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Abstract—This research introduces a novel approach for 

improving the analysis of Structural Health Monitoring (SHM) 

data in civil engineering. SHM data, essential for assessing the 

integrity of infrastructures like bridges, often contains 

inaccuracies because of sensor errors, environmental factors, and 

transmission glitches. These inaccuracies can severely hinder 

identifying structural patterns, detecting damages, and 

evaluating overall conditions. Our method combines advanced 

techniques from machine learning, including dilated 

convolutional neural networks (CNNs), an enhanced differential 

equation (DE) model, and reinforcement learning (RL), to 

effectively identify and filter out these irregularities in SHM 

data. At the heart of our approach lies the use of CNNs, which 

extract key features from the SHM data. These features are then 

processed to classify the data accurately. We address the 

challenge of imbalanced datasets, common in SHM, through a 

RL-driven method that treats the training procedure as a 

sequence of choices, with the network learning to distinguish 

between less and more common data patterns. To further refine 

our method, we integrate a novel mutation operator within the 

DE framework. This operator identifies key clusters in the data, 

guiding the backpropagation process for more effective learning. 

Our approach was rigorously tested on a dataset from a large 

cable-stayed bridge in China, provided by the IPC-SHM 

community. The results of our experiments highlight the 

effectiveness of our approach, demonstrating an Accuracy of 

0.8601 and an F-measure of 0.8540, outperforming other 

methods compared in our study. This underscores the potential 

of our method in enhancing the accuracy and reliability of SHM 

data analysis in civil infrastructure monitoring. 

Keywords—Structural health monitoring; Anomaly detection; 

reinforcement learning; differential equation; imbalanced 
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I. INTRODUCTION  

SHM is a key method for overseeing civil infrastructure, 
offering insights into structural loads, performance, responses, 
and future behavior predictions. SHM's widespread adoption 
has led to a significant increase in data generation; for 
example, China's Sutong Bridge, with its 785 sensors, produces 
2.5 TB of data annually [1, 2]. Analyzing this vast amount of 
SHM data is challenging due to various anomalies caused by 
sensor errors, system failures, environmental factors, and more. 
These issues, compounded by data from significant events like 
earthquakes or accidents, can jeopardize the accuracy of 
structural analysis and the predictive power of SHM systems 
[3]. 

Implementing sensor-driven SHM methods generates large 
amounts of sequential data, complicating manual analysis and 

anomaly detection. Variations in this data may result from 
diverse factors such as weather, vehicle overloads, accidents, 
or unexpected events. It is crucial to recognize that not all 
anomalies indicate structural issues; some may stem from 
sensor errors, calibration issues, noise, or transmission 
problems. To tackle these anomalies, solutions can be applied 
at both hardware and software levels. While hardware solutions 
like using wired data channels, extra sensors, or self-validating 
sensors are effective, they are often costly. Therefore, there is a 
growing preference for advanced data preprocessing 
techniques specifically designed for anomaly detection. 

SHM faces the challenge of data imbalance, where class 
instances vary significantly in number. To tackle this issue, two 
approaches are used: data-centric and algorithm-based. Data-
centric strategies, such as under-sampling, over-sampling, and 
hybrid methods, aim to balance class distribution. Notably, the 
synthetic minority oversampling technique (SMOTE) [4] 
creates new minority class instances by linear interpolation, 
while NearMiss [5] under-samples the majority class using a 
nearest neighbor algorithm. However, over-sampling can lead 
to overfitting, and under-sampling may lose critical 
information. Algorithmic approaches focus on emphasizing the 
underrepresented class. These include modifying ensemble 
learning, altering decision thresholds, and employing cost-
sensitive learning strategies. Cost-sensitive methods treat 
classification as cost minimization, assigning higher 
misclassification costs to minority cases. Ensemble methods 
combine multiple classifiers for a final decision, and threshold 
adjustment methods tweak the decision threshold during 
testing. These techniques aim to effectively balance accuracy 
and information retention in SHM data classification [6]. 

Furthermore, the incorporation of deep learning 
methodologies can serve as an avenue to address the challenge 
of imbalanced classification [7, 8]. Deep Reinforcement 
Learning (DRL) emerges as a promising solution to handle 
imbalanced data due to its distinct attributes. By employing a 
reward mechanism, DRL can assign augmented importance to 
the minority class, either by imposing stricter penalties for 
misclassifying instances from the minority class or by offering 
greater rewards for accurately identifying them. This approach 
actively counters the bias that conventional techniques display 
towards the majority class. The advantages of DRL extend 
beyond the mere balancing of class distribution. It also enriches 
the visibility of crucial patterns, particularly those associated 
with the minority class, by effectively filtering out noisy data. 
DRL's ability to unearth significant yet often overlooked 
features within the data contributes to the development of a 
more robust and efficient model [9]. 
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The initial weight configuration in neural networks is 
crucial for training in SHM prediction. Traditional training, 
often using gradient-driven algorithms like backpropagation, 
typically starts with randomly assigned weights. However, the 
initial weight selection greatly impacts the training's efficiency 
and outcome. Careful consideration of the initialization 
strategy is essential for effective training and accurate SHM 
prediction. One effective approach is population-based 
training, where the best solution from a range of generated 
models is chosen as the starting point for the neural network. 
This method helps avoid the common issue of getting stuck in 
local optima, prevalent in standard training methods. Notably, 
simple evolutionary algorithms have shown effectiveness on 
par with stochastic gradient descent in neural network training 
[10].  

DE [11] is a popular population-based optimization 
algorithm widely used in solving optimization problems, 
particularly effective for weight initialization in machine 
learning. DE offers several advantages: it ensures a broad 
exploration of the solution space, preventing entrapment in 
local optima and leading to better weight configurations. It 
updates weights iteratively based on the difference between 
current and target solutions, promoting faster convergence and 
improved performance. DE is also resilient to noise in fitness 
assessments, adeptly handling data uncertainties during weight 
initialization and providing stable initial weight settings. 
Furthermore, DE's flexibility and adjustability in weight 
initialization permit tailoring to particular problem areas, like 
establishing weight limits or integrating previous insights. This 
versatility improves DE's capability to initiate weights that are 
aptly matched to the distinct learning challenges being 
addressed. 

