M (i) is applied to each image x(i) during training
epochs. This can be expressed as a stochastic process:

M (i)(x(i)) = M (i) ⊙ x(i) (19)

Here, M (i) is a binary mask, and ⊙ denotes element-wise
multiplication. The stochastic process introduces variability in
the training data by applying different masks to each image
during each epoch. Random masking as a stochastic process
introduces variability in the training data. This variability arises
from the different random masks applied to each image during
each training epoch. The element-wise multiplication (⊙)
selectively alters pixel values in x(i) based on the binary mask
M (i). The process results in a diverse set of masked images for
each input in the training set. This diversity promotes a richer
learning experience for the model by exposing it to various
instances of the same image with different masked patterns. By
training on a dataset with masked images generated through a
stochastic process, the model becomes more robust to varia-
tions in input patterns. The introduction of variability enhances
the model’s ability to generalize and make predictions on
unseen data.

2) Training with masked inputs: In the training of neural
networks, rather than learning a mapping f(x(i)) directly,
a stochastic masking process is incorporated. Each training
image x(i) undergoes modification through a random mask
M (i), resulting in M (i)(x(i)). The neural network learns a
mapping f(M (i)(x(i))) during training. Here, x(i) represents
the matrix of pixel values, and M (i)(x(i)) is another matrix
with modified entries based on the applied mask.

• Let X denote the set of training images: X =
{x(1), x(2), . . . , x(n)}.

• The stochastic masking process is represented mathe-
matically as:

f(M (i)(x(i)))

• The application of M (i) to x(i) modifies each entry of
the matrix element-wise, enforcing a focus on different
features in each iteration:

M (i)(x(i)) = M (i) ⊙ x(i)

• The neural network adapts to variations introduced by
the stochastic masking process, resulting in a mapping
that is inherently robust and less prone to overfitting.

• Feature Variation in Training:
◦ The alteration induced by M (i) forces the

neural network to focus on different features
of the input in each iteration.

◦ This variation in training instances helps pre-
vent the network from over-relying on specific
features, contributing to improved generaliza-
tion.

• Enhanced Robustness:
◦ The network’s exposure to M (i)(x(i)) during

training promotes adaptability to variations in
input patterns.

◦ This enhanced robustness makes the network
more capable of handling diverse inputs, lead-
ing to improved performance on unseen data.

• Prevention of Overfitting:
◦ Stochastic masking serves as a regularization

technique by introducing variability in the
training process.

◦ This variability prevents the network from
memorizing specific details in the training
data, reducing the risk of overfitting to noise.

• Improved Generalization:
◦ By learning a mapping f(M (i)(x(i))) instead

of f(x(i)), the network becomes more adept at
generalizing its knowledge to novel instances.

◦ The focus on diverse features through stochas-
tic masking contributes to a model that can
better handle different variations in the input
space.

3) Consistency in testing: During the testing phase, the
input xtest is subjected to two scenarios: either it is not masked
at all, or a consistent mask Mtest is applied. The model’s perfor-
mance is evaluated using f(Mtest(xtest)) or f(xtest), ensuring a
consistent and fair evaluation. This approach maintains control
over testing conditions, allowing for a clear comparison of the
model’s performance with and without masking.

• During testing, the evaluation is carried out under two
conditions:

◦ Without masking: f(xtest)
◦ With consistent masking: f(Mtest(xtest))

• The application of Mtest to xtest follows a similar
mathematical representation as in the training phase:

Mtest(xtest) = Mtest ⊙ xtest

• This consistency ensures that the model is tested under
controlled conditions, allowing for a fair and unbiased
assessment of its performance.

• Controlled Evaluation:
◦ By evaluating the model under two distinct

conditions (with and without masking), con-
sistency in testing provides a controlled envi-
ronment for performance assessment.

◦ This controlled evaluation is crucial for un-
derstanding how well the model generalizes to
both unaltered and consistently masked inputs.

• Fair Model Comparison:
◦ Consistent testing enables a fair comparison

of the model’s performance under different
conditions.

◦ This comparison is valuable in assessing the
impact of stochastic masking on the model’s
predictions and understanding its robustness to
variations introduced during training.

• Understanding Masking Influence:
◦ Testing with and without masking allows for

a clear understanding of how the stochastic
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masking process influences the model’s behav-
ior during inference.

◦ Insights gained from consistent testing con-
tribute to refining the model and optimizing
its performance for diverse scenarios.

• Robustness Validation:
◦ Evaluating the model on both masked and

unmasked inputs serves as a validation of its
robustness.

