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Abstract—Interest in autonomous robots has grown signif-
icantly in recent years, motivated by the many advances in
computational power and artificial intelligence. Space probes
landing on extra-terrestrial celestial bodies, as well as vertical
take-off and landing on unknown terrains, are two examples
of high levels of autonomy being pursued. These robots must
be endowed with the capability to evaluate the suitability of a
given portion of terrain to perform the final touchdown. In these
scenarios, the slope of the terrain where a lander is about to
touch the ground is crucial for a safe landing. The capability
to measure the slope of the terrain underneath the vehicle is
essential to perform missions where landing on unknown terrain
is desired. This work attempts to develop algorithms to assess the
slope of the terrain below a vehicle using monocular images in
the visible spectrum. A lander takes these images with a camera
pointing in the landing direction at the final descent before the
touchdown. The algorithms are based on convolutional neural
networks, which classify the perceived slope into discrete bins.
To this end, three convolutional neural networks were trained
using images taken from multiple types of surfaces, extracting
features that indicate the existing inclination in the photographed
surface. The metrics of the experiments show that it is feasible to
identify the inclination of surfaces, along with their respective
orientations. Our overall aim is that if a hazardous slope is
detected, the vehicle can abort the landing and search for another,
more appropriate site.
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tificial intelligence; machine learning techniques; deep neural
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I. INTRODUCTION

In recent decades, interest in autonomous robots has signif-
icantly risen. Through the use of autonomous systems, we refer
to systems that are conceived with capabilities to make certain
types of decisions during the execution of their missions,
minimizing the need for human-operator interventions. Their
capability to accomplish missions that might be hazardous for
humans (e.g., exploring celestial bodies or disaster monitor-
ing), as well as to automate everyday tasks (e.g., driving cars
or moving objects within a warehouse), make them highly
valuable. They are currently the object of multiple research
efforts addressing a wide range of challenges.

Space probes navigating in the proximity and landing on
extraterrestrial celestial bodies [1], [2], [3] or indoor [4] and
outdoor [5] navigating drones are among the most common
applications of autonomous systems. For a robot intended to
land on an asteroid (or other unexplored celestial bodies), the
details of the terrain and local slope of its surface are very
likely unknown, unless the celestial body had been previously
studied thoroughly (e.g., the Moon or Mars) [6]. Moreover,

as their missions might take place at large distances from
Earth, real-time communication with ground stations might
not be feasible, as the signals would require on the order
of a number of minutes to traverse the path from the probe
to Earth. Therefore, capabilities for autonomous navigation
and landing are highly required. Likewise, vertical take-off
and landing (VTOL) aircraft exploring unknown terrains also
constitute highly demanded applications of these systems [7],
[8]. In the aforementioned scenarios, landing on surfaces that
are not well-known or mapped would require the lander to
make decisions on how to approach and where to touch
ground, thus minimizing the intervention of human operators
[6], [9]. Fig. 1 shows an area of the Martian surface, with its
many geographical features, including flat and inclined areas.
A completely autonomous robot approaching the surface for
landing should be able to determine whether it is going to
touch down on a flat or inclined area.

Fig. 1. Photograph of a piece of the martian surface. Credit:
NASA/JPL-Caltech/Univ. of Arizona.

When a space probe or VTOL aircraft lands, the final
descent to the surface intends to follow position and attitude
trajectories that ensure a smooth touchdown, with the entire
landing gear leaning simultaneously on the ground. In general,
these trajectories aim to touch ground at areas where a vector
normal to the local terrain is somewhat aligned with the
negative local gravity vector [6], [10]; however, there have
been some efforts to study the feasibility of take-off and
landing from sloped terrain [11]. Fig. 2 illustrates this concept.

In Fig. 2, there are two landers, one denoted by A (on the
left hand-side of the figure), and the second denoted by B (at
the center of the figure). The arrows labeled as DM show the
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Fig. 2. Schematic view of robots landing on flat and inclined terrain.

direction of motion of both landers, and the local gravity vector
is also depicted. The two dextral coordinate systems, denoted
as B, fixed to the bodies of the landers A and B, respectively,
can also be observed. The unit vectors zB always point along
the legs of the body, while the unit vectors yB point towards
the right side of it, as can be seen in Fig. 2. Correspondingly,
xB = yB × zB .

A hypothetical piece of terrain where the probes would land
is also displayed in Fig. 2. Assume that the piece of terrain
consists of multiple piecewise planar surfaces, k, that are
continuously concatenated, and each of which has a different
slope represented by a local normal unit vector Nk associated
with it. The depicted scene shows Lander A about to touch
ground on an area with zB = −N1. In contrast, Lander B
is about to touch ground on a highly inclined region with
respect to zB . This may cause the lander to touch ground
on its left leg. If the lander ignores the inclination of the
surface upon touching ground, it might constitute a hazard
for the landing moment. The robot would touch ground with
only its left leg, perhaps overloading it; alternatively, it could
turn over, roll down, or even slip down, leading to an undesired
termination of the mission. For sake of clarity, zB A and zB B

will hereafter be indistinctly referred to as zB .