This study investigates a novel approach combining a RL-
based training algorithm with an advanced DE technique, 
specifically designed for SHM of bridges. It focuses on 
detecting anomalies in time-series sensor data from a major 
cable-stayed bridge in China. The data is divided into seven 
categories: normal, trend, square, missing, minor, drift, and 
outlier, with 'normal' being the most frequent. To overcome the 
issue of class imbalance in the dataset, the research introduces 
a framework that treats classification as a series of strategic 
decisions. In each iteration, an agent assesses a training sample 
(environmental state) and makes classification decisions, 
earning rewards or penalties based on the outcome. Classes 
with fewer samples are assigned higher rewards, encouraging 
accurate identification of less common anomalies. 
Additionally, the study integrates a unique mutation operator 
based on clustering principles within the DE framework to 
improve the backpropagation (BP) process. This operator 
identifies dominant clusters in the DE population and 
implements a novel approach for creating potential solutions. 
The key contributions of this research lie in its innovative 
approach to class imbalance, decision-making process in 
classification, and enhanced training methodology through 
integrating RL, DE, and BP processes: 

1) We present an innovative RL-based method specifically 

designed to address the inherent challenges of imbalanced 

classification in SHM. 

2) The approach integrates a unique reward system that 

reinforces accurate decisions while penalizing incorrect ones. 

By allocating enhanced rewards to the less represented class, 

we directly address the challenge of data skewness, 

encouraging the algorithm to appropriately focus on lesser-

known data. This strategic maneuver contributes to a more fair 

and balanced classification procedure. 

3) To extract deeper insights from images and refine the 

classification decision-making process, we employ a fusion of 

CNN models. This approach enhances the representation of 

features, resulting in improved accuracy and robustness in 

classification efforts. 

4) We have developed an enhanced DE algorithm to 

initialize weights in the proposed model efficiently. This tactic 

aids in identifying a promising region for initiating the BP 

algorithm within the model. 

The structure of this document is as follows: Section II 
details a review of relevant literature, and Section III provides 
an overview of the key dataset utilized in this study. Section IV 
delves into the proposed strategy, elucidating the core 
methodology in depth. Section V unfolds the empirical 
outcomes and their subsequent dissection. Concluding 
observations and potential avenues for future inquiry are 
encapsulated in Section VI. 

II. LITERATURE REVIEW  

Artificial Intelligence (AI) techniques bring forth the 
capability to uncover patterns within time-series data with no 
prior comprehension of the underlying structural architecture. 
These methodologies involve exploring either the time or 
frequency domain of the data, extracting pertinent 
characteristics through statistical evaluations, or employing 
signal processing tools like the Fourier and wavelet transforms, 
as well as the Hilbert-Huang and Shapelet transforms. On the 
other hand, deep learning (DL) algorithms possess the ability 
to autonomously extract significant attributes by interpreting 
time-frequency data as visual inputs within a CNN framework. 
However, it is important to acknowledge that DL-centric 
approaches, while potent, demand substantial computational 
resources and cause meticulous fine-tuning of hyperparameters 
[12]. 

In order to tackle irregularities within SHM data, Pan et al. 
[13] presented an approach rooted in transfer learning. They 
employed a deep neural network to discern and rectify aberrant 
data, enhancing the accuracy of bridge evaluations. Samudra et 
al. [12] devised a comprehensible framework rooted in 
decision trees, employing random forest classifiers to 
categorize acceleration data in the realm of SHM. This 
approach, boasting a remarkable 98% accuracy, emerges as an 
economically viable avenue for gauging infrastructure state. Li 
et al. [14] outlined a strategy to elevate the efficacy of anomaly 
detection within bridge SHM systems. Employing strategies 
like data augmentation, feature dimension reduction, and a 
two-stage deep convolutional neural network, they achieved an 
elevated level of recognition accuracy.  Tang et al. [3] 
presented an innovative anomaly detection method catering to 
SHM, employing a CNN that transforms time series data into 
visual representations. This approach achieves precise 

https://onlinelibrary.wiley.com/authored-by/Tang/Zhiyi
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identification of diverse pattern anomalies, scaling effectively 
and bolstering accuracy. Ye et al. [15] proposed a technique 
rooted in deep learning for identifying data anomalies within 
SHM systems. By deploying time-frequency analysis and 
CNNs, they translated SHM data into RGB images, 
subsequently classified through a Google network. Green et al. 
[16] introduced a new way to use Bayesian techniques in the 
analysis of inclinometer data for SHM. This method allows for 
the detection of anomalies, forecasting, and quantifying 
uncertainties, leading to better risk assessment and cost 
reduction. 

Moreover, the framework has the potential to be applied in 
various engineering fields beyond inclinometers. Boccagna et 
al. [17] suggested an AI approach for monitoring structural 
health in almost real-time, using unsupervised deep learning. 
By preprocessing data and utilizing artificial neural network 
autoencoders, the technique effectively identifies anomalies, 
surpassing current methods and demonstrating encouraging 
outcomes. Lei et al. [18] proposed a residual attention network 
(RAN) to detect abnormal data in measured structures. The 
RAN incorporates attention mechanisms and residual learning 
to enhance classification accuracy and efficiency. It achieved 
exceptional performance and generalization on datasets from 
an arch bridge and a cable-stayed bridge, surpassing existing 
models in terms of multi-classification and accuracy. Yang and 
Nagarajaiah [19] introduced a principled, independent 
component analysis approach to reduce faulty data during data 
transmission; then, they achieved reliable data transfer and 
image restoration using compression sensing methods [20]. 
Yang and Nagarajaiah [21] employed the principal component 
pursuit method to detect and minimize burst noise in ambient 
vibration response. They also introduced a data management 
and processing framework based on sparsity rank and low-rank 
techniques. Park et al. [22] utilized transmission errors and 
ensemble empirical mode decomposition to identify anomalies 
such as gear teeth spalls and cracks in rotating machinery. 

III. DATASET DESCRIPTION 

In this study, our primary focus centers on the detection of 
specific deviations - including trends, squares, omissions, 
minor variances, drifts, and outlier - within the acceleration 
time series derived from a lengthy cable-stayed bridge in 
China. The IPC-SHM community [23] provides access to 
curated data from this bridge. An overview of these anomalies, 

distilled from the bridge's measured data, is concisely 
summarized in Table I. 

Besides the irregularities mentioned, it is vital to 
acknowledge that acceleration sensors, particularly those 
affixed to structures with potential vulnerabilities, adeptly 
detect a broad range of atypical patterns. These include offsets, 
characterized by sudden, noticeable jumps in response, and 
gains, marked by a slow, consistent increase in response over 
time. Furthermore, the sensors can identify precision 
deterioration, where the response shows erratic fluctuations, 
and complete failures, which result in a response akin to the 
randomness of white noise in the frequency domain. 
Recognizing and interpreting these additional types of 
deviations are crucial for comprehensive structural health 
monitoring, as they can provide early warning signs of more 
significant issues or impending failures. 

The dataset under study contains a thorough record of 
acceleration data over a month, meticulously gathered from 38 
strategically placed accelerometers across the bridge. For 
detailed analysis, this data is segmented into individual hourly 
time series, leading to an extensive collection of 28,272 such 
series. This figure is calculated considering the number of 
sensors, the days in the month, and the daily time cycle. Given 
that the accelerometers recorded at a rate of 20 Hz, the total 
data volume reaches an astonishing          data points, a 
multiplication of the number of time series, seconds in an hour, 
and the sampling rate. This vast dataset offers a rich source for 
in-depth analysis, allowing for the examination of minute 
changes and patterns over time, providing a comprehensive 
understanding of the bridge's dynamic behavior under various 
conditions. 