◦ The consistent testing approach ensures that
the model’s performance is not skewed by
the presence or absence of masking during
evaluation.

4) Hyperparameter tuning: The design of the mask M is
a critical hyperparameter, involving the proportion of features
masked, the pattern of masking, and the variability between
epochs. Mathematically, this can be viewed as tuning the
parameters of the stochastic process governing M , balancing
the network’s exposure to features with the need for robustness
and generalization.

• Stochastic Process M :
◦ Let M represent the stochastic process of

masking during training.
◦ The application of M to an input x(i) is given

by M(x(i)) = M ⊙ x(i), where ⊙ denotes
element-wise multiplication.

• Hyperparameters of M :
◦ Designing M involves tuning hyperparameters

that govern the stochastic process:
Proportion of features masked.
Pattern of masking.
Variability between epochs.

• Mathematical Tuning:
◦ The design process can be expressed mathe-

matically as the tuning of hyperparameters:

M = Tune(p, pattern, variability) (20)

where p is the proportion of features masked,
pattern specifies the masking pattern, and
variability controls the variability between
epochs.

• Trade-off between Diversity and Consistency:
◦ The hyperparameters influence the trade-off

between diversity and consistency in the train-
ing process.

◦ A higher p introduces more diversity by mask-
ing a larger proportion of features, while a
lower p maintains consistency.

◦ The masking pattern and variability further
contribute to this balance.

• Exposure to Features:
◦ Adjusting hyperparameters allows control over

the network’s exposure to features. Higher
values of p promote increased variability, ex-
posing the model to a broader range of input
patterns.

• Robustness and Generalization:
◦ Tuning the hyperparameters impacts the

model’s robustness and generalization capabil-
ities. Striking the right balance ensures that
the model can adapt to diverse inputs while
maintaining consistency.

• Trade-off Considerations:
◦ The proportion of features masked (p) serves

as a key trade-off parameter. A delicate balance
is needed to prevent overfitting (too much di-
versity) or underfitting (too much consistency).

• Pattern and Variability Impact:
◦ The choice of masking pattern and variability

between epochs contributes to the richness of
the training data. Patterns that capture relevant
features and controlled variability enhance the
learning process.

• Iterative Tuning:
◦ The design of M involves an iterative tun-

ing process. Hyperparameters may be adjusted
based on the network’s performance, ensuring
a dynamic adaptation to the learning dynamics.

5) Regularization and reduced dimensionality: From a reg-
ularization standpoint, feature masking can be seen as adding
a form of noise to the input data, which helps in preventing
overfitting. Mathematically, this reduces the effective dimen-
sionality of the input space, as the network is forced to make
predictions with incomplete information, enhancing its ability
to generalize.

• Feature Masking Operation:
◦ Let x(i) represent the input data. The feature

masking operation is defined as:

x
(i)
masked = M (i) ⊙ x(i) (21)

◦ Here, M (i) is a binary mask, and ⊙ denotes
element-wise multiplication.

• Regularization Effect:
◦ The feature masking introduces noise by selec-

tively setting certain features to zero, creating
an incomplete representation of the input dur-
ing training.

◦ Mathematically, this can be expressed as in-
jecting randomness into the input data:

x
(i)
masked = RandomMask(x(i)) (22)

• Reduced Effective Dimensionality:
◦ The masking operation reduces the effective

dimensionality of the input space. It limits the
information available to the network for each
instance during training.

◦ Mathematically, this reduction can be quanti-
fied as:

Effective Dimensionality =

D∑
j=1

mj (23)
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where D is the original dimensionality, and mj

is the binary value of the j-th element in the
mask.

• Noise Introduction for Regularization:
◦ Feature masking introduces noise by hiding

certain features during each training instance.
◦ This noise prevents the model from mem-

orizing specific patterns, promoting a more
generalized understanding of the data.

• Preventing Overfitting:
◦ The regularization effect of feature masking

helps in preventing overfitting by discouraging
the model from relying too heavily on specific
details present in the training data.

◦ The network learns to make predictions with
a more robust understanding of the underlying
patterns.

• Generalization Enhancement:
◦ By training on partially masked data, the net-

work becomes more adept at generalizing to
unseen instances.

◦ The reduced effective dimensionality forces
the model to focus on essential features, im-
proving its ability to generalize to diverse
inputs.

• Adaptability to Incomplete Information:
◦ Feature masking encourages the model to be

adaptable to incomplete information, mimick-
ing real-world scenarios where not all features
may be available during prediction.

◦ This adaptability contributes to the model’s
resilience and performance on diverse datasets.

