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Abstract—The production technology of 3D digital content
involves multiple stages, including 3D modeling, simulation an-
imation, visualization rendering, and perceptual interaction. It
is not only the core technology supporting the creation of 3D
digital content but also a key element in enhancing immersive
application experiences in virtual reality and the metaverse. A
primary focus in computer vision and computer graphics research
has been on how to create 3D digital content that is efficient,
convenient, controllable, and editable. Currently, producing high-
quality 3D digital content still requires significant time and effort
from a large number of designers. To address this challenge,
leveraging artificial intelligence-generated methods to break down
production barriers has emerged as an effective strategy. With
the substantial breakthroughs achieved by diffusion models in
the field of image generation, they also demonstrate tremendous
potential in 3D digital content generation, potentially becoming
a foundational model in this area. Recent studies have shown
that diffusion model-based techniques for generating 3D digital
content can significantly reduce production costs and enhance
efficiency. Therefore, it is essential to summarize and catego-
rize existing methods to facilitate further research. This paper
systematically reviews 3D digital content generation methods,
introducing related 3D representation techniques and focusing on
3D digital content generation schemes, algorithms, and pipeline
based on diffusion models. We perform a horizontal comparison
of different approaches in terms of generation speed and quality,
deeply analyze existing challenges, and propose viable solutions.
Furthermore, we thoroughly explore future research themes
and directions in this domain, aiming to provide guidance and
reference for subsequent research endeavors.

Keywords—3D Digital content; computer vision; artificial intel-
ligence; diffusion models; 3D representation

I. INTRODUCTION

Humans describe the world through text, comprehend it
through images, and experience and interact with it in a three-
dimensional (3D) format. Therefore, generative models have
found widespread application in numerous aspects of life,
playing a significant role in advancing human society. Research
in recent years has mainly focused on text generation [1], [2],
[3], [4] and image generation [5], [6], [7], [8]. Text generation
is typically used for language tasks such as translation and
question-answering, while image generation often involves
creating visuals based on textual prompts. The generation
of 3D digital content has not yet achieved the extraordinary
capabilities seen in the domains of text and image generation.

*Corresponding authors.

Therefore, there is still a need to continue to promote related
research on 3D digital content generation.

3D digital content is extensively utilized in fields such
as film, architecture, virtual and augmented reality. However,
the current mainstream production of 3D digital content relies
heavily on 3D designers, leading to remarkably low production
efficiency and high entry barriers. Consequently, employing
artificial intelligence (AI) to generate 3D digital content can
significantly enhance production efficiency, reduce industry
barriers, and foster the development of related fields.

Zero-shot image models [9] are trained using hundreds of
millions of graphics data, which is difficult to achieve in the
3D domain. Table I presents a comparison between the data
volumes of mainstream 3D and 2D datasets. Conventional 3D
digital content generation methodologies predominantly utilize
3D datasets for training specific generative models [10], [11].
The advantage of this method lies in its ability to generate 3D
objects with consistent geometry. However, it is limited by the
current lack of sufficiently large 3D datasets and the absence of
efficient 3D digital content generation architectures, as well as
the computational power needed for their training. Therefore,
it is difficult for this 3D digital content generation method to
achieve a breakthrough in the short term. In light of this, this
paper focuses on using pre-trained diffusion models [7], [12],
[13] to supervise the generation of 3D digital content.

TABLE I. COMPARISON OF 3D DATASETS AND 2D DATASETS

3D 2D

Dataset Full Mesh Objects Dataset Images

ShapeNet [14] ✓ 51K ImageNet [15] 14M
AKB-48 [16] ✓ 2K COCO [17] 330K
OmniObject3D [18] ✓ 6K Open Image V7 [19] 9M
ScanObjectNN [20] 15K Places [21] 10M
3D-Future[22] ✓ 16K LSUN [23] 59M