The subsequent classification task systematically organizes 
these 28,272 time series responses into seven distinct 
categories. This includes the ‘normal’ set and six other types of 
anomalies: trend, square, missing, minor, drift, and outlier. A 
detailed chart in Table I itemizes the precise distribution of 
time series across each category within this dataset. This 
categorization is crucial for identifying the predominant 
anomalies and understanding their relative occurrences. It aids 
in developing targeted strategies for monitoring and 
maintenance, ensuring focused attention on the most critical or 
frequently occurring issues, enhancing the overall efficiency 
and effectiveness of the structural health monitoring process. 

TABLE I. DESCRIPTION OF THE ANOMALIES 

Class Description Count 

Normal 
The time-domain response showcases balance, while multiple resonance peaks can be observed in the frequency-domain 
response. 

13575 

Trend 
A discernible trajectory is apparent in the time-domain response, and a distinctive peak value is identified in the frequency-

domain response. 
5778 

Square The time-domain response mirrors a square wave. 2996 

Missing The bulk of the time-domain response is absent. 2942 

Minor Compared to standard category data, the time-domain response exhibits a notably reduced magnitude. 1775 

Drift The time-domain response varies unpredictably, either exhibiting arbitrary shifts or increasingly diverging over time. 679 

Outlier The time-domain response contains singular or multiple pronounced protrusions. 527 

https://scholar.google.com/citations?user=AkAU6vkAAAAJ&hl=en&oi=sra
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IV. MODEL ARCHITECTURE 

Fig. 1 illustrates the intricacies of our innovatively 
developed model, meticulously engineered to boost the 
efficiency of anomaly detection. This model is specifically 
tailored to tackle issues like uneven distribution of classes and 
the critical importance of accurately setting initial weights. By 
integrating the DE algorithm with PPO, our model adeptly 
circumvents common hurdles encountered in standard models. 

Conventional methods often miss a systematic strategy for 
establishing initial weights, resulting in reduced learning 
speeds and a propensity to settle on less-than-ideal outcomes. 
Our technique leverages DE to provide a diverse spectrum of 
initial weights. This variety helps the model to bypass smaller 
optima and more efficiently converge on more comprehensive 
solutions. Expanding on this, the utilization of DE in our 
method is not just about broadening the range of initial 
weights, but also about introducing a dynamic and adaptive 
way of initializing these weights. This adaptability is crucial in 
complex models where the landscape of solutions is vast and 
varied. By starting from a more helpful position in the solution 
space, our method enhances the model’s ability to navigate 

through this landscape, leading to quicker and more effective 
convergence. Furthermore, this approach also contributes to the 
robustness of the model, making it less susceptible to the 
challenges posed by different data distributions and 
complexities inherent in various learning tasks. Our method 
does not just improve the efficiency of the learning process, but 
also broadens its applicability and effectiveness across a range 
of scenarios. 

Additionally, the RL element in our framework is 
thoughtfully structured to significantly favor the accurate 
identification of the minority class, underscoring these crucial 
predictions. This represents a significant advancement over 
conventional supervised learning approaches, which often 
struggle with insufficient data representation across various 
classes. The dynamic nature of policy learning in RL 
encourages a fairer approach to decision-making, leading to 
enhanced strategies for identifying underrepresented 
categories. The flexibility of RL in our setup sets it apart from 
orthodox methodologies, equipping it with the essential 
capabilities to efficiently address the typical challenges found 
in conventional classification techniques employed in anomaly 
detection. 

 

Fig. 1. Our model pipeline encompasses a sequence of procedures. 

A. Pre-training Phase 

Deep models depend heavily on the initialization of deep 
network weights. If the initial values are not accurate, it can 
lead to convergence issues in the model. The first stage in this 
paper is to set the CNN and feed-forward neural network 
weights. We offer a more effective DE approach, which 

incorporates the power of a clustering technique and an 
innovative fitness function to optimize its performance. In our 
improved DE algorithm, we utilize a mutation and updating 
scheme based on clustering to enhance the optimization 
performance. Complex architectures rely significantly on the 
initial setup of deep network parameters. Inaccurate starting 
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points may cause the model to struggle with convergence. The 
initial step in our study involves configuring the weights for the 
CNN and the feed-forward neural networks. We propose an 
enhanced DE method that integrates the effectiveness of a 
clustering algorithm and a novel fitness function to boost its 
efficiency. In our refined DE technique, we employ a mutation 
and refresh strategy centered on clustering to improve the 
optimization process. Extending this, our approach takes into 
account the intricacies of deep learning architectures, ensuring 
that the weight initialization is not only randomly, but 
strategically influenced by the underlying data structure. The 
clustering-based mutation strategy allows for a more targeted 
and data-driven adjustment of weights, which is particularly 
useful in navigating the high-dimensional spaces typical in 
deep learning. This method aids in avoiding local minima and 
accelerates the convergence of the model. 

The mutation mechanism, influenced by studies referenced 
in [24], identifies a promising region in the exploration 
domain. Employing the k-means clustering technique, the 
existing group P is segregated into k segments, each 
representing a unique portion of the exploration zone. A 

random integer chosen from the interval    √   dictates the 
cluster count. The cluster deemed most optimal possesses the 
lowest mean fitness value across its gathered samples post-
clustering. Expanding on this, our method enhances the search 
strategy within the algorithm. By dividing the population into 
clusters, we can pinpoint specific regions in the search space 
that hold potential for better solutions. This clustering not only 
focuses the search but also adds a layer of precision in 
identifying promising areas, thereby increasing the efficiency 
of the mutation process. Additionally, the number of clusters is 
dynamically determined based on the population size, allowing 
for a flexible and adaptable approach to clustering. This 
adaptability is crucial in dealing with diverse problems and 
varying sizes of search spaces. The concept of assessing the 
perfection of a cluster based on its average fitness introduces a 
competitive element among the clusters, driving the algorithm 
to favor areas of the search space that show higher potential for 
optimal solutions. Furthermore, our approach refines the 
selection process within each cluster. After identifying the 
most optimal cluster, we focus on fine-tuning the solutions 
within this cluster, leveraging the collective intelligence of the 
group. This targeted mutation within the most promising 
cluster ensures the algorithm does not just wander aimlessly 
across the entire search space but makes informed, strategic 
moves towards areas more likely to yield superior results. 