6) Robustness against adversarial attacks: Adversarial at-
tacks often exploit specific weaknesses in the model’s learned
mapping f(x). By training the network on f(M(x)), where
M varies, the model becomes less sensitive to specific patterns
and more resilient to such manipulations.

f(M(x))

The variability introduced by the stochastic masking process
reduces the model’s reliance on specific features, making it
more robust against adversarial attacks targeting those features.

• Adversarial Mapping:
◦ Let f(x) represent the learned mapping of the

network on clean data.
◦ Adversarial attacks often aim to exploit vul-

nerabilities in f(x) by manipulating input pat-
terns.

• Stochastic Masking Operation:
◦ The network is trained on f(M(x)), where M

is a stochastic mask applied to the input data
x.

◦ Mathematically, this can be expressed as:

f(M(x))

• Variability in Training:

◦ The stochastic masking process introduces
variability in the training data by applying dif-
ferent masks to each input during each training
instance.

◦ The variability is controlled by the stochas-
tic mask M , leading to diverse instances of
masked inputs.

• Robustness against Adversarial Attacks:
◦ The introduced variability reduces the model’s

sensitivity to specific patterns in the input,
making it less susceptible to adversarial attacks
targeting those patterns.

◦ Adversarial attacks crafted for specific features
are less effective when the model is trained on
f(M(x)) due to the unpredictable variations
introduced by different masks.

• Reduced Sensitivity to Specific Patterns:
◦ Training on f(M(x)) introduces unpre-

dictability in the training data, reducing the
model’s reliance on specific features during
inference.

◦ This reduced sensitivity makes the model more
robust against adversarial attacks that target
specific patterns in the input.

• Enhanced Generalization to Varied Inputs:
◦ The variability introduced by stochastic mask-

ing enables the model to generalize better to a
diverse set of inputs.

◦ This enhanced generalization contributes to the
model’s ability to handle variations introduced
by adversarial attacks.

• Resilience to Manipulations:
◦ Adversarial attacks typically manipulate inputs

in a way that exploits the model’s vulnerabil-
ities.

◦ Training on f(M(x)) makes the model more
resilient by diminishing the effectiveness of
attacks focused on specific patterns.

• Dynamic Defense Mechanism:
◦ Stochastic masking serves as a dynamic de-

fense mechanism, making it challenging for
adversaries to craft universal attacks that con-
sistently succeed across different instances of
the same input.

V. ALGORITHM

1) Initialization
Input: Training dataset (e.g., MNIST dataset), neural
network model.
Parameters: Masking ratio r (proportion of features
to mask), masking pattern (random or fixed), number
of epochs E, learning rate η, batch size B.

2) Preprocessing
Normalize the dataset: Scale the pixel values to a
range (e.g., 0 to 1).
Split the dataset into training and validation sets.

3) Mask Generation
Define a function generate_mask(image_shape,
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ratio) that creates a mask for an image. The mask
should have the same dimensions as the image.
If using random masking, this function generates a
new mask for each image in each epoch.
For fixed masking, generate a predefined mask and
apply it consistently.

4) Training Loop
For each epoch e in {1, 2, . . . , E}:

a) Shuffle the training dataset.
b) For each mini-batch b in the training dataset:

i) For each image xi in the mini-batch:
A) Generate a mask Mi using

generate_mask.
B) Apply the mask: x̃i = xi ⊙ Mi,

where ⊙ denotes element-wise
multiplication.

C) Perform a forward pass with the
masked inputs x̃i.

D) Compute the loss L (e.g., cross-
entropy loss for classification).

E) Backpropagate the error and up-
date the model parameters using
an optimizer (e.g., SGD, Adam)
with a learning rate η.

5) Validation: After each epoch, evaluate the model on
the validation set without applying feature masking.
Monitor performance metrics like accuracy, loss, etc.

6) Hyperparameter tuning: Optionally, perform hyperpa-
rameter tuning for r, η, and B based on validation
performance.

7) Model evaluation: After training, evaluate the final
model on a separate test set.
Compare the performance with and without feature
masking to assess the impact.

8) Deployment: Deploy the trained model for inference.
Optionally, use consistent feature masking if it was
part of the training.

VI. EXPERIMENTAL SET UP

This research investigates the effectiveness of feature mask-
ing as a defensive technique against adversarial attacks on
neural networks, specifically focusing on the MNIST dataset.
The study comprises several key phases, each contributing
to a comprehensive evaluation of the proposed approach. We
established a baseline by training a standard neural network
architecture on MNIST without feature masking, followed by
implementing a feature masking algorithm and systematically
testing its impact on model performance. Adversarial attacks
were simulated using popular methods like the Fast Gradient
Sign Method (FGSM) and Projected Gradient Descent (PGD).
The experiment configuration and parameters are detailed
below to ensure repeatability.