In order to avoid these hazards, these robots should be
endowed with the capability to sense that the surface under-
neath is highly inclined, with respect to its attitude (as with
Surface 2); and, hence, that it is necessary to navigate to a
more suitable location for touching ground (as with Surface
1). Understanding information on the terrain and the slope of

the surface underneath constitutes an essential task in any of
the following cases: (I) A team at the control center makes the
decision on where and how to land, and imparts the commands
to the robot; or (II) the robot decides by itself where to land
and how to accomplish it.

Current and past missions have used distance-based sen-
sors, such as a radar or lidar [12], [13], [14], in order to
evaluate the slopes of the terrain underneath. In both cases,
electromagnetic waves are sent towards an object or sur-
face, with respect to which the measuring distance is deter-
mined.The time at which the reflection of these waves reaches
the sensor is measured, which enables the computation of the
distances to multiple points. An advantage of these sensors
is the accuracy with which they can measure the terrain;
however, they are usually expensive and power-consuming.
Motivated by the aforementioned scenarios, we explore the
feasibility of using individual images from a monocular camera
(in the visible spectrum) to classify the relative inclination
between the focal plane of the camera (associated with the
vector zB in Fig. 2) and the piece of terrain photographed
by the camera (associated with the vector N in Fig. 2). This
contribution would allow a lander to use monocular images to
evaluate the inclination of the terrain underneath and assess
whether or not it is a good site to touch ground. This work
proposes an alternative methodology to evaluate the slope of
the terrain, based on the processing of monocular images
with artificial neural networks. The aim of this concept is
not to substitute the usage of radars and lidars, but to assess
another operational principle that could be used on its own
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or fused with information retrieved from the aforementioned
sensors. To the best of our knowledge, we could not find
approaches similar to the one presented herein, which is why
we considered it interesting to evaluate the feasibility of the
approaches elaborated in the following.

A. Related Work

Computer vision applications for space vehicle navigation
have been pursued intensively in recent decades [15]. In this
respect, photo-cameras also constitute sensors that can be
used for relative attitude determination and position. When
two or more spacecraft are flying in proximity or performing
docking maneuvers, images in the visible spectrum can provide
highly relevant information to determine the relative position
and attitude between them [9], [16], [17]. Images or videos
recorded by the cameras are processed by algorithms that
identify feature points (which might be pre-defined or not)
and track them along the sequence of images. The position
of these feature points in the images provides an indication
about the relative position and orientation between the two
spacecraft during the maneuvers. In these types of applications,
the information retrieved from images is usually fused with
information provided by other sensors, such as gyros, range
finders, and star trackers.

In the context of aerial vehicles, the use of computer
vision techniques has also been intensively explored, especially
for landing and collision avoidance purposes. In [18] and
[19], the usage of optical flow measurements for deriving
control laws for landing VTOL unmanned aerial vehicles on
moving platforms was investigated. In study [20], optical flow
measurements were exploited for the determination of landing
control laws of UAVs in cluttered environments. In study [21]
and [22], optical flow was also used, but for collision avoidance
purposes. In study [23], neural networks were implemented to
process video signals for indoor navigation assistance in ma-
neuver planning. In study [24], a thorough survey of the vision-
based techniques used for UAV navigation was presented.

There have also been efforts to determine terrain slopes
from multiple overlapping aerial or satellite imagery [25],
[26], [27], [28], [29], [30], [31]; however, these articles were
not specifically intended for implementations in autonomous
systems that make decisions in real-time from individual
images, as they need to combine multiple overlapping images
to determine the slope of the photographed terrain.

Extracting 3D features from 2D scene projections (images)
has been considered a central challenge in computer vision. It
has been extensively tackled in a diversity of contexts, and
through multiple approaches. Among them, using texture cues
to understand the shapes of 3D geometries has been highly
pursued [32], [33], [34]. In research [35], the recovery of
3D shapes from the observed distortions in the density of
the textures was analyzed, and the corresponding equation
for determining the shapes of planar and curved surfaces
was derived. In study [36], [37], and [38], affine transforms
were proposed to model the relationship between the texture
distortion and direction of the points in the image. Using
these transforms, the orientation and shape parameters were
estimated for multiple directions in the image. In study [39],
the authors adopted 3D morphable models that are fitted to

pixel intensity, edges, and specular highlights, thus maximizing
the posterior probability of the parameters upon the input
image.