Diffusion models, trained on billions of image-text pairs,
have propelled the latest advancements in text-to-image gen-
eration, demonstrating the capability to produce high-fidelity
images under textual prompts [24], [25], [26], [27], [28].
Utilizing pre-trained diffusion models for generating 3D digital
content [29], [30] significantly reduces computational power
requirements and dependence on 3D datasets, thereby greatly
enhancing the feasibility and efficiency of 3D digital content
generation. This paper meticulously investigates and analyzes
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methods for generating 3D digital content, focusing on two key
aspects: diffusion model priors and 3D representations. The
generation of 3D digital content is categorized into two types
based on the task: text-to-3D [29], [30], [31], [32], [33], [34],
[35], [36], [37] and image-to-3D [35], [38], [39], [40], [41]. To
compare the strengths and limitations of each approach, this
study conducts a horizontal comparison of different models in
terms of efficiency and quality. This paper also explores the
challenges associated with generating 3D digital content using
pre-trained diffusion models and discusses potential solutions
to these issues.

Our contributions are summarized as follows:

• This paper delivers an exhaustive review and investi-
gation of methods for generating 3D digital content,
with a foundation in diffusion models.

• A horizontal comparison and analysis are conducted
in this paper to discern variations in efficiency and
quality among different models.

• Several viable solutions are proposed in this paper to
address the current challenges in generating 3D digital
content using diffusion models.

• Potential future research directions in the field of 3D
digital content generation, guided by diffusion models,
are outlined in this paper.

Additionally, it is worth noting that there is currently a
lack of universally recognized evaluation metrics for text-to-3D
digital content generation. We currently assess quality solely
through visual observation, which introduces a certain level
of subjectivity. In the realm of image-to-3D digital content
generation, we will employ image-based metrics to objectively
evaluate the generated 3D digital content. Furthermore, due
to limitations in laboratory conditions, all experiments in this
paper were conducted using a single A40 GPU, and the results
are presented accordingly.

This paper is organized as follows: Section II introduces the
relevant background knowledge on 3D representation methods
and diffusion models. Section III conducts a comprehensive
analysis and study of the schemes, algorithms, and workflows
for both text-to-3D and image-to-3D conversions. Section IV
provides a holistic evaluation of existing 3D content generation
approaches, analyzing the strengths and limitations of different
methodologies. Section V explores the current challenges and
proposes envisioned solutions. Finally, the paper concludes
with a summary and presents our thoughts on future research
directions and themes in this field.

II. RELATED WORK

The generation of 3D digital content based on diffusion
models principally involves two components: 3D represen-
tation and diffusion priors. DreamFusion [29] pioneered the
integration of diffusion models into the task of 3D digital con-
tent generation. Subsequent studies in this domain have been
categorized into two approaches based on their characteristics:
optimization-based methods [42] and multi-view prediction-
based methods [43], [44]. The focal point of research in this
field has been centered on optimizing 3D representations or
fine-tuning diffusion models.

A. 3D Representations

In the fields of computer graphics and computer vision,
the 3D representation of objects encompasses various forms,
including point clouds [45], [46], voxel grids [47], [48],
meshes [49], [50], and implicit neural representations [51].
Each representation method has its distinct advantages and
limitations, suitable for different types of 3D tasks. In research
on 3D digital content generation based on diffusion models,
Neural Radiance Fields (NeRF) [51] or 3D Gaussian Splatting
[52] are commonly employed.

1) Neural radiance fields: NeRF uses a neural network to
learn the continuous volume density and color of a scene [53].
Central to NeRF is the utilization of a Multi-Layer Perceptron
to parametrically represent 3D objects, enabling high-quality
synthesis of new viewpoint images. Theoretically, it can model
shapes at any spatial resolution [54]. The MLP parameters,
denoted as θ, take the camera pose c as input. The output
comprises color and density. The process involves camera rays
traversing the scene, generating a set of sample points along
the ray path. The color and transparency of each sampled point
on the ray are cumulatively processed to synthesize the color of
each pixel. Subsequently, these colors and densities are utilized
in volume rendering to generate the image g(θ, c). NeRF can
learn from a series of 2D images taken from different angles
and synthesize highly realistic new viewpoint images, which
is crucial for achieving realistic 3D scene reconstruction.