1) Data preparation: Dataset: MNIST dataset comprising
60,000 training images and 10,000 test images. Image Char-
acteristics: 28x28 pixel grayscale images of handwritten digits
(0 to 9). Pixel Normalization: Scale pixel values from 0 to 255
to a range of 0 to 1. Dataset Splitting: Training set for model
training, validation set for hyperparameter tuning, and test set
for unbiased model evaluation.

2) Model architecture: Neural Network Types: Simple
Convolutional Neural Network (CNN) and Multi-Layer Per-
ceptron (MLP). Convolutional Layers: One or two layers with
ReLU activation. Pooling Layers: Follow each convolutional
layer with max pooling. Fully Connected Layers: One or two
layers for classification, with 10 neurons in the final layer using
softmax activation. Hidden Layers: One or more hidden layers
(e.g., 128 or 256 neurons) with ReLU activation. Flattening:
Flatten 28x28 images into a 784-dimensional vector for input.
Consistency: Maintain consistent architecture across models
for fair comparison.

3) Training configuration: Hyperparameters: Keep learning
rate, batch size, and number of epochs consistent. Regulariza-
tion: Depending on model performance, consider dropout or
L2 regularization to prevent overfitting.

4) Feature masking experiment: Baseline Model: Train a
neural network without feature masking, record accuracy, and
loss metrics on the test set. Feature Masking Algorithm: Imple-
ment a feature masking algorithm and apply various masks to
training images across epochs. Consistent Architecture: Ensure
the masked model maintains the same architecture as the
baseline for fair comparison. Masking Ratios and Patterns:
Experiment with different masking ratios and patterns (random
to fixed) to determine optimal masking strategy.

5) Adversarial attack simulation: Adversarial Methods:
Use FGSM and PGD to simulate adversarial attacks on the
MNIST test set. Testing: Evaluate both baseline and feature-
masked models for robustness against adversarial manipula-
tion.

6) Result analysis: Performance Metrics: Assess accuracy
and loss on the test set for baseline and feature-masked models.
Adversarial Robustness: Analyze model performance under
simulated adversarial attacks. By documenting the detailed
experimental setup and parameters, we aim to provide a foun-
dation for reproducibility and further exploration of feature
masking as a viable strategy for enhancing adversarial defense
in neural networks.

To experimentally evaluate the effectiveness of feature
masking in enhancing adversarial defense for neural networks,
specifically on the MNIST dataset, you need to set up a
controlled experiment. This setup will involve comparing the
performance of a neural network trained with feature masking
against one trained without it, under various conditions.

When working with the MNIST dataset in a machine
learning context, the process typically involves two main
stages: data preparation and defining the model architecture.
Here’s a detailed description of each stage:

MNIST dataset is a classic in the field of machine learning,
particularly for image recognition tasks. It contains 60,000
training images and 10,000 test images. Image Characteristics:
Each image in the MNIST dataset is a 28x28 pixel grayscale
image of a handwritten digit (ranging from 0 to 9).

The pixel values in each image, which originally range
from 0 to 255, should be normalized to a range of 0 to 1. This is
done by dividing each pixel value by 255. Normalization helps
in speeding up the training process by ensuring that all input
features (pixel values) are on a similar scale. Dataset Splitting:
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The dataset should be divided into three subsets: training,
validation, and test sets. The training set is used for training
the model. The validation set is used to tune hyperparameters
and to provide an unbiased evaluation of a model fit during
the training phase. The test set is used to provide an unbiased
evaluation of the final model fit. For the MNIST dataset,
both a simple Convolutional Neural Network (CNN) and a
Multi-Layer Perceptron (MLP) can be effective. The choice
depends on the complexity of the model you wish to use and
the computational resources available. Convolutional Layers:
Begin with one or two convolutional layers. These layers
extract features from the images by sliding a filter across
the input. Each convolutional layer is typically followed by
a non-linear activation function like ReLU (Rectified Linear
Unit). Pooling Layers: Follow each convolutional layer with
a pooling layer (like max pooling) to reduce the spatial size
of the representation, reducing the number of parameters and
computation in the network. Fully Connected Layers: After
the convolutional and pooling layers, add one or two fully
connected layers for classification. The last fully connected
layer should have 10 neurons (corresponding to the 10 digits)
and use a softmax activation function to output probabilities
for each digit. Flatten the 28x28 images into a 784-dimensional
vector to serve as the input layer. Hidden Layers: Have one
or more hidden layers with a sufficient number of neurons
(e.g., 128 or 256). Use ReLU for the activation function.
The final layer should be a fully connected layer with 10
neurons (one for each digit) with a softmax activation function
for classification. To ensure fair comparison in experiments,
it’s crucial to keep the model architecture consistent. This
means using the same number of layers, the same number
of neurons in each layer, and the same activation functions.
Hyperparameters like learning rate, batch size, and number of
epochs should also be kept consistent, unless the specific ex-
periment involves varying these parameters. Depending on the
model’s performance, regularization techniques like dropout or
L2 regularization can be used to prevent overfitting.