The estimation of depth (the coordinate along the line of
sight) from monocular images also constitutes another highly
pursued technical challenge, as local features do not represent
enough information to estimate the depth of arbitrary points
in images. Usually, depth is perceived as a result of two or
more associated vision sensors (stereo-vision). In study [40],
a Markov Random Field was used to learn depth cues from
monocular images, which were used to reinforce a stereo
vision system. In study [41], depth maps for still scenes were
estimated, based on depth cues captured by supervised learning
algorithms. In study [42], using the Lucas–Kanade method,
the authors aimed to estimate the depths in scenes captured
by a moving camera. In research [43], the authors exploited
de-focus (blur) and textures to estimate depth maps. In study
[44], a CNN was utilized to estimate the relative and absolute
depth maps, which were optimally combined. In study [45], a
ranking approach was used for relative depth estimation.

Terrain characterization can be considered a specific ap-
plication of 3D shape estimation. In robotics navigation, ter-
rain characterization is essential for the landing and ground
traversal of robots performing on unknown terrains. Computer
vision applications have also been extensively used for this
purpose. In study [46], the authors proposed a system for
terrain recovery which could be used for autonomous rotor-
craft. The system aims to recover the material properties and
geometry of the local terrain, using stereo cameras, a global
navigation satellite system (GNSS), and inertial measurement
units (IMU). In study [47], principal component analysis was
used to estimate the normal vectors of surfaces, in order to
determine traversable and non-traversable areas from depth
images. This method was implemented in a rover-like robot,
equipped with cameras and depth sensors, which allowed
for the measurement of three-dimensional point clouds. In
researches [48] and [49], algorithms based on convolutional
neural networks (CNN) were presented for the classification
of different terrain types and surface features, from both
orbital and ground images. These outcomes were then used to
determine terrain traversability for rovers. Terrain classification
has been also pursued based on proprioceptive signals [50].

This work attempts to use convolutional networks to extract
features from monocular images, thus allowing for estimation
of the slope of the piece of terrain just below a landing vehicle.
We presumed that a properly trained neural network can find,
in monocular images, indicators of the slopes and orientation
of the terrain below. These cues would mainly be in the
variations of the visual textures (densities and sizes) across
an image. To further define the problem tackled in this article,
several more concepts are introduced.

B. Incidence Angle, Far and Near Sides

In many scenarios where the human eye is looking at a
given surface, the brain can understand whether the surface
is normal or inclined with respect to the line-of-sight (LOS)1.

1By line-of-sight, we refer to the line joining our eyes (or the camera) with
the aimed object
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This is an ability that we learn when our vision system com-
mences its development, which improves as we are exposed
to more types of surfaces with different inclinations. We do
not have the capability to accurately measure the relative
angle between the LOS and the plane of the surface we are
looking at. However, we can distinguish qualitatively high
relative inclinations from low or null inclinations. For instance,
consider Fig. 3a and Fig. 3b, which show images of a street
surface paved with stones, taken at different angles. i denotes
the incident angle, which is defined as the angle between the
LOS and the vector N normal to a given surface.

(a) Incident angle i ≃ 0.

(b) Incident angle > 0.

Fig. 3. Surfaces perceived as looking with different incident angles.

Fig. 4a and Fig. 4b show a person looking at a surface from
i = 0 and i > 0 deg, respectively. Generally speaking, a person
could determine, only from an image, whether i > 0 or not.
The reader could probably determine that the surface shown in
Fig. 3b has a higher incident angle, with respect to the surface
of the street, than that of Fig. 3a. Clearly, the texture of the
surface we are looking at helps us to distinguish the angle of
incidence. A purely plain surface with an incident angle would
be impossible to distinguish from the same surface with a null
incident angle.

Furthermore, it can also be seen, from Fig. 3b, that the
upper part of the image was at a larger (far side) distance

(a) Null incident angle, i = 0.

(b) Incident angle > 0.

Fig. 4. Person looking at a surface from different incident angles.

from the focal plane of the camera than the lower part (near
side) of it. The far side and near side of an image denote the
sides of it that are farther from and closer to the focal plane,
respectively. This is illustrated in Fig. 5a and Fig. 5b. Fig. 5a
illustrates the case where the angle of incidence of the camera
with respect to the surface is null, which would correspond to
the Lander A of Fig. 2 if it had a camera pointing along its zB

axis. Fig. 5b represents a scenario where the angle of incidence
is considerably greater than zero, which would correspond to
what would be seen by a camera pointing along zB in Lander
B. In the latter case, the far and near sides are indicated in the
image.

Moreover, for images characterized by i > 0, we define
a roll angle, r, as the angle measured clockwise between a
vector from the center of the image pointing towards the far
side of it and a vector from the center of the image pointing
towards the upper edge of it.

With the definitions stated above, the goal of this article is
to report two experiments, aimed at deriving algorithms that
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(a) Null incident angle, i = 0.

(b) Incident angle, i > 0.