2) 3D gaussian splatting: Structure-from-Motion (SfM)
[55] can estimate point cloud distributions from a set of
images using the COLMAP library. The work of 3D Gaussian
Splatting starts with sparse SfM points, modeling the geometry
as a set of 3D Gaussian functions. The fundamental idea of
3D Gaussian Splatting is to consider each point as the center
of a Gaussian distribution. These points, rather than being
isolated discrete entities, have a smooth, continuous weight
distribution around them. Each point influences its surrounding
area, quantified by a Gaussian function. Each 3D Gaussian is
defined by the point’s position, covariance matrix, and opacity
α. Specifically, the point’s position is the mean of the 3D
Gaussian, the covariance matrix determines the shape of the 3D
Gaussian, and the opacity α is used for splatting, with spherical
harmonics (SH) [56], [57] representing color. The method
uses adaptive Gaussian densification to control the number
and density of Gaussians per unit volume. This approach
overcomes the issues of slow rendering speed or compromised
image quality in previous methods, enabling high-quality, real-
time novel view synthesis at 1080p resolution.

B. Diffusion Models

Diffusion models consist of a forward process qt,t∈[0,1],
and a reverse process pt,t∈[0,1]. The forward process resem-
bles a straightforward Brownian motion with time-varying
coefficients [58]. Specifically, this process incrementally adds
noise ϵ ∈ N (0,I) to the original data x0, thereby gradu-
ally transitioning the data distribution towards a Gaussian
noise distribution [12], [59]. This step-by-step addition of
noise effectively transforms the original data into a state that
aligns with a predefined Gaussian distribution, laying the
groundwork for the subsequent reverse process. Conversely,
the reverse process employs a neural network to estimate the
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noise added at each step of the forward process, progressively
denoising the Gaussian distribution noise to ultimately restore
the original data distribution. The distribution in the forward
process is given by qt(xt|x0) := N (αtx0, σ

2
t I) and qt(xt) :=∫

qt(xt|x0)q0(x0)dx0. The coefficients αt and σt are selected
to regulate the proportion of original data and noise. At the
onset of the forward process, σ0 ≈ 0, while at the end, σ1 ≈ 1,
where α2

t = 1 − σ2
t [60], [61]. This careful adjustment of

coefficients ensures a gradual and controlled transformation
of the data. The reverse process, through a noise prediction
network ϵϕ(xt, t), predicts the noise added at each forward
step. The overall training is conducted by minimizing

LDiff(ϕ, x0) = Et,ϵ[ω(t)||ϵϕ(αtx0 + σtϵ, t)− ϵ||22] (1)

where, ω(t) is a weighting function that depends on
the timestep t. the noise prediction network can be used
for approximating the score function of both qt and pt by
Sϕ(xt, t) = −ϵϕ(xt, t)/σt.

Incorporating textual control within diffusion models en-
hances the controllability of the generated content [8]. Since
each image adheres to a specific distribution pattern, utilizing
the information embedded within the text as a directive al-
lows for the progressive denoising of Gaussian noise images,
culminating in the generation of images that align with the
textual information. This process specifically involves training
an encoder and a decoder, where the encoder maps images to
a latent space and the decoder reconstructs images from this
latent space data. The textual prompts y are encoded using
a text encoder τθ(y) and are integrated into each step of the
denoising process, which is trained by minimizing

LLDM = Et,ϵ,y[ω(t)||ϵϕ(xt, t, τθ(y))− ϵ||22] (2)

By introducing conditions into the noise reconstruction
process, controlled image generation is achieved. This method-
ology exhibits robustness in producing high-resolution images
with intricate details while maintaining the semantic structure
of the images [62].

III. METHODOLOGY

Diffusion models demonstrate extraordinary zero-shot ca-
pabilities in generating diverse images from textual descrip-
tions. Fig. 1. demonstrates the ability of diffusion models to
create multi-angular images using textual prompts.

"Cute dog's front" "Cute dog's side" "Cute dog's back"

"The front of a car" "The back of a car""The side of a car"

Fig. 1. Generate multi-angle images based on text prompts.

Pre-trained diffusion models, having been trained with a
vast array of internet data, have acquired an understanding
of the distribution of images of most objects from various
viewpoints [63]. By leveraging the geometric priors learned
from natural images by large-scale diffusion models and inte-
grating viewpoint control, fine-tuning these pre-trained models
enables the generation of images from different perspectives.
The viewpoint-conditioned diffusion models (Zero-1-to-3) [63]
learn the relative control of camera perspectives using synthetic
datasets, thereby facilitating the creation of novel views of
the same object under specified camera transformations. Fig.
2. demonstrates the capability of the viewpoint-conditioned
diffusion models to take a single-perspective image as input
and generate images from diverse viewpoints.