In the study we systematically investigated the effective-
ness of feature masking as a defensive technique against
adversarial attacks on the MNIST dataset. The research was
structured into several key phases, each contributing to a
comprehensive evaluation of the proposed approach.

Initially, we established a baseline by training a standard
neural network architecture on the MNIST dataset without
feature masking. This baseline model’s performance metrics,
notably accuracy and loss on the test set, provided a refer-
ence point for subsequent comparisons. Following this, we
implemented a feature masking algorithm, applying various
masks to the training images across epochs. The neural net-
work, consistent in architecture with the baseline model, was
then trained on this modified dataset. This phase included
experimentation with different masking ratios and patterns,
ranging from random to fixed masking, to ascertain the optimal
masking strategy.

Further, we simulated adversarial attacks using prevalent
methods such as the Fast Gradient Sign Method (FGSM)
and Projected Gradient Descent (PGD), generating adversarial
examples from the MNIST test set. These examples were
used to test both the baseline and feature-masked models,
allowing us to assess their respective robustness to adversarial

manipulation.

The performance of both models was meticulously com-
pared using standard metrics like accuracy, precision, recall,
and F1-score, on both the normal and adversarial test sets. This
comparison provided crucial insights into the effectiveness of
feature masking in enhancing model robustness. Additionally,
hyperparameter tuning, focusing on aspects such as masking
ratio, learning rate, and the number of training epochs, was
conducted, utilizing the validation set performance for guiding
tuning decisions.

Finally, we conducted statistical tests, to ascertain the
significance of the differences observed in the performance
metrics between the baseline and feature-masked models. This
statistical analysis was pivotal in ensuring the reliability and
validity of our findings.

Our research contributes to the growing body of knowledge
in neural network security, providing evidence that feature
masking can be an effective strategy in augmenting the ro-
bustness of neural networks against adversarial attacks. This
approach, particularly suitable for simple input domains like
MNIST, signifies a strategic advancement in defensive machine
learning methodologies. The core of our analysis involved
comparing the performance metrics - accuracy, loss, precision,
recall, and F1-score - of models trained with and without
feature masking. This comparative study was crucial in high-
lighting the differences in model performance on both stan-
dard and adversarially perturbed test sets, thereby providing
a clear measure of the effectiveness of feature masking in
standard and adversarial contexts. A significant aspect of our
research focused on analyzing how varying masking ratios
and patterns, such as random versus fixed masking, influenced
the model’s overall robustness and performance. This analysis
was instrumental in identifying the optimal masking strategy,
providing valuable insights into the balance between model
exposure to features and its ability to generalize and withstand
adversarial manipulation. In our pursuit of a more nuanced
understanding, we conducted additional experiments to test
the model’s resilience against a variety of adversarial attack
types and strengths. This helped in ascertaining the breadth of
the model’s robustness. Furthermore, we experimented with
combining feature masking with other defense techniques,
assessing whether such integrations could further enhance
model robustness.

The research necessitated substantial computational re-
sources, with an emphasis on the use of GPUs for expedited
training and evaluation. We employed advanced machine learn-
ing frameworks like TensorFlow and PyTorch for model devel-
opment, alongside libraries such as CleverHans and Foolbox
for generating a diverse array of adversarial examples. Addi-
tionally, we were mindful of the accuracy-robustness trade-off,
often observed in adversarial defense mechanisms. We also
documented resource utilization to provide insights into the
practical feasibility of our methods. The ethical implications of
our research were also a paramount consideration, particularly
in terms of the potential for adversarial knowledge misuse.
We emphasized responsible use and communication of our
findings, underlining the importance of advancing AI security
in a conscientious manner. Our research provides substantial
evidence supporting the effectiveness of feature masking in
bolstering neural network security against adversarial threats.
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Our comprehensive and structured experimental setup offers
valuable insights into the strengths and limitations of feature
masking, contributing significantly to the field of neural net-
work security and robust machine learning.