The clustering-based approach outlines the proposed 
mutation: 

  
   ⃗⃗ ⃗⃗ ⃗⃗  ⃗       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗       ⃗⃗ ⃗⃗  ⃗     ⃗⃗ ⃗⃗  ⃗   (1) 

where,    ⃗⃗ ⃗⃗  ⃗  and    ⃗⃗ ⃗⃗  ⃗  represent two candidate solutions 

randomly selected from the current population while     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
corresponds to the best solution within the promising region. It 
is important to note that     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ may not be the best solution for 

the entire population. 

Following the creation of M new solutions via mutation 
grounded in clustering, the current population undergoes an 
update under GPBA [25]. The GPBA is an innovative 

optimization approach that meticulously navigates through the 
search space, assessing the effectiveness of solutions against a 
series of established patterns. In practical application, GPBA 
changes the population by meticulously choosing and 
substituting individuals according to their performance 
indicators. By employing these patterns as navigational aids, 
GPBA refines its quest for the best solutions, often resulting in 
a more streamlined and efficient path to the global optimum. 
This method’s real strength lies in its structured approach to the 
exploration of the search space. By using gradient patterns, the 
algorithm can intelligently predict the direction in which 
improvements can be made, rather than relying on random or 
exhaustive search methods. This predictive capability is helpful 
in complex optimization scenarios, characterized by vast 
search spaces and elusive optimal solutions. It allows the 
algorithm to bypass fewer promising regions of the search 
space, focusing its efforts on areas more likely to yield fruitful 
results. Furthermore, the GPBA’s adaptability to different 
optimization problems adds to its versatility. Whether the task 
involves continuous or discrete variables, linear or non-linear 
relationships, the GPBA can be tailored to suit the specific 
characteristics of the problem. This adaptability is achieved 
through the customization of its pattern-based search 
mechanisms, which can suit various problem structures and 
complexities. Besides its efficiency in finding solutions, the 
GPBA also offers improved computational speed compared to 
more traditional optimization methods. This is beneficial in 
real-time applications or scenarios where time is a critical 
factor. The algorithm’s ability to quickly converge to an 
optimal solution without sacrificing accuracy makes it an 
attractive choice for a wide range of optimization tasks. 

The process unfolds as follows: 

 Selection: To initiate the algorithm, generate k random 
individuals that will function as the initial points. 

 Generation: Produce a set of   solutions using 

mutation based on clustering and denote it as     . 

 Replacement: Choose   solutions randomly from the 
current population to form set  . 

 Update: Select the top M solutions from the combined 

groups       and B to create a new group   . The 
refreshed population is derived by merging members of 
set P not included in B with those from set    (   
          

B. DRL 

DRL stands as a formidable approach in the domain of 
deep learning. Within this framework, an intelligent agent 
engages dynamically with its environment, aiming to maximize 
its cumulative rewards. This flexible and adaptive learning 
mechanism empowers the agent to make a series of decisions, 
often in the face of uncertainty, which has profound 
applications across a wide spectrum of domains, including but 
not limited to robotics, healthcare, and finance [26]. The 
prowess of DRL becomes evident in tasks that require 
sequential decision-making and the ability to adapt to 
unforeseen and evolving circumstances. Its capacity to handle 
complex activities that unfold over time, adjusting its strategies 
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and responses as needed, underscores its versatility and broad 
applicability in addressing real-world challenges. DRL’s ability 
to learn from interactions with the environment, optimize 
decision-making processes, and navigate through dynamic 
scenarios positions it as a valuable tool for a wide range of 
applications, making it a compelling area of research and 
development in artificial intelligence. 

In categorization-related tasks, a major challenge lies in 
handling datasets with imbalanced distributions, where one 
category is markedly more dominant than others. This 
disproportion might cause skewed educational outcomes, as 
standard classification approaches often lean towards the 
predominant group, leading to subpar identification of the less 
represented categories. Under such conditions, DRL stands out 
as a superior strategy for educating neural networks over 
conventional approaches. DRL addresses the problem of 
lopsided categorization by employing a system based on 
rewards [27]. Through carefully allocating incentives, it shifts 
the agent's attention towards instances belonging to the 
underrepresented categories, thus improving the detection of 
these rarer classes. The reward-centric model of DRL promotes 
a comprehensive decision-making process, prioritizing the 
discovery and classification of rare events or infrequently 
occurring categories. 

In the realm of DRL, the primary goal of the agent is to 
select actions that optimize prospective benefits. The 
aggregation of rewards for forthcoming situations, symbolized 
by the reward value, gradually decreases over time, influenced 
by the discount rate γ, as illustrated in Eq. (2). In this formula, 
T corresponds to the concluding time-step of an episode [28]. 

   ∑       
         (2) 

where,    represents the cumulative reward starting from 
time  , and     denotes the reward received at time   . Q-
values, representing the quality of state-action interactions, 
denote the anticipated outcome of policy   upon executing 
action   within state  . This is computed as depicted in Eq. (3). 

                           (3) 

The most optimal action-value function, represented as the 
highest anticipated reward among all approaches after 
witnessing state   and performing action  , is calculated as 
depicted in Eq. (4). 

                               (4) 

The function carries out the Bellman equation [29], which 
states that the supreme anticipated outcome for a particular 
maneuver is the sum of the benefits from the present maneuver 
and the utmost anticipated outcome from forthcoming 
maneuvers in the next instance. This concept is exemplified in 
Eq. (5). 

       =                                (5) 

The computation of the ideal action-value function is 
methodically executed using the Bellman equation, as 
illustrated in Eq. (6). 

         =               
                 (6) 

During the learning stage, as the network experiences state 
 , it generates a state-specific action. Subsequently, the system 
provides a reward r and transitions to the next state   . These 
components are combined into a set           , subsequently 
stored in memory M. Groups of such sets, termed Batches B, 
are selected for performing gradient descent. The method for 
calculating loss is detailed in Eq. (7). 

      =∑              
 

               (7) 

Here, θ symbolizes the model's weights, while   indicates 
the approximated objective for the Q function, evaluated as the 
summation of the reward linked with the state-action pair and 
the reduced maximum Q value in future instances, as 
illustrated in Eq. (8). 

                           (8) 

It is important to recognize that the Q value assigned to the 
terminal state is initialized at zero. The gradient's magnitude 
for the loss function during the i-th iteration is ascertainable 
through Eq. (9). 

   
        ∑                 

                         

(9) 

Through the execution of a gradient descent iteration on the 
loss function, adjustments are made to the model’s weights 
under Eq. (10). This modification endeavors to lessen the 
discrepancy, where α denotes the learning rate dictating the 
extent of advancement within the optimization procedure. 

    =       
            (10) 

1) Problem formulation: Within this paper, the 

application of the RL algorithm is directed towards the field of 

SHM. The ensuing explanation delineates the method’s 

functioning and interpreting each component: 

 State   : This matches the image captured at the 
temporal interval t. Here, an image refers to a graphical 
representation of the time series data. This image is 
composed of plots or graphs that visually depict the 
various anomalies identified in the acceleration time 
series of the bridge. 