Fig. 5. Difference in geometries for images taken with i = 0 (case A) and
with i > 0 (case B).

solve the following problem: With a single monocular image
of a surface in the visible spectrum, classify the angle between
the normal vector at the photographed surface and the optical
axis of the camera (i.e., zB) using the following categories:

• Normal (no inclination), r undefined, denoted as type
N, as seen in Fig. 3a;

• Upward inclination, r = 0 deg, denoted as type UI,
as seen in Fig. 3b;

• Downward inclination, r = 180 deg, denoted as type
DI, as seen in Fig. 6a;

• Leftward inclination, r = 270 deg, denoted as type
LI, as seen in Fig. 6b;

• Rightward inclination, r = 90 deg, denoted as type
RI, as seen in Fig. 6c.

(a) Surface with incident angle i > 0 and r = 180 deg.

(b) Surface with incident angle i > 0 and r = 270 deg.

(c) Surface with incident angle i > 0 and r = 90 deg.

Fig. 6. Different angles r for images with i > 0 deg.

A few observations follow. Tackling the problem as a
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classification problem constitutes a coarser measurement and
is fairly easier than determining the angles precisely as contin-
uous real numbers. However, it is an essential first step in the
major goal of an ongoing project, aimed at precisely estimating
these angles as real continuous variables. Indeed, one of the
described experiments classifies the images considering three
ranges of values for the incidence angle: 0 deg, 20 deg, and
40 deg. The two aforementioned experiments are elaborated in
the following sections.

In order to derive a solution to the problem stated above, we
trained convolutional neural networks using images of diverse
types of surfaces. These surfaces represent ground terrains
where a lander might perform a touchdown. The appearance of
a landing surface can be very diverse. Therefore, we intended
to obtain an algorithm that can work well with multiple
textures, including some that can be found in the Earth’s
ground types and others that are not necessarily observed
as ground surfaces. Including images with multiple textures
allows the CNNs to learn features that can provide information
about the angles i and r, even when the angle is sensed across
images having different textures. Section II-C displays samples
of the types of surfaces used in this work.

Artificial neural networks (ANNs) have been used exten-
sively for classification problems [51]. They represent algo-
rithms that can be very efficient for solving high-dimensional
classification problems. Once they have been trained, they can
process given inputs and return the probabilities that these
inputs to belong to any of the classes for which they have
been trained. Training refers to the process that optimizes the
internal coefficients of the operator to the specific classification
process intended [52], [53].

In the field of image processing, CNNs constitute a power-
ful tool for image classification and interpretation [54]. CNNs
are special types of NN that are well-suited to dealing with
images. The images are introduced as tensors, where each entry
of the tensor dictates the color intensity of its corresponding
pixel. Upon every input image, the CNN performs a sequence
of mathematical operations on the numerical values assigned
to each pixel, and computes the probability of the whole image
(or a part/parts of it) corresponding to a given pre-defined class.

CNNs are mainly composed of convolutional layers and,
possibly, other types of intermediate layers. A convolutional
layer is a portion of the algorithm where convolutional filters
are applied to the input of that layer. By means of these
convolutional filters, CNNs perform convolutional operations
on these images, extracting features that provide indications
about which of the pre-defined classes best characterize the
image analyzed [55].

Typical applications of CNNs include object recognition
within images [56], determining the position of sought objects
within images [57], [58], and identifying pathologies such as
CoViD-19 in pulmonary radiographies [59], [60], [61]. CNNs
can have multiple architectures. The architecture of a CNN
refers to the sequence in which the multiple operations are
applied to the input. In a given classification problem, different
architectures can produce different results, with the same
inputs. In this work, we intend to exploit these classification
tools to determine which of the aforementioned classes would
best characterize an image, thereby associating each image

with the most suitable ranges for i and r.

The approach proposed herein should enable a lander robot
to interpret how appropriate for landing, in terms of inclination,
the piece of terrain underneath it is. To date, CNNs have not
been used to analyze angles between the focal plane and the
photographed surface. The contribution of this work consists
of a methodology to create algorithms that can classify the
incidence angle of an image into certain pre-defined categories.
These algorithms could become an essential tool for space
probes or autonomous VTOL aircraft, in order to determine
whether a piece of terrain has a slope that makes it appropriate
landing site.

The remainder of the paper is structured as follows: Sec-
tion II describes the image collection and preparation pro-
cesses, as well as the architecture of the convolutional neural
network implemented for the classifier. Section III elaborates
on the obtained results and discusses potential directions for
improvement. Finally, Section IV presents our main highlights
and observations in this work.

II. METHODOLOGY

This work reports two experiments in which, using CNNs,
we address two versions of the problem stated in Section I.
These experiments are referred to as Experiment I and Exper-
iment II, and are described in the following. The proposed
pipeline, which represents the procedures followed by the
experiments, is shown in Fig. 7. The figure shows the process
of collecting images, augmenting the data set, and training and
testing the respective convolutional neural networks.