VII. EXPERIMENTAL RESULTS

The primary objective of the study was to enhance the ro-
bustness of a baseline model, which consisted of either a Multi-
layer Perceptron (MLP) or a Simple Convolutional Neural
Network (CNN). Although the baseline model exhibited high
accuracy (98%) on the test set, it was found to be susceptible to
adversarial attacks. The study aimed to investigate the impact
of incorporating feature masking into the model architecture
as a means to improve its robustness.

The baseline model was constructed using either a Multi-
layer Perceptron (MLP) or a Simple Convolutional Neural Net-
work (CNN). Both configurations achieved a baseline accuracy
of 98% on the test set. Despite this high accuracy, the baseline
model displayed vulnerability to adversarial attacks, leading to
performance degradation in the presence of perturbations.

The feature-masked model retained the same architecture
as the baseline model. The key modification involved the
incorporation of feature masking during training. Feature
masking is a technique where a certain percentage of input
features is randomly masked or set to zero during each training
epoch. The study experimented with different masking ratios,
specifically 10%, 30%, and 50%, and applied random masking
in each epoch.

During training, the feature-masked model underwent mul-
tiple epochs, and in each epoch, a portion of input features was
randomly masked based on the specified ratio. This dynamic
masking approach aimed to enhance the model’s adaptability
and robustness by preventing it from relying too heavily on
specific features.

The study observed that the accuracy of the feature-masked
model on the test set varied with the masking ratio. Specif-
ically, the accuracy decreased from 96% with 10% masking
to 92% with 50% masking. This reduction in accuracy can be
attributed to the loss of information due to feature masking.
However, the primary focus was on the model’s robustness to
adversarial attacks.

In contrast to the baseline model, the feature-masked model
exhibited significantly higher robustness to adversarial attacks.
Adversarial attacks typically involve introducing perturbations
to the input data to mislead the model. The feature-masked
model, despite the reduction in overall accuracy with increased
masking ratios, showed less performance degradation under
adversarial conditions. This indicates that the model was able
to maintain a higher level of performance in the presence
of perturbations, showcasing the effectiveness of the feature
masking technique in enhancing robustness.

This study demonstrated that the incorporation of feature
masking in a neural network model, despite a marginal de-
crease in accuracy on clean data, can lead to a substantial
improvement in robustness to adversarial attacks. This finding
has implications for deploying models in real-world scenarios
where resilience to adversarial inputs is crucial for reliable
performance.

In Fig. 1, the training loss, training accuracy, and validation
accuracy are depicted. The figure illustrates the evolution of
these metrics throughout the training process.

Fig. 1. Training loss, training and validation accuracy.

In Fig. 2, the comparison between the original and adver-
sarial images is presented.

In Fig. 3, the model’s performance is illustrated in the
context of both original and adversarial images.

In Fig. 4, the precision, recall, and F1 score trends over
epochs are depicted.

In Fig. 5, the confusion matrix provides a visual represen-
tation of the model’s classification performance.

In Table I, the evaluation results depict the impact of feature
masking on model robustness under FGSM attacks.

In Table II, the reported values represent various perfor-
mance metrics of the model.

In our comprehensive analysis of masking parameters, a
crucial trade-off was identified. Specifically, as the masking ra-
tio increased, the model’s robustness against adversarial attacks
improved, but at the expense of a reduction in overall accuracy.
For example, employing a 10% masking ratio resulted in
a minor accuracy decrease compared to the baseline, yet it
significantly enhanced the model’s resistance to adversarial
attacks. Conversely, a 50% masking ratio yielded the highest
level of robustness but at the cost of a more pronounced
accuracy loss. This observation emphasizes the imperative of
striking a balance between accuracy and security, tailoring the
choice of masking ratio to the specific requirements of the
application in question.
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TABLE I. EVALUATION OF MODEL ROBUSTNESS WITH FEATURE MASKING FOR FGSM ATTACK

Model Type Masking Ratio Masking Pattern Training Accuracy Test Accuracy Robustness (Accuracy Under Attack) Training Time Increase
Baseline (No Masking) N/A N/A 99% 98% 60% 0%

Feature Masked 10% Random 98% 96% 75% 5%
Feature Masked 30% Random 97% 94% 80% 10%
Feature Masked 50% Random 95% 92% 85% 15%

Feature Masked (Fixed) 30% Fixed 97% 93% 78% 7%

Fig. 2. Original and adversarial image.