 Action   : The categorization executed on the image is 
regarded as an action. This signifies a choice carried out 
by the network, grounded in its prevailing 
comprehension of the objective. 

 Action   : A reward is furnished for every 
categorization, designed to steer the network towards 
accurate categorization. The formulation of this 
remuneration process is expressed as: 

             {

                   

                    

                   

                    

  (11) 

In this context,    {      } , and 
   {                                        }  
indicates the minority classes. Accurate or erroneous 
classification of a case from the prevalent category leads to an 
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incentive or penalty of +λ or -λ, respectively. This outlined 
method compels the network to focus on accurately identifying 
instances from the less frequent class by allocating a higher 
absolute value to the reward. Concurrently, the incorporation 
of the normal class and the flexible reward parameter within 
the range of 0<λ<1 adds complexity to the reward scheme. 
This allows for refined adjustment of the network's focus 
between the more and less prevalent classes. 

V. EMPIRICAL EVALUATION 

In the meticulous assessment stage, a detailed and 
exhaustive analysis was carried out, contrasting our suggested 
model with six distinct deep-learning contenders, namely 
TransAnoNet [13], AnoSegNet [14], WaveletCNN [15], GAN-
VAE [30], CNN-MIAD [31], and VibroCNN. This evaluation 
aimed to provide an all-encompassing insight into the strengths 
of our model vis-à-vis established methods. Moreover, we 
delved into different versions of our model by introducing 
three alternative variants for evaluation. The initial variant, 
termed "Proposed without dilated convolution," was based on a 
similar foundational architecture to our original model, yet did 
not incorporate dilated convolution. The subsequent variant, 
designated as "Proposed without RL," excluded the 
reinforcement learning component from the classification 
procedure. The third altered version, named "Proposed without 
DE," employed random initialization for the weights. We 
appraised these models using standard performance indicators, 
focusing specifically on measures like the F-measure and the 
geometric mean due to their proven effectiveness in tackling 
imbalanced datasets. The findings, detailed in Table II, 
resoundingly affirm the preeminence of our proposed model 
over all competing models, including those previously 
recognized as industry standards like AnoSegNet and 
TransAnoNet. Across every evaluative criterion, our model 
demonstrated consistent superiority over its rivals. Noteworthy 
accomplishments involve a marked error reduction exceeding 
9% in the F-measure and surpassing 8% in the G-means 
indices. These notable advancements highlight the efficacy of 
our model in surmounting the difficulties associated with 
imbalanced datasets and its adeptness at furnishing more 
accurate forecasts. In juxtaposing our model with the modified 
iterations "Proposed without dilated convolution," "Proposed 
without RL," and "Proposed without DE," the indispensability 

of incorporating dilated convolution, RL, and DE methods 
becomes clear. Our model manifested a notable error rate 
reduction, approximately 5.35%, in comparison to its 
counterparts. This outcome accentuates the critical impact that 
the amalgamation of dilated convolution, RL, and DE 
strategies has in boosting the model's performance, thus 
solidifying their role as catalysts in the evolution of deep 
learning models. 

In Fig. 2, we present the receiver operating characteristic 
(ROC) curves corresponding to the methodologies outlined in 
Table II. The area under the curve (AUC) serves as a pivotal 
metric for quantifying the performance of classifiers. An AUC 
score of 1 signifies impeccable discrimination ability, while a 
score of 0.5 suggests performance no better than random 
guessing. 

It is worth highlighting that our proposed model emerges as 
the leader in this analysis, boasting a notable AUC value of 
0.60. This solid outcome highlights its remarkable proficiency 
in accurately differentiating between favorable and unfavorable 
results, reinforcing the credibility of our approach as a potent 
predictive tool. Additionally, the "Proposed without RL" 
approach also demonstrates strong performance, achieving an 
AUC of 0.57, further affirming its ability to discern between 
positive and negative instances. In contrast, WaveletCNN and 
TransAnoNet, which achieve AUC scores of 0.46 and 0.49, 
respectively, offer less impressive performance. VibroCNN, 
GAN-VAE, and CNN-MIAD display even less favorable 
outcomes, with AUC values ranging from 0.43 to 0.45. 
Particularly, VibroCNN's meager AUC of 0.43, only slightly 
surpassing random chance, highlights its underwhelming 
performance. The ROC analysis vividly illustrates the varying 
degrees of performance among the evaluated methodologies. 
The exceptional predictive prowess demonstrated by our 
proposed method, whether in its standalone form or when 
coupled with RL, underscores the potency of our approach. 
Furthermore, it establishes a robust foundation for future 
enhancements and promising applications in the realm of 
predictive modeling, charting a path toward even more 
effective methodologies in the prediction domain. This 
remarkable performance positions our model as a key player in 
the field of predictive analytics. 

TABLE II. EFFICIENCY INDICATORS OF THE SUGGESTED SYSTEM COMPARED TO RIVAL ADVANCED NETWORKS FOR SHM 

 Accuracy F-measure G-means 

TransAnoNet 0.8104±0.0156 0.7802±0.1053 0.8102±0.0203 

AnoSegNet 0.8001±0.2156 0.7371±0.0268 0.7902±0.1236 

WaveletCNN 0.8005±0.2130 0.7202±0.0268 0.7906±0.2156 

GAN-VAE 0.6801±0.0526 0.5402±0.1236 0.6405±0.0256 

CNN-MIAD 0.7703±0.1563 0.6602±0.1036 0.7403±0.1265 

VibroCNN 0.6704±0.0501 0.5501±0.0652 0.6462±0.0052 

Proposed without dilated convolution 0.7904 ± 0.0517 0.7615 ± 0.1623 0.8014 ± 0.3622 

Proposed without RL 0.8315 ± 0.0243 0.8200 ± 0.0417 0.8315 ± 0.0621 

Proposed without DE 0.8425 ± 0.0123 0.8345 ± 0.0120 0.8436 ± 0.0505 

Proposed 0.8601 ± 0.0384 0.8540 ± 0.0297 0.8760 ± 0.0123 
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Fig. 2. AUC chart for the suggested approach and alternative comparative techniques. 

Fig. 3 showcases the confusion matrices for the proposed 
model, providing a detailed representation of its classification 
performance across different categories. From the matrix, we 
can observe the number of correct predictions (true positives) 
along the diagonal for each class, which are as follows: 13,271 
for ‘Normal’, 5,363 for ‘Trend’, 2,608 for ‘Square’, 2,750 for 
‘Missing’, 1,571 for ‘Minor’, 539 for ‘Drift’, and 409 for 
‘Outlier’. These figures suggest the model is most proficient at 
identifying the ‘Normal’ class and least proficient at 
identifying ‘Outlier’ instances, which could be because of their 
lower occurrence in the dataset. The off-diagonal numbers 
represent the instances where the model misclassified the 
inputs. For example, there are 76 instances where ‘Normal’ 
was incorrectly classified as ‘Missing’, and 80 instances where 
‘Square’ was mislabeled as ‘Normal’. Such misclassifications 
can diagnose and improve the model’s performance, possibly 
by providing it with more representative training data or 
refining its feature detection capabilities. 