Output ViewInput View

Fig. 2. Generate different perspective images from a single viewpoint image.

The specific steps for using diffusion models as a prior to
guide the generation of 3D digital content are as follows: First,
initialize a 3D model, then continuously modify the shape of
the 3D model according to the prompt. Upon completion of
the iterative process, the final 3D model, when rendered from
any perspective, aligns consistently with the content described
in the prompt.

A. Text-to-3D

The work on generating 3D digital content from textual
prompts is built upon the foundations of text-to-image diffu-
sion models [8], [26], [27], [28]. Given that the end product of
diffusion models is an image, it’s not feasible to directly use
the results of diffusion models to supervise the generation of
3D digital content. However, it’s possible to utilize the denois-
ing process to guide this generation. The forward process of
the diffusion model involves adding noise to the original data
x0 at timestep t, resulting in a noised image αtx0+σtϵ. During
the reverse process, the noise prediction network estimates the
noise ϵ added at each step, thus the denoised image can be
represented as xϕ = [(αtx0+σtϵ)−σtϵϕ)]/αt. This indicates
that as long as the noise prediction is sufficiently accurate,
the final image generated from Gaussian noise will also be
accurate.

DreamFusion [29] employs NeRF as the 3D representation
and utilizes a pre-trained text-to-image diffusion model as a
critic. It achieves text-to-3D generation with impressive results
through Score Distillation Sampling (SDS) loss. Specifically,
the process involves rendering an image xrender from a given
viewpoint c using the differentiable renderer G(θ, c). Here,
G is a differentiable rendering function parameterized by θ,
representing the parameters of the 3D object. Random amounts
of noise are introduced into the rendered image xrender :=
G(θ, c) at various time steps t, resulting in xt = αtxrender +
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Image

NeRF

Render Image

Add Noise

Text Prompt

Diffusion Priors

Back Propagation

Fig. 3. A simplified framework for generating 3D digital content based on text prompts.

σtϵ [30]. The pre-trained diffusion model predicts the sampling
noise ϵϕ given a noisy image xt, noise time step t, and text
embedding y. It provides a gradient direction to update the 3D
volumetric parameters θ, with the overall gradient computed
by the SDS function.

∇θLSDS(θ) = Et,ϵ,c[ω(t)(ϵϕ(xt, t, y)− ϵ)
∂G(θ, c)

∂θ
] (3)

Here, ω(t) is a weighting function. The scene model G
and the diffusion model ϕ can be considered as modular
components. It can be demonstrated that this loss fundamen-
tally measures the similarity between the rendered images and
textual prompts [40]. During the iterative process, the SDS
loss backpropagates only to update the NeRF parameters θ,
without altering the pre-trained diffusion model. As iterations
progress, the 3D object gradually exhibits textures and geo-
metric shapes that align with the textual prompt. The overall
network architecture is succinctly illustrated in Fig. 3.

B. Image-to-3D

People possess the ability to envision the 3D structure of an
object from a single image, a skill largely derived from the vast
amount of prior knowledge accumulated through life experi-
ences. Much of the past research has focused on reconstructing
3D models from multi-angle images [56], [57], [64], [65]. This
approach is intuitive, as multiple viewpoints are essential for
acquiring 3D information. However, 3D reconstruction from
multi-angle images remains inefficient. This method requires
the collection and acquisition of images from multiple angles,
implying that it can only reconstruct objects that already exist
in the real world. An interesting aspect is that in industries with
a high demand for 3D digital assets, such as gaming, virtual
reality, and animation, the focus lies on innovative 3D models
rather than mere reproductions of the real world. Typically, the
creation of an original 3D model involves numerous steps, as
illustrated in Fig. 4.

Concept SketchConcept Art
Designer

Modeling Designer 3D Prototyping

Modeling Designer

Modeling Designer

Model Refinement

Model Finalization

2D Generative
Models

3D Generative
Models

Refined Models

Ordinary People

Past Future

Control Process

Fig. 4. 3D Model modeling process.