A. Experiment I

This experiment aimed to derive algorithms to solve the
following problem: With a single image of a surface, taken
by a single camera in the visible spectrum, classify the angle
between the normal vector at the photographed surface and
the optical axis of the camera (i.e., zB) into the following
categories:

• Normal (no inclination), r undefined, denoted as type
N, as seen in Fig. 3a;

• Upward inclination, r = 0 deg, denoted as type UI,
as seen in Fig. 3b;

• Downward inclination, r = 180 deg, denoted as type
DI, as seen in Fig. 6a;

• Leftward inclination, r = 270 deg, denoted as type
LI, as seen in Fig. 6b;

• Rightward inclination, r = 90 deg, denoted as type
RI, as seen in Fig. 6c.

As previously stated, these problems were tackled using
CNNs. At present, there exist several CNN architectures that
are renowned for having very good performance in certain
types of image classification problems. To address this ex-
periment, we implemented two different architectures and
compared the exhibited performance. These architectures are
described in Section II-A1 and Section II-A2.
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Fig. 7. Schematic representation of the pipeline which represents the procedures followed by the experiments.

1) Convolutional neural network based on the VGG16
architecture: First, we implemented a convolutional neural
network based on the VGG16 architecture. This architecture
was proposed by the Visual Geometry Group at the University
of Oxford, winning the ILSVR (Imagenet) competition in 2014
[56]. Since then, it has become widely used, thanks to its
excellent performance. It was described in the seminal work
by Simonyan and Zisserman [62] and, since then, has been
implemented in a variety of applications [63], [64], [65]. A
schematic view of the architecture of this CNN is presented
in Fig. 8.

In its original implementation, the input of the first con-
volutional layer had a fixed size of 224 × 224 and was of
RGB type. The image was processed through an array of 13
successive convolutional layers with max pooling layers in
between every two or three convolutional layers, as displayed
in Fig. 8. Convolutional filters of 3 × 3 were used in every
convolutional layer, with stride of 1 pixel and padding of
1 pixel. Spatial pooling was performed in a total of five

max-pooling layers. The max-pooling was performed through
windows of 2 × 2 pixels and a stride of 2 pixels. After the
convolutional layers, three dense layers with 4096 nodes each
were used, followed by the final softmax layer. The hidden
layers were built using rectified linear unit (ReLU) activation
functions.

In this work, the implementation of the VGG16 network
was accomplished using the Keras API [66]. Keras is a pro-
gramming interface for Tensorflow, which is a Google open-
source library for machine learning applications [67]. Keras
has a built-in implementation of the VGG16 network that
allows for image sizes different from the original configuration
of 224 × 224 pixels, enabling us to define a model using an
image size of 300×300. Keras also enables the user to remove
the three fully connected layers at the end of the network that
the original version of VGG16 had. In this work, these layers
were removed, and the output of the convolutional layers was
passed through a filter of the average pool type with a size of
2 × 2 pixels. Subsequently, a single fully connected layer of
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Fig. 8. Schematic diagram of the VGG16 CNN architecture. Credit: https://neurohive.io/en/popular-networks/vgg16/.

128 nodes was added with the ReLU activation function and,
finally, a five-node output layer with softmax activation was
used [68].

2) Convolutional neural network based on the xception
architecture: Another architecture assessed in this work is
Xception. Xception was developed at Google by F. Chollet. It
is based on the concept of “inception modules,” and is endowed
with 36 convolutional layers for feature extraction [69]. This
architecture seems very promising, as it outperformed other
precedent networks with similar number of parameters on large
data sets such as ImageNet [56] and another Google internal
data set denoted by JFT.

Like VGG16, the Xception architecture can be also im-
plemented through the Keras framework [70]. In its default
implementation, the size of the input images is 299 pixels ×
299 pixels, with 3 channels. However, disabling the default
top layer of this CNN allows for the use of images with other
sizes. We opted to disable the default top layer, in order to keep
the same input size of 300 pixels × 300 pixels, and replaced
the disabled layer by another fully connected layer with 128
nodes.

In the resulting architecture, the image is processed through
an array of 14 blocks of successive convolutional layers.
Each block is composed differently, combining depth-wise
separable convolutional layers with ReLU activation functions,
and 3×3 max-pooling layers. As with the previous architecture
(Section II-A1), the output of the convolutional layers was
passed through a filter of the average pool type, with a size
of 2× 2 pixels and a fully connected layer of 128 nodes with
the ReLU activation function. Likewise, the output layer had
five nodes with softmax activation.

3) Training and testing sets: In this experiment, the whole
data set consisted of 1500 images, which included 300 images
of type UI, 300 images of type DI, 300 images of type LI, 300

images of type RI, and 300 images of type N. The training set
was constructed including 250 images of each class, while the
remaining images (50 from each class) constituted the testing
set.