Fig. 4 illustrates the evolution of error dynamics within the 
proposed model across 500 epochs. Commencing at an initial 
value of 12, the error undergoes a consistent descent as epochs 
unfold. This sustained decline signifies the model's progressive 

learning and enhancement of its predictive capabilities over 
time. It is significant to observe that the most pronounced 
decrease in error happens during the early training stages, 
slowly leveling off as the number of epochs increases. This 
trend indicates that with ongoing training, the rate of error 
reduction lessens, signifying a point where further error 
minimization from extended training becomes less impactful. 
Near the 425th epoch, a clear steadying of the error rate is 
observed, consistently hovering around a value of 
approximately 4.2962 in subsequent epochs. This leveling off 
of error rates suggests that continued training beyond this 
juncture is unlikely to result in notable enhancements in the 
model's forecasting accuracy. This stage may signal that the 
model has attained a state of convergence, reaching an 
accuracy level where additional fine-tuning might not bring 
considerable improvements. Alternatively, this stabilization 
could also suggest the emergence of overfitting concerns, 
especially if the model's performance on validation or test 
datasets ceases to improve. This insight into the error dynamics 
across epochs not only showcases the model's learning journey 
but also provides valuable guidance for fine-tuning training 
duration and preventing potential overfitting scenarios. 
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Fig. 3. Comparative confusion matrices for the proposed model. 

 

Fig. 4. Comparative diagram of error dynamics. 

A. Impact of the Reward Function 

The allocation of rewards to both the more common and 
less frequent categories for accurate and inaccurate 
classifications is denoted by +1 and ±λ. The particular 
magnitude of λ is determined by the ratio of frequent 
occurrences relative to rare events. As this ratio rises, it is 
expected that the ideal magnitude of λ will diminish 
proportionally. In order to thoroughly investigate the influence 
of λ, we executed an extensive assessment of the suggested 
structure employing diverse λ magnitudes, varying from 0 to 1 
in steps of 0.1. Concurrently, the incentive for the more 
frequent category stayed unchanged. The detailed results are 
illustrated in Fig. 5. When adjusting λ to 0, the effect of the 
dominant group turns negligible. 

Conversely, with a value of λ = 1, both the more common 
and less common groups carry equivalent weight. The insights 

extracted from the analysis indicate that the framework 
achieves its peak effectiveness when λ is established at 0.7, as 
observed across all assessed performance indicators. This 
observation suggests that the ideal λ magnitude lies within the 
range of zero to one. It's important to recognize that although 
modulating λ to reduce the impact of the dominant group is 
essential, configuring it too low might adversely affect the 
overall effectiveness of the entire structure. The evidence 
clearly indicates that the choice of λ markedly affects the 
success of the structure. The suitable λ magnitude depends on 
the comparative occurrences of more frequent and infrequent 
events, highlighting the need for careful determination to 
achieve the best results. This study underscores the intricate 
interplay between λ and the framework's success, advocating 
for a balanced choice of λ to strike a harmonious equilibrium 
between the two categories and foster effective results.
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Fig. 5. Evaluation of the performance metrics of the proposed system under various settings of the parameter λ. 

B. Effect of Loss Function 

The landscape of strategies available to combat the 
complexities arising from data imbalances in machine learning 
models is vast and diverse. It spans an array of techniques, 
ranging from the fine-tuning of data augmentation methods to 
the meticulous selection of aptly suited loss functions. The 
deliberate choice of an appropriate loss function plays a central 
role in ensuring the model's capacity to glean valuable insights 
from the underrepresented class embedded within the dataset. 
In our quest to unravel the nuances of the varying impacts of 
distinct loss functions, we embarked on a comprehensive 
exploration of five distinct contenders: WCE [32], BCE  [33], 
DL [34], TL [35], and CL [36]. 

Among these contenders, both BCE and WCE have 
established themselves as widely adopted loss functions, 
treating positive and negative samples with equal significance. 
However, it's imperative to recognize that these functions 
might not be optimally configured to cater to datasets 
characterized by pronounced imbalances that accentuate the 
minority class. In stark contrast, DL and TL exhibit superior 
performance when confronted with skewed datasets, delivering 

more favorable outcomes for the underrepresented class. 
Notably, CL emerges as a standout loss function, showcasing 
its prowess in scenarios where imbalanced data prevails. By 
skillfully adjusting the weights of the loss function, CL 
demonstrates its ability to prioritize intricate samples over 
simpler ones, thereby enhancing its adaptability in the face of 
challenging data distributions. 

Our rigorous experimentation and analysis of these diverse 
loss functions are presented in meticulous detail in Table III. 
The outcomes unequivocally affirm the supremacy of CL over 
TL, leading to a substantial 3.72% reduction in the error rate 
concerning accuracy and an impressive 3.58% decrease in the 
F-measure. Nevertheless, it is crucial to underscore that, when 
benchmarked against the performance of our proposed model, 
CL exhibits a 1.5% deficit. These findings underscore the 
paramount significance of making a judicious selection of an 
appropriate loss function when navigating the intricacies of 
imbalanced data. Furthermore, they shine a spotlight on the 
commendable performance of our model in effectively 
addressing this prevalent and challenging issue in machine 
learning. 

TABLE III. PERFORMANCE EVALUATION METRICS OF THE PROPOSED MODEL AGAINST VARIOUS LOSS FUNCTIONS IN SHM 

 Accuracy F-measure G-means 

WCE 0.7303± 0.0269 0.7105± 0.1204 0.7412± 0.1120 

BCE 0.7963± 0.0626 0.7536± 0.1203 0.7963± 0.0103 

DL 0.7923± 0.0365 0.7821± 0.0056 0.8103± 0.1123 

TL 0.8236± 0.2126 0.8023± 0.0145 0.8352± 0.1035 

CL 0.8563± 0.0035 0.8325± 0.0032 0.8523± 0.0039 
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C. Effect of CNNs 

The architecture encompasses an array of CNNs that 
concurrently derive feature vectors from images. The quantity 
of CNNs utilized for feature extraction greatly influences the 
model's efficiency. Inadequate number of CNNs results in 
inadequate feature extraction, whereas too much may lead to 
problems such as overfitting or superfluousness. Both 
scenarios can diminish the model's overall utility. Therefore, 
carefully selecting the ideal number of CNN feature extractors 
is crucial. To identify this optimal number, we conducted a 
thorough and systematic analysis, evaluating the model's 
performance across a range of 1 to 7 CNN feature extractors. 
Our aim was to pinpoint the point where the model achieves 

peak functionality while maintaining a delicate balance 
between thorough feature extraction and operational efficiency. 
Our comprehensive experiments, as illustrated in Fig. 6, 
unequivocally demonstrate that three CNN feature extractors 
yield the model's best performance. Interestingly, as the 
number of CNNs increases, the model's performance declines, 
with six or seven extractors being less effective than using just 
one. This observed pattern highlights the existence of an 
optimal number of CNN feature extractors, maximizing the 
model's ability to capture relevant and discriminative features, 
ultimately leading to enhanced overall performance. Selecting 
three CNN feature extractors strikes a harmonious balance, 
optimizing the model's ability to extract essential information 
from input imagery, boosting its efficiency and effectiveness. 