A promising approach to creating the requisite 3D models
is through the generation of corresponding 3D models from a
single image. While achieving controllability in diffusion mod-
els is a hot topic in further research [66], [67], [68], [69], there
still lacks effective means to precisely control the images they
generate. Consequently, the 3D models produced using text-
to-3D methods may not always meet specific requirements. In
other words, when inputting text prompts, no one can predict
the structure of the 3D model until the result is generated.
At this juncture, the task of image-to-3D conversion gains a
significant advantage.

DreamFusion [29] achieves a text-to-3D generation method
based on diffusion priors, demonstrating the exceptional ca-
pability of using diffusion priors to optimize NeRF. Related
work [38], [41], [70] attempts to apply diffusion priors to
single-image 3D generation. Owing to the fact that pre-trained
diffusion models are primed with textual prompts, the approach
for image-to-3D tasks diverges from that of text-to-3D tasks.
Specifically, image-to-3D requires a process of textual inver-
sion [68], differentiating it from the generation method used in
text-to-3D tasks. A simplified network structure is illustrated
in Fig. 5.
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Diffusion Priors

Background Removal and Depth Estimated

Render Image
NeRF

Textual Inversion

1.Coarse Stage

Back Propagation

Add Noise

2.Refine Stage

Coarse Stage model

Diffusion Priors

Model Refinement
Network

Enhanced Output

Add NoiseRender Image

Fig. 5. A Two-stage framework for generating 3D digital content from a single image using diffusion priors.

"A fly pig"

"A delicious hamburger"

DreamFusion Latent-NeRF Score Jacobian Chaining ProlificDreamer DreamGaussian

Fig. 6. Qualitative comparisons of 3D digital content generation from textual descriptions.

The generation of 3D digital content from a single image is
typically a two-stage process. The primary task of the coarse
stage is to establish the model’s basic outline, followed by
refinement in the refine stage. Specifically, the coarse stage

begins with preprocessing such as background removal [71],
textual inversion [68], and depth estimation [72], [73] of the
reference image. Background removal focuses on isolating the
main object for modeling, while textual inversion generates
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corresponding textual descriptions to guide the diffusion prior.
Depth estimation provides a prior for depth information, super-
vising subsequent model generation. The overall process starts
with initializing a 3D model, rendering images from random
angles with added Gaussian noise, and then using a diffusion
model to optimize the 3D model through back propagation
using SDS loss and a series of reference image losses.

1) Reference view reconstruction loss: To ensure consis-
tency between rendered images Gθ(c) from reference view-
points c and the reference images x0 themselves, a reference
view reconstruction loss is typically introduced at the reference
viewpoints. This involves the use of Mean Squared Error
(MSE) loss on the reference images and their masks.

Lrec = λrgb||M⊙ (x0−Gθ(c))||22+λmask||M−M(Gθ(c))||22
(4)

Here, θ represents the parameters of the 3D object being
optimized, ⊙ is Hadamard product, M is related to the mask,
M(·) is the foreground mask acquired by the volume density
along the ray of each pixel. λrgb, λmask are the weights for
the foreground RGB and the mask [38].

2) Depth prior: At reference viewpoints, relying solely
on reference view reconstruction loss may result in poor
geometric shapes. To address shape blur, indentations, and
flatness, a depth prior is typically incorporated. Specifically,
this involves using a pre-trained monocular depth estimator
[72] to assess the depth d of the reference image. The depth
of the 3D content viewed from the reference viewpoint should
closely match this depth prior. Generally, negative Pearson
correlation is used for depth regularization.

Ldepth = − Cov(d(c), d)

V ar(d(c))V ar(d)
(5)

Here, Cov(·) denotes covariance, and V ar(·) calculates
standard deviation, d(c) refers to the depth modeled at the
reference viewpoint. Through the use of reference view recon-
struction loss and depth prior loss, the alignment between the
reference image and the 3D model at the reference viewpoint
can be optimized as much as possible. Although the estimated
depth may not accurately represent geometric details, it is
sufficient to ensure reasonable geometric shape and resolve
most ambiguities [40]. Furthermore, normal smoothness loss
[38] and diffusion CLIP loss [40] can also be added.