TABLE II. MODEL PERFORMANCE METRICS

Metric Value
Accuracy 0.95
Precision 0.96
Recall 0.94
F1 Score 0.95
Training Time (s) 120.00
Inference Time (s) 0.50
Model Size (MB) 1.50

Our investigation into masking patterns revealed valuable
insights into the benefits of employing random masking during
training. The use of random masking, where a subset of
input features is randomly masked or set to zero in each
training epoch, emerged as particularly advantageous. This
approach promotes generalization by preventing the model
from overfitting to specific features. Over-reliance on particular
features could lead to decreased adaptability and performance
degradation when faced with unseen or perturbed data. The
adoption of random masking strategies, therefore, contributes
to a more robust and versatile model.

A noteworthy observation pertained to a slight increase
in training times resulting from the incorporation of feature

Fig. 3. Model performance over original and adversarial images.

masking. The additional step of applying masks during each
training epoch introduced a minor overhead. However, it is
essential to highlight that this increase did not translate into
a significant rise in computational resource requirements. The
practical feasibility of implementing feature masking in neural
network training is underscored by the manageable impact on
training times. This finding suggests that the benefits gained
in terms of enhanced robustness justify the marginal increase
in training duration.

Our study not only highlighted the critical trade-off be-
tween accuracy and robustness associated with varying mask-
ing ratios but also emphasized the advantages of employ-
ing random masking patterns to foster model generalization.
Furthermore, the observed increase in training times, while
present, did not pose a significant obstacle to the practical
implementation of feature masking in neural network training,
thereby affirming its feasibility for real-world applications.

VIII. RESULTS AND DISCUSSION

A. Trade-off Between Accuracy and Robustness

The trade-off observed between accuracy and robustness in
adversarial defense strategies can be expressed mathematically.
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Fig. 4. Precision, recall and F1 score over epochs.

Fig. 5. Confusion matrix.

Let Accbaseline represent the accuracy of the baseline model,
Robbaseline denote its robustness, and Maskratio be the masking
ratio. The relationship can be formalized as follows:

Robmasked = f(Maskratio,Accbaseline) (24)

Here, f is a function that captures the complex interplay
between the masking ratio and the baseline accuracy in deter-
mining the robustness of the masked model against adversarial
attacks. This mathematical representation underscores the ne-
cessity of carefully choosing the masking ratio to achieve an
optimal balance.

B. Impact of Feature Masking on Generalization

The study suggests that feature masking, especially with
random patterns, favors model generalization but may lead to
reduced performance on conventional benchmarks. This can be
represented mathematically using the concept of regularization.
Let Lmasked denote the loss function for the masked model, and
λ represent a regularization parameter:

Lmasked = Lbaseline + λ · Regmasked (25)

Here, Lbaseline is the loss of the baseline model, and
Regmasked represents the regularization term induced by the
feature masking. The addition of the regularization term en-
courages the model to generalize well beyond the training
data, but the choice of λ becomes crucial in balancing this
regularization against benchmark performance.

C. Avenues for Future Research

The suggestion of exploring the combination of feature
masking with other defense mechanisms implies a potential
synergy in adversarial defense strategies. Let Defcombined rep-
resent the effectiveness of the combined defense mechanisms,
and Defmask and Defother denote the effectiveness of feature
masking and the other defense mechanism individually:

Defcombined = g(Defmask,Defother) (26)

The function g encapsulates the synergistic effects and in-
teractions between different defense mechanisms, highlighting
the need for further exploration in this domain.

D. Generalizability Across Datasets and Architectures

While the experiments focused on the MNIST dataset, the
generalizability of findings to other datasets and model archi-
tectures can be expressed mathematically. Let Gendataset repre-
sent the generalizability to a specific dataset, and Genarchitecture
denote the generalizability to a particular model architecture:

Gencombined = h(Gendataset,Genarchitecture) (27)

The function h captures the combined effect of dataset
characteristics and model architecture on the generalizability
of the findings.
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The study provides valuable mathematical insights into the
interplay of key factors in adversarial defense strategies. These
formulations help articulate the trade-offs, implications, and
potential synergies in a quantitative manner, paving the way
for more rigorous analysis and future research directions in the
field of adversarial machine learning.

E. Effect of Masking Ratio

The observed decline in both training and test accuracy
with an increase in masking ratio (10% to 50%) can be math-
ematically represented. Let Acctrain and Acctest represent the
training and test accuracy, respectively, and Maskratio denote
the masking ratio. The relationship can be expressed as:

Acctrain/test = g(Maskratio) (28)

where g is a function capturing the impact of the masking
ratio on accuracy. Additionally, the improvement in robustness
against adversarial attacks (Accuracyunder attack) with increasing
masking ratio reflects the trade-off:

Accuracyunder attack = h(Maskratio,Accbaseline) (29)

Here, h encapsulates the relationship between the masking
ratio, baseline accuracy, and the model’s robustness under
adversarial attacks.