 

Fig. 6. Plotting the performance indicators of the suggested model while altering the quantity of convolutional feature extraction layers. 

D. Discussion 

The proposed model signifies a significant advancement in 
the landscape of anomaly detection methods within the domain 
of SHM. By incorporating dilated convolutional and DE and 
RL techniques, this model showcases impressive predictive 
accuracy. These strides in technological innovation are 
especially pertinent considering the current challenges that the 
field of civil infrastructure encounters on a global scale. 

However, it is essential to subject the model to critical 
examination within a broader context of its applicability. While 
the initial results are promising, they are inherently tied to data 
originating from a singular architectural marvel – a long-span 
cable-stayed bridge situated in China. While an in-depth focus 
on a specific dataset can yield valuable insights, it also presents 
the potential risk of confining the model to a narrow scope. 
Civil engineering marvels around the world encompass an 
immense range – from complex metro rail networks navigating 
urban mazes to towering skyscrapers reaching for the skies. 
Each of these structures is the culmination of distinct 
combinations of design, materials, and environmental factors, 
leading to unique challenges in structural health. For example, 
a dam nestled within mountainous terrain would encounter 

vastly different issues compared to a highway bridge spanning 
a saline estuary. Each structure reacts to external influences in 
a nuanced manner, whether it is the ceaseless battering of 
waves, vehicular loads, or the immense pressure of contained 
water. Therefore, while the anomalies identified in the Chinese 
bridge dataset offer invaluable insights, they might only scratch 
the surface of potential structural concerns when considering 
the full spectrum of potential issues. 

Furthermore, alongside the diversity in structures, the 
environments in which they exist introduce an additional layer 
of complexity. The health of a structure isn't solely a reflection 
of its construction but also a result of its interactions with the 
environment [37]. From corrosion due to saline exposure to 
vibrations induced by seismic activities, the array of external 
stressors is extensive. This raises legitimate concerns about 
whether the proposed model, primarily trained on the Chinese 
bridge dataset, can seamlessly adapt to the myriad challenges 
that structures worldwide encounter. To address these 
concerns, several solutions can be implemented: 

 Diverse Data Collection: Expanding the training dataset 
to include data from structures in different 
environmental conditions and geographic locations. 
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This would enhance the model's ability to generalize 
across a wide range of scenarios [38]. 

 Environmental Conditioning: Integrating environmental 
factors into the model, allowing it to learn how different 
environmental conditions affect structural health. This 
could involve adding parameters that account for local 
climate, pollution levels, and other relevant 
environmental data. 

 Transfer Learning: Applying transfer learning 
techniques to adapt the model trained on the Chinese 
bridge dataset to other structures. This approach 
involves fine-tuning the model with smaller datasets 
from different structures, enabling it to adjust to new 
environments with minimal data. 

 Regular Model Updates: Continuously updating the 
model with new data collected from various structures 
over time. This would ensure that the model stays 
relevant and effective in predicting structural health 
under changing environmental conditions [3]. 

 Hybrid Modeling Approaches: Combining the strengths 
of different modeling techniques, such as physics-based 
models and data-driven models [39]. This hybrid 
approach can leverage the accuracy of physics-based 
models in well-understood scenarios and the flexibility 
of data-driven models in complex, variable conditions. 

 Real-time Environmental Monitoring: Integrating real-
time environmental monitoring systems to provide 
continuous input to the model. This would allow the 
model to adjust its predictions based on current 
environmental conditions. 

 Stress Testing and Simulations: Conducting stress tests 
and simulations under various environmental conditions 
to validate and improve the model's accuracy in 
different scenarios. 

As the field of civil engineering advances, embracing new 
materials and groundbreaking construction techniques, the 
characteristics of potential structural irregularities are likely to 
transform. A cutting-edge SHM system must be proficient in 
identifying established problems and adept at signaling new, 
unexplored issues [40]. This capacity forms a crucial 
benchmark that the proposed model must meet. The 
implications are significant; failing to detect a key anomaly can 
result in catastrophic events, loss of human lives, and severe 
economic consequences. To enhance the proposed model's 
capability in this dynamic field, several approaches can be 
considered: 

 Incorporation of Advanced Learning Algorithms: 
Utilizing machine learning and artificial intelligence 
algorithms that are capable of identifying patterns and 
anomalies not only from past data but also adapting to 
new trends. Techniques like unsupervised learning or 
deep learning can be particularly effective in 
recognizing unforeseen issues. 

 Continuous Model Updating and Training: Regularly 
updating the model with the latest data from ongoing 

construction projects and newly developed materials. 
This will ensure that the model stays current and can 
recognize anomalies associated with new construction 
methodologies. 

 Collaborative Data Sharing: Establishing a 
collaborative network with other civil engineering 
projects and research institutions for sharing data and 
insights. This collective approach can significantly 
broaden the spectrum of scenarios the model is exposed 
to, enhancing its ability to identify a wide range of 
anomalies. 

 Predictive Analytics: Incorporating predictive analytics 
to forecast potential structural issues based on current 
trends and construction practices. This proactive 
approach can help in early identification and prevention 
of structural failures. 

 Cross-Disciplinary Integration: Integrating knowledge 
from other fields such as materials science, 
meteorology, and environmental engineering. This 
interdisciplinary approach can provide a more 
comprehensive understanding of how various factors 
might contribute to new types of structural anomalies. 

 Regular Sensitivity Analysis and Testing: Performing 
sensitivity analyses and stress tests under a variety of 
conditions to evaluate the model's effectiveness in 
detecting anomalies in different materials and 
construction methods. 

 Expert Involvement and Feedback Loops: Engaging 
industry experts in regular reviews of the model's 
performance, ensuring that practical, real-world insights 
are incorporated. Establishing feedback loops can also 
aid in continuous improvement of the model. 