In order to generate the images of class N (null inclination),
the mobile was held parallel to the surface, with an allowed
error up to 3 deg (i.e., i ≤ 3 deg). On the other hand,
the images that were not intended to be of class N (i.e.,
with inclination) were taken with i within a range of 30–
70 deg. With respect to r, for every class other than N, we
allowed it to include values of r centered at their nominal
values r0 (0, 90, 180, or, 270 deg) and within intervals of
r ∈ [r0 ± 5 deg].

4) Training process: For both CNN architectures, the
weights that were optimized were those of the fully connected
layers, while the weights of the convolutional layers were set
as the default pre-trained values.

The optimization of the weights was achieved using the
Adam optimizer [71], for which the learning rate lr was
scheduled as lr (k) = 0.001/ (1 + d · k), where k is the
iteration number and d = 0.00002857142. The loss function
J was categorical cross-entropy. Both models were trained for
40 epochs with batches of 30 observations.

B. Experiment II

Experiment II was considered as a natural step forward
from Experiment I. In this case, more refined categories for i
were pursued. We intended to obtain an algorithm that could
distinguish incidence angles in three classes: i0 = 0 deg,
i0 = 20 deg, and i0 = 40 deg. The sub-index 0 indicates the
nominal value for each corresponding class. The real images
were taken with some errors allowed (for i up to 3 deg) from
their corresponding nominal values. In other words, the class
with i0 = 0 deg actually contained angles i ≤ 3 deg. The class
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of i0 = 20 deg implied 17 deg ≤ i ≤ 23 deg, while that of
i0 = 40 deg included angles in the range 37 deg ≤ i ≤ 43 deg.
For each class with i0 > 0 deg, the algorithm had to distinguish
between r0 = 0 deg, r0 = 90 deg, r0 = 180 deg, and r0 = 270
deg. In total, there were nine classes, denoted by the following:
‘N’ (i0 = 0 deg), ‘20U’ (i0 = 20 deg and r0 = 0 deg), ‘20R’
(i0 = 20 deg and r0 = 90 deg), ‘20D’ (i0 = 20 deg and
r0 = 180 deg), ‘20L’ (i0 = 20 deg and r0 = 270 deg), ‘40U’
(i0 = 40 deg and r0 = 0 deg), ‘40R’ (i0 = 40 deg and
r0 = 90 deg), ‘40D’ (i0 = 40 deg and r0 = 180 deg), and
‘40L’ (i0 = 40 deg and r0 = 270 deg).

In this experiment, the architectures described in Sec-
tion II-A1 and Section II-A2 were initially attempted, but their
results were not promising. Hence, a third architecture was
pursued. This architecture was proposed in [68] and, due to
its similarities to the VGGNet architecture [62], it is referred to
as the compact version of VGGNet, named SmallerVGGNet.
The following section provides a description of it.

In this experiment, rather than considering nine mutually
exclusive classes, the problem was addressed as a multi-label
classification process. Each image was assigned to two labels.
One label indicated the incidence angle: either i0 = 0 deg,
i0 = 20 deg, or i0 = 40 deg. For the cases with i0 > 0 deg,
another label expressing the angle r0 was associated with them:
either r0 = 0 deg, r0 = 90 deg, r0 = 180 deg, or r0 = 270
deg. Thereby, by using the CNN to classify the images on i0
and r0, all of the cases of interest were addressed.

1) SmallerVGGNet architecture: A schematic representa-
tion of this architecture can be found in [68]. Following the
input layer, it has a first convolutional layer with 32 kernels
of size 3 × 3, activated by the Rectified Linear Unit (ReLU)
function. It uses a padding of 1 and stride of 1. This layer
is followed by a MaxPool layer of size 3 × 3 and a stride of
3× 3. A dropout scheme with a rate of 25% is applied before
the next convolutional layer. Then, there are two convolutional
layers, each of which has 64 filters of size 3× 3, and a ReLU
activation function. These are followed by another MaxPool
layer of size and stride 2 × 2. Another dropout layer with a
rate of 25% was applied before the next convolutional layer.
These layers are followed by another two convolutional layers,
with 128 kernels each, where each kernel had a size of 3× 3.
These convolutional layers are activated with ReLU functions,
and are concatenated to another MaxPool layer, of size and
stride 2× 2, and a dropout layer with rate 25%.

Following the aforementioned layers, there is a fully con-
nected layer of 1024 nodes with ReLU activation, a dropout
layer with a rate of 50%, and the final output layer activated
with sigmoid functions. It is important to note that, for Experi-
ment II, the problem was tackled as a multi-label classification
one, categorizing both angles i and r independently.

2) Training and testing sets: In this experiment, the train-
ing set consisted of:

• 1252 images of type N;

• 293 images of type 20U;

• 282 images of type 20R;

• 289 images of type 20D;

• 292 images of type 20L;

• 289 images of type 40U;

• 301 images of type 40R;

• 284 images of type 40D; and

• 288 images of type 40L.