3) Diffusion prior: The supervision of novel view genera-
tion is guided by a diffusion prior. Textual inversion is used to
generate textual descriptions y for the reference images. The
SDS loss is employed for the continuous optimization of the
3D model.

The reference view loss includes details not captured by
textual prompts, and SDS loss ensures the generated 3D model
conforms to the object’s expected shape. Combined, they
ensure the model generation is faithful both to the reference
image and to the textual prompts.

Upon completion of the coarse stage, the generated 3D
model possesses a reasonable geometric shape, yet its overall
geometric structure and texture remain somewhat rough. Based
on the 3D model produced in the coarse stage, a model
refinement network [76] can be utilized for further refinement,

enhancing its geometric structure and texture. The overall
optimization process is fundamentally similar to that of the
coarse stage.

IV. EXPERIMENTS

In accordance with the primary research focus of this
paper, we categorize the current frameworks for 3D digital
content generation based on diffusion models into two distinct
types: text-to-3D and image-to-3D. All experimental results
were obtained using a single A40 GPU. Our analysis primarily
concentrates on two key aspects: the quality of the generated
content and the speed of generation.

A. Text-to-3D

In the comparative experiments of text-to-3D digital con-
tent generation, we encountered frameworks that were either
open-source or proprietary. For the open-source frameworks,
experiments were conducted using the original codes from the
respective papers. In the case of proprietary frameworks, we
uniformly utilized threestudio [77] for experimentation. We
acknowledge that there might be slight deviations in the results
generated by threestudio compared to the original outcomes;
however, we believe these differences do not significantly
impact our evaluative conclusions. Additionally, in the realm
of text-to-3D digital content generation, there are no univer-
sally accepted benchmarks for performance evaluation. Conse-
quently, qualitative assessments were primarily based on visual
inspections conducted by human observers. In our detailed
experiments, we compare recent methods (DreamFusion [29],
Latent-NeRF [74], Score Jacobian Chaining [34], Prolific-
Dreamer [75], DreamGaussian [35]) for generating 3D objects
from a textual prompt. Furthermore, considering the influence
of textual prompt types on the model’s generative performance,
we employed two categories of textual descriptions: reality-
based and imagination-based.The results of the generation are
illustrated in Fig. 6.

Through a comparative analysis of the generated mesh
quality and the overall generation time, as detailed in Table II,
we observed that for objects existing in reality, ProlificDreamer
[75] exhibits the highest quality of generation, albeit at the
slowest speed. While DreamGaussian [35] may not match
the former in terms of quality, it outperforms in generation
speed. For imaginary objects, current mainstream frameworks
struggle to achieve high-quality generation. We propose two
avenues for optimization: firstly, refining textual prompts to
more intricately describe the content envisioned, which could
enhance the resultant generation. Secondly, augmenting the
capabilities of the diffusion model by training it with larger
datasets.

ProlificDreamer [75] proposed the use of Variational Score
Distillation (VSD) to address issues such as over-saturation,
over-smoothing, and low-diversity in the SDS loss. The core
concept involves sampling within the distribution of 3D scenes,
representing the 3D distribution with 3D parameter particles.
A gradient-based particle updating rule is derived based on
Wasserstein gradient flow. Despite its ability to achieve high-
quality generation results, Prolificdreamer’s method requires
alternating training between LoRA [78] and NeRF during the
training process, leading to prolonged training times. In con-
trast, DreamGaussian [35] employs 3D Gaussian Splatting [52]
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TABLE II. MULTI-PERSPECTIVE COMPARATIVE ASSESSMENT OF TEXT-TO-3D DIGITAL CONTENT GENERATION FRAMEWORKS

Method DreamFusion [29] Latent-NeRF [74] Score Jacobian Chaining [34] ProlificDreamer [75] DreamGaussian [35]

3D Representations NeRF NeRF NeRF NeRF 3D Gaussian Splatting
Number of Stages Single Two Single Three Two
Mesh Quality ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆
Avg. Time ∼40 minutes ∼1 hour ∼25 minutes ∼13 hours ∼4 minutes

TABLE III. QUANTITATIVE RESULTS ARE PROVIDED FOR PSNR ↑, LPIPS ↓, AND CLIP-SIMILARITY ↑

Dataset Metrics Zero-1-to-3 [63] Magic123 [38] DreamGaussian [35] Stable Zero123

RealFusion15
PSNR↑ 35.22 35.20 35.47 35.40
LPIPS↓ 0.10 0.13 0.08 0.07

CLIP-Similarity↑ 0.86 0.90 0.83 0.88

for 3D representation, significantly accelerating the generation
speed.