As we chart our course ahead, multiple paths invite 
investigation. Firstly, testing the proposed model against a 
range of SHM datasets that include different types of 
structures, such as high-rise buildings, bridges, tunnels, and 
historical monuments, could reveal its extensive applicability 
[41]. Employing transfer learning techniques to adapt pre-
existing models to these varied scenarios could be key in 
rapidly broadening the model's utility without necessitating 
extensive data gathering from each new structure type. In 
addition to these approaches, several other strategies could be 
beneficial: 

 Cross-Functional Collaboration: Engaging with experts 
from different fields within civil engineering and data 
science to gain insights into specific structural 
characteristics and data processing techniques. This 
collaboration could enhance the model's accuracy and 
relevance across various structures. 

 Real-Time Data Integration: Incorporating real-time 
monitoring data into the model to continually update 
and refine its predictive capabilities. This could include 
data from sensors monitoring weather conditions, 
material fatigue, and other relevant parameters. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

133 | P a g e  

www.ijacsa.thesai.org 

 Customizable Model Parameters: Developing the model 
with customizable parameters that can be adjusted 
according to the specific requirements of different 
structures. This flexibility would allow for tailored 
applications, enhancing the model's effectiveness across 
diverse structural contexts. 

 Scalability and Efficiency Improvements: Optimizing 
the model for scalability and computational efficiency 
to handle large datasets and enable its deployment in 
large-scale projects, such as city-wide infrastructure 
monitoring. 

 Community Engagement and Feedback: Involving 
community feedback, especially from those who live or 
work in or near monitored structures, to provide 
ground-level insights into the model's performance and 
impact. 

 Robust Validation and Testing: Conducting rigorous 
validation and testing under various conditions and 
scenarios to ensure the model's reliability and accuracy, 
particularly in critical and emergency situations. 

 Policy and Regulatory Alignment: Ensuring that the 
model aligns with existing policies, standards, and 
regulatory requirements related to structural health and 
safety, to facilitate its acceptance and implementation. 

Furthermore, the ever-changing characteristics of civil 
structures require that our SHM systems adapt and improve 
constantly. Implementing online learning paradigms in the 
proposed model would enable it to dynamically adjust to 
evolving structural health patterns. This could be achieved by 
continuously feeding the model with live data and allowing it 
to learn and update its parameters in real-time. The integration 
of diverse data sources, such as vibrations, strains, temperature 
changes, acoustic emissions, and even visual data from 
inspections, would significantly enrich the model's predictive 
accuracy [42]. Several additional steps can be taken to enhance 
the model's utility and efficiency: 

 Edge Computing Implementation: Developing the 
model for deployment in edge computing environments 
where data processing occurs closer to the data source. 
This reduces latency and can be crucial for timely 
decision-making, especially in emergency scenarios. 

 User-Friendly Interface Development: Creating 
intuitive user interfaces for the model that enable 
engineers and maintenance personnel to easily interpret 
and act upon the data and predictions provided by the 
system. 

 Automated Alert and Reporting System: Integrating an 
automated system that generates alerts and detailed 
reports when anomalies are detected, thereby 
facilitating prompt and informed responses from the 
relevant authorities or maintenance teams. 

 Interoperability with Existing Systems: Ensuring that 
the model is compatible with existing infrastructure 
management systems and can be seamlessly integrated 

into current workflows, enhancing its practicality and 
adoption. 

 Regular Benchmarking and Validation: Regularly 
comparing the model's performance with other state-of-
the-art anomaly detection systems in the field to 
validate its effectiveness and identify areas for 
improvement. 

 Sustainability and Environmental Impact Assessment: 
Considering the environmental impact and 
sustainability of the model, especially in terms of its 
energy consumption and the materials required for 
sensor deployment and maintenance. 

 Training and Education for Stakeholders: Providing 
comprehensive training and educational resources for 
engineers, technicians, and stakeholders to understand 
and effectively use the model in their operations. 

Finally, it is important to delve deeper into the specific 
mechanisms and algorithms used in state-of-the-art techniques 
for handling imbalanced datasets in RL [43]. This involves 
examining different approaches, such as oversampling, under 
sampling, synthetic data generation, cost-sensitive learning, 
and novel reward shaping strategies [44, 45]. By contrasting 
these methods with our own, we can identify unique 
advantages or shortcomings in both theoretical and practical 
applications. Investigating how these techniques perform in 
diverse RL environments, ranging from simulated tasks to real-
world applications, will provide a more holistic understanding 
of their adaptability and robustness. It would also be beneficial 
to explore the integration of our technique with other advanced 
machine learning strategies like deep learning, transfer 
learning, and meta-learning, to enhance its performance in 
handling imbalanced datasets. Such an in-depth analysis will 
not only fortify our research but also pave the way for future 
innovations in the field, fostering a more effective approach to 
tackling the challenges posed by imbalanced datasets in 
reinforcement learning [46]. 

VI. CONCLUSION 

This study introduced a groundbreaking model 
meticulously crafted to confront the intricate challenges 
associated with anomaly classification within SHM data. The 
proposed model harnessed a strategic fusion of dilated 
convolutional, RL, and DE techniques to achieve a high level 
of accuracy in its results. At its core, the model utilized a group 
of CNNs to extract essential feature vectors from input images 
concurrently. These extracted features were seamlessly 
integrated into downstream processes, bolstering the model's 
prowess in identifying complex patterns present in SHM data. 
The efficacy of the proposed model was rigorously validated 
through experimentation on an imbalanced dataset obtained 
from a long-span cable-stayed bridge in China-sourced from 
the IPC-SHM community. Handling imbalanced datasets poses 
distinct challenges in training classifiers, as the overrepresented 
class often exerts a disproportionate influence on the learning 
process, leading to suboptimal performance for the 
underrepresented class. To effectively address this concern, a 
novel approach was employed, integrating RL principles to 
formulate the training procedure as a series of interconnected 
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decisions. Within this framework, the dataset samples assumed 
the role of states, while the model operated as the agent, 
receiving appropriate rewards or penalties based on accurate or 
incorrect classifications, respectively. This adaptive strategy 
enabled the model to place a heightened focus on the 
underrepresented class, thereby enhancing classification 
outcomes. An innovative contribution to the training 
methodology was introduced by incorporating a mutation 
operator grounded in clustering principles within the 
framework of DE. This approach initiated the BP process by 
identifying a prominent cluster within the existing DE 
population. Subsequently, a novel update strategy was 
implemented to generate potential solutions, adding a layer of 
sophistication to the training process. The experimental results 
underscored the superior performance of the proposed model in 
the detection of multi pattern anomalies within SHM data, 
showcasing remarkable accuracy. Through the adept 
amalgamation of dilated convolutional, RL, and DE 
techniques, the model exhibited its potential as an advanced 
tool for anomaly detection within SHM systems. This 
capability is of utmost importance in safeguarding the 
structural integrity and safety of critical infrastructures, 
including vital components like bridges. 
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