Meanwhile, the testing set contained:

• 220 images of type N;

• 45 images of type 20U;

• 56 images of type 20R;

• 49 images of type 20D;

• 46 images of type 20L;

• 55 images of type 40U;

• 43 images of type 40R;

• 60 images of type 40D; and

• 56 images of type 40L.

The number of images of type N might seem much higher
than that for the other classes. This is due to the fact that, when
the initial set of images was augmented by rotating them, all
of the rotated images within the category N remained in the
same category. All these images were used with the intention
to provide images in category N with different roll angles.

3) Training process: The CNN was trained for initially 30
epochs, with batches of 32 images each. Optimization of the
weights was achieved by using the built-in Adam optimizer
[71], for which the learning rate lr was scheduled as lr (k) =
0.001/ (1 + d · k), where k is the iteration number and d =
0.00002857142. After the first 30 epochs, the CNN was re-
trained for another 10 epochs, but with a learning rate given
by lr (k) = 0.0005/ (1 + d · k).

C. Images and Surfaces Considered

The images used in this work for training show multiple
type of surfaces with different textures. They represent ground
terrains where a lander might accomplish touchdown. The
appearance of surfaces where a space probe might land can be
very diverse. There might be areas with multiple protruding
rocks, or areas that are mostly plain [72]. For VTOL aircrafts,
the landing surface could be also very varied, including grass,
concrete, and paving stones. We intended to obtain an algo-
rithm that can work with multiple textures, including some that
can be found on the Earth’s ground and others that are not
of ground-like types. Including images with multiple textures
allowed the CNN to learn features that can provide indications
about different inclinations, even across images of different
textures. Samples of these surfaces are shown in Fig. 6c, and
Fig. 9a–Fig. 9l.

The images were taken using a mobile telephone camera.
The device was a Samsung® S6 Edge. The resolution of
the camera was 16 megapixels. While taking the images, the
mobile was held manually, at a distance between 30 and 100
cm from the surface. However, for missions, the distance
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(a) Grass surface, r = 270 deg. (b) Concrete surface, r = 90 deg. (c) Wood surface, r = 0 deg.

(d) Tiles surface, r = 180 deg. (e) Wall cover, r = 90 deg. (f) Soiled concrete surface with rocks,
r = 0 deg.

(g) Tiles surface (other type), with
r = 0 deg.

(h) Tiles surface (other type), r = 0
deg.

(i) Table cover, r = 270 deg.

(j) Wood floor, r = 0 deg. (k) Granite surface, r = 270 deg. (l) Table cover, r = 270 deg.

Fig. 9. Different angles r for images with i > 0 deg.

from the ground at which images could be taken may be
highly diverse. Two important factors that would dictate the
appropriate distances are the resolution of the sensor of the
camera and its lenses, which entail the size of each portion
of ground represented by each pixel in the image. Hence,
in this work, the distance from the ground at which the
images were taken were arbitrarily set, as the main goal

was to demonstrate the methodology, rather than obtaining a
production-level algorithm for a specific mission. Furthermore,
the incidence angle does not depend on the distance to the
ground at which the images are taken. Therefore, we expect
that the features that characterize the angles i and r of an
image could be learned by a CNN across multiple images from
different distances.
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1) Image Pre-processing and augmentation: In general,
convolutional neural networks require inputs of a pre-
determined size. The size h = w = 300 pixels of the input of
the CNN was arbitrarily chosen. These values were considered
to provide images that were as large as possible (in order
to provide the training process with as much information as
possible), but still allowing for a training process that could
be carried out entirely without being prematurely terminated
due to a RAM memory shortage.

Once the images were resized to a common size, every
image was rotated clockwise three times (i.e., by 90, 180,
and 270 deg), in order to augment the data set. Moreover,
as the original images were of RGB type (i.e., their color
channels were in the order of red, green, and blue), the set
was augmented by converting them to GBR (i.e., green, blue,
and red, in that order).

Since the images were RGB (three color channels), each
image was represented by a tensor of dimension 300×300×3.
Once the final set of resized and rotated images was completely
defined, the intensity value corresponding to each pixel, for
each of the color channels, was divided by 255, in order to
scale their values into the range [0, 1].

III. RESULTS AND DISCUSSION

A. Experiment I

In this experiment, both CNN architectures were trained
and tested with the same training and testing sets. Recalling the
classification categories for Experiment I, Table I and Table II
show the confusion matrices obtained with the testing set,
for each of the two architectures. In these tables, U indicates
an upward inclination, L denotes leftward inclination, D is
downward inclination, and R represents rightward inclination.