B. Image-to-3D

In the comparative experiments for image-to-3D digital
content generation tasks, we utilized the RealFusion [41]
dataset, comprising 15 distinct objects, for our analysis. We
compare recent methods (Zero-1-to-3 [63], Magic123 [38],
DreamGaussian [35], Stable Zero123) for generating 3D ob-
jects from a single unposed image, with specific experimental
results depicted in Fig. 7. Unlike the generation of 3D digital
content from textual prompt, the quality of 3D content gen-
erated from a single image can be assessed based on image-
related metrics.

1) PSNR: PSNR is a widely used standard for quantifying
the quality of image reconstruction or image compression. It
measures the pixel-level differences between the original and
the compressed or reconstructed image. PSNR is calculated
based on the Mean Squared Error (MSE) between the two
images. Generally, a higher PSNR value indicates that the
reconstructed image is closer in quality to the original image.
It primarily evaluates the pixel-level similarity between the
reconstructed or compressed image and the original image, but
it may not always align with human perceptual differences.

2) LPIPS: LPIPS is a more modern, deep learning-based
metric used to assess the perceptual quality and similarity
of images. LPIPS calculates the similarity by comparing the
activations of a deep neural network when processing two
images. This approach aims to more closely resemble the
human visual perception system. LPIPS is used to evaluate
the perceptual similarity of images, especially in cases where
pixel-level metrics may not capture all aspects of human
perception.

3) CLIP-Similarity: CLIP-Similarity is a metric used to
evaluate the semantic similarity between images, based on
features extracted by the CLIP model. Unlike traditional image
similarity metrics that focus on pixel-level details, CLIP-
Similarity measures how semantically or contextually similar
two images are. CLIP-similarity is particularly useful when
the evaluation criteria extend beyond mere visual or pixel-
level accuracy and venture into the realm of contextual and
conceptual alignment.

For evaluating the quality of generated 3D content from
reference viewpoints, we follow the metrics used in previous

studies [41], [70]. We employed PSNR and LPIPS [79] metrics
to compare the rendered images against the reference images,
thereby assessing the generation quality from reference view-
points. For images rendered from novel viewpoints, the quality
was evaluated using the CLIP-similarity [9], as presented in
Table III. Moreover, because we preprocess the original images
in the process of generating 3D digital content from images,
we applied the same treatments to the rendered images of the
final 3D models during comparisons to ensure the accuracy of
experimental results.

Our findings reveal that DreamGaussian [35] exhibits the
fastest generation speed and achieves the highest quality when
viewed from a reference perspective. However, it is noteworthy
that its performance in generating novel views is comparatively
inferior. On the other hand, Magic123 [38] demonstrates
superior performance in generating high-quality novel views
by incorporating a dual prior in both 2D and 3D dimensions.
Simultaneously, the experimental results also confirm that the
combination of diffusion models and 3D Gaussian Splatting
[52] can achieve rapid 3D digital content generation, although
there is room for further improvement in generation quality.

V. DISCUSSION

This study analyzes the frameworks related to text-to-
3D content generation and image-to-3D content generation
based on diffusion models, conducting extensive experiments.
Through experimental comparative analysis, we identified nu-
merous challenges in 3D content generation based on diffusion
models.

A. Current Issues

1) Janus problem: Due to the primary approach of utilizing
the diffusion model to guide rendering images from various
perspectives, subsequently directing the generation of 3D mod-
els, the Janus problem is pervasive in the task of 3D digital
content generation based on the diffusion model.

2) Over-Saturation: Using SDS loss in the generation of
3D content leads to issues such as over-saturation, over-
smoothing, and low-diversity problems.