F. Random vs. Fixed Masking

Comparing random and fixed masking patterns in-
volves analyzing their impact on adversarial robustness. Let
Accuracyrandom and Accuracyfixed denote the accuracy under
attack for random and fixed masking, respectively, both at a
30% ratio. The relationship can be expressed as:

Accuracyrandom = f(Maskratio,Patternrandom) (30)

Accuracyfixed = f(Maskratio,Patternfixed) (31)

Here, f captures the influence of masking ratio and specific
masking patterns on adversarial robustness. The superiority of
random masking suggests its effectiveness in preventing the
model from overfitting to fixed unmasked features.

G. Baseline Comparison

The vulnerability of the baseline model to adversarial
attacks, despite exhibiting high accuracy in normal conditions,
can be expressed as:

Robustnessbaseline = 1− Accuracyunder attack, baseline (32)

This highlights the significance of defensive strategies
like feature masking in enhancing the model’s robustness in
scenarios where adversarial attacks pose a threat.

H. Training Time Increase

The increase in training time with higher masking ratios
can be quantified. Let Timebaseline denote the training time for
the baseline model, and Timemasked represent the training time
for the masked model. The relationship can be expressed as:

Timemasked = i(Maskratio,Timebaseline) (33)

Here, i captures the impact of the masking ratio on training
time. The more pronounced increase with random masking
suggests the additional computational overhead associated with
its dynamic nature.

I. Choosing Masking Ratio

The selection of the appropriate masking ratio involves a
trade-off between accuracy and robustness. Let Utilityapplication
represent the utility for a specific application, combining
accuracy and robustness requirements:

Utilityapplication = j(Acctest,Accuracyunder attack) (34)

Here, j is a function that encapsulates the application-
specific requirements, guiding the choice of the optimal mask-
ing ratio.

J. Potential for Further Research

The results indicating the potential for further research can
be framed mathematically. Let Potentialresearch represent the
potential for further research, considering more sophisticated
masking strategies (Masksophisticated), combining feature mask-
ing with other defense techniques (Defcombined), and extending
the approach to more complex datasets and models.

A quantitative understanding of the observed effects, trade-
offs, and potential for further research in the context of feature
masking and adversarial defense strategies.

IX. CONCLUSION

In summary, our investigation into fortifying adversarial
defense in neural networks through the amalgamation of
feature masking and gradient manipulation, with a focus on
the MNIST dataset, has provided noteworthy insights. The
primary aim was to evaluate the efficacy of this approach in
enhancing the model’s resilience against adversarial attacks, a
critical concern in the realm of AI security.

The baseline model, devoid of feature masking, exhibited
a commendable accuracy of 98% on the MNIST test set.
However, its susceptibility to adversarial attacks was starkly
apparent, evidenced by a substantial performance decline to
60% accuracy under Fast Gradient Sign Method (FGSM)
attacks. Conversely, models incorporating feature masking
displayed varying levels of improved robustness:

10% masking: Despite a marginal decrease in test accuracy
to 96%, the model showcased enhanced resilience, maintaining
a 75% accuracy under adversarial conditions.
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30% masking: A slight dip in test accuracy to 94% was
observed, but the model exhibited further improvement in
robustness, achieving 80% accuracy against adversarial attacks.

50% masking: While this level led to a more significant
accuracy reduction to 92%, it offered the highest defense,
reaching an 85% accuracy against attacks.

Additionally, the introduction of feature masking intro-
duced a crucial trade-off between standard accuracy and ad-
versarial robustness. This trade-off holds pivotal significance in
applications where the reliability and security of AI models are
paramount, such as in autonomous systems and the healthcare
industry.

The utilization of a random masking pattern uncovered
potential benefits in improving model generalization and re-
sistance against adversarial manipulation. Looking forward,
the research holds expansive and promising future prospects.
These include exploring advanced feature masking techniques,
potentially adaptive or dynamic in nature, and integrating
feature masking with other adversarial defense strategies like
adversarial training. Moreover, extending the methodology to
more intricate datasets and deepening our comprehension of
adversarial vulnerabilities in neural networks represent critical
strides.

Ultimately, the practical application of these findings in
real-world scenarios, especially in high-stakes fields, would
signify a substantial advancement in the realms of AI and
machine learning.
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