TABLE I. CONFUSION MATRIX FOR VGG16 CNN

Predicted Classes

U L D R N

True Labels

U 43 0 0 3 4

L 3 40 0 4 3

D 1 2 41 1 5

R 2 3 2 39 4

N 1 1 2 6 40

A few observations can be drawn from Table I and Table II.
First, the number of true positive cases for each category, in
both tables, strongly suggests that it is feasible to train an
algorithm to classify the images, according to the categories
defined in this work. This means that, from individual monocu-
lar images, CNNs can extract useful information to determine
whether the terrain under a landing vehicle is inclined with

TABLE II. CONFUSION MATRIX FOR XCEPTION CNN

Predicted Classes

U L D R N

True Labels

U 43 1 0 1 5

L 2 41 1 3 3

D 1 0 41 0 8

R 0 4 8 34 4

N 0 5 3 2 40

TABLE III. PRECISION AND RECALL FOR THE VGG16-BASED CNN

Precision Recall F1 Score

U 0.86 0.86 0.86

L 0.87 0.80 0.83

D 0.91 0.82 0.86

R 0.74 0.78 0.76

N 0.71 0.80 0.75

TABLE IV. PRECISION AND RECALL FOR THE XCEPTION-BASED CNN

Precision Recall F1 Score

U 0.93 0.86 0.90

L 0.80 0.82 0.81

D 0.77 0.82 0.80

R 0.85 0.68 0.76

N 0.67 0.80 0.73

respect to the attitude of the vehicle, as well as the direction
of the inclination.

We found that the CNN based on VGG16 performed
slightly better than its Xception counterpart. Although the
numbers were somewhat similar in magnitude, the 39 correctly
predicted cases of rightward inclination against the 34, indi-
cated the advantage of VGG16 over Xception. For statistical
comparison, we observed the metrics of precision, recall,
and F1 score, as they constitute natural manners to evaluate
the performance of classification algorithms. Considering the
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Fig. 10. Evolution of the training of the VGG16-based CNN.

TABLE V. CONFUSION MATRIX: EXPERIMENT II

Predicted Classes

N 20U 20R 20D 20L 40U 40R 40D 40L

True Labels

N 220 0 0 0 0 0 0 0 0

20U 7 34 1 1 0 2 0 0 0

20R 4 0 49 3 0 0 0 0 0

20D 9 0 0 40 0 0 0 0 0

20L 4 4 0 0 38 0 0 0 0

40U 5 0 0 0 0 50 0 0 0

40R 4 0 1 0 0 0 38 0 0

40D 6 0 0 0 0 0 0 54 0

40L 8 0 0 0 4 0 0 1 43

precision, recall, and F1 scores displayed in Table III and
Table IV, none of the architectures outperformed the other in

every other metric.

Fig. 10 illustrates the progress in the prediction capability
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TABLE VI. PRECISION AND RECALL FOR EXPERIMENT II

Precision Recall F1 Score

N 0.82 0.76 0.90

20U 0.89 0.80 0.82

20R 0.96 0.88 0.92

20D 0.91 0.82 0.86

20L 0.90 0.83 0.86

40U 0.96 0.91 0.93

40R 1 0.88 0.94

40D 0.98 0.90 0.94

40L 1 0.77 0.87

of the CNN as the training advanced. It was observed that, after
25 epochs of training, the loss function of the validation set
stopped decreasing. We also observed that the loss function
computed over the training set and that over the validation
set diverged after approximately 10 epochs, which might be
indicative of overfitting. This could be resolved by adding more
images to the training set.

B. Experiment II

For the performance obtained in Experiment II, using
the architecture described in Section II-B1, Table V shows
the distribution of classifications obtained for the testing set,
while Table VI indicates the precision, recall, and F1 score
statistics obtained. These numbers suggest that the algorithm,
indeed, learned to distinguish the classes to which each image
belonged. This supports our work towards the next step, which
is generating a classifier that can provide estimates of the
angles i and r, but within many more classes; thus, describing
the measured angles more precisely.

IV. CONCLUSION

In this work, we explored the feasibility of using convolu-
tional neural networks to evaluate the slope of the terrain under
a lander, when it is about to touch ground. This capability may
be essential for certain missions, where autonomous landers
must accomplish landing maneuvers in unknown terrains.

Two experiments were described, where Experiment II was
considered as a natural extension of Experiment I. The latter
demonstrated the feasibility of using CNNs to classify image
angles into five categories, including normal and four cate-
gories with i > 0. The former exhibited that it is also possible
to quantify the angles i into more than binary categories. The
next step will be to train algorithms that can classify the images
into many more categories, or treat the problem as a regression
one, in which the outputs are real numbers for the angles r
and i.

It is important to mention that this work constitutes the
first step in a wider project, whose ultimate goal is developing
algorithms to precisely estimate angles between landers and
the terrain underneath them from monocular images.
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[18] Herissé, B.; Hamel, T.; Mahony, R.; Russotto, F.X. The landing problem
of a VTOL unmanned aerial vehicle on a moving platform using optical
flow. Proceedings of the International Conference on Intelligent Robots
and Systems, Taipei, Taiwan, USA, 18-22 October 2010; IEEE: New
York, NY, USA, 2010.
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