3) Controllability: Achieving precise control in the gener-
ation of 3D content from text prompts is challenging, relying
solely on textual cues.
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Reference Magic123 DreamGaussian Stable Zero123Zero-1-to-3

Avg.Time ~13 minutes ~40 minutes ~2 minutes ~8 minutes

Fig. 7. Qualitative comparisons of 3D digital content generation from a single image.

4) Editability: Currently, there is no effective means to edit
generated 3D content through artificial intelligence.

5) Imagination: Despite effective generation for real-world
objects, the diffusion model struggles with the 3D reasoning
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and imagination capabilities required for generating novel
objects.

6) Primary view dependency: Tasks involving the genera-
tion of 3D content from a single image often require the input
to be the primary view of the target object.

7) Evaluation metrics: A lack of a unified evaluation
system for assessing the quality of generated 3D content.

8) Generation quality: Diffusion model-based 3D object
generation faces issues of insufficient generation quality, re-
sulting in objects that may lack realism or exhibit insufficient
detail.

9) Shape inconsistency: Generated 3D objects may exhibit
shape inconsistencies, particularly with complex geometric
structures or topological relationships.

10)Scale disparities: Current 3D content generation mod-
els struggle to effectively handle objects of varying scales and
are unable to generate 3D models of different sizes based on
specific requirements.

B. Potential Solutions to Some Issues

1) Janus problem: To address the Janus problem, employ-
ing multi-view [80] or 3D perception [37] diffusion models can
help alleviate the issue. Additionally, an incremental modeling
approach, similar to a “humanoid printer”, can be applied,
generating 3D models for partial views gradually.

2) Over-Saturation: An approach akin to that proposed by
prolificdreamer [75], employing Variational Score Distillation
(VSD), can be adopted to address the issue of over-saturation
and further enhance the quality of generated 3D models.
However, it is noteworthy that this method may lead to a
reduction in efficiency.

3) Controllability: While achieving controllability in text-
to-3D content generation tasks remains challenging, leveraging
image-to-3D generation tasks can facilitate more controlled 3D
content generation.

4) Editability: Editing of 3D content can be achieved
through image editing techniques [66] or by combining Chat-
GPT [1] to map text or voice into latent space for effective
editing.

5) Imagination: In order to improve the generation perfor-
mance of models, it is suggested to employ richer semantic
description information. Alternatively, a more powerful diffu-
sion model can be trained by incorporating a larger dataset.
These strategies aim to enhance the overall effectiveness of
the model in generating high-quality outputs.

6) Primary view dependency: Further enhancing the capa-
bilities of novel view synthesis models to generate primary
views of objects based on input images.

VI. CONCLUSION

With the continuous development of generative artificial
intelligence, the scope of generated content is expanding
beyond text, audio, and image domains, gradually progressing
towards the generation of 3D objects and environments. Fueled
by the visions of virtual reality, augmented reality, and the

metaverse, the demand for 3D digital content across various
industries is expected to further burgeon.

Current research indicates that different frameworks for 3D
digital content generation exhibit advantages and limitations in
terms of both generation quality and efficiency. Through our
specific investigations, we posit that the integration of diffusion
models and 3D Gaussian Splatting will be a focal point in the
future research of 3D digital content generation. Additionally,
constrained by the controllability issue in text-to-3D, a viable
workflow for 3D digital content generation is as follows: firstly,
generate images from text, providing creators with creative
input. Subsequently, employ artificial intelligence to optimize
and edit the image content to achieve the desired appearance.
Then, use an image-to-3D generation framework to create a
3D model. Finally, import the generated 3D model into 3D
modeling software for further refinement.

With the advancement of 3D object generation frameworks,
future research is expected to extend from individual objects to
scene generation. How to integrate procedural scene generation
with artificial intelligence in the future is a question worthy of
consideration.

In summary, this review comprehensively elucidates how
diffusion models can be leveraged for 3D digital content
generation. We analyze key frameworks for 3D digital con-
tent generation and experimentally validate the efficiency and
feasibility of combining diffusion models with 3D Gaussian
Splatting for modeling. We summarize the existing challenges
in 3D digital content generation based on diffusion models and
propose potential solutions for some of these issues. Overall,
we contend that image-to-3D digital content generation aligns
more closely with societal applications, though we remain opti-
mistic about the future of text-to-3D digital content generation.
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