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Abstract—With the lightning growth of the Internet of Things
(IoT), enormous applications have been developed to serve indus-
tries, the environment, society, etc. Smart Health care is one of the
significant applications of the IoT, where intelligent environments
enrich safety and ease of surveillance. The database of the
Smart Hospital records the patient’s sensitive information, which
could face various potential privacy breaches through linkage
attacks. Publishing such sensitive data to society is challenging
in adopting the best privacy preservation model to defend against
linkage attacks. In his paper, we propose a novel Reciprocal
Bucketization Anonymization model as the privacy preservation
method to defend against Identity, Attribute, and Correlated
Linkage attacks. The proposed anonymization method creates
the Buckets of patient records and then partitions the data into
sensor trajectory and Multiple Sensitive attributes (MSA). A
local suppression is employed on Sensor Trajectory Data and
Slicing on MSA to get the anonymized data to be published
gathered by combining anonymized sensor trajectory and MSA.
The proposed method is validated on the synthetic and real-time
dataset by comparing its data utility loss in both sensor trajectory
and the MSA. The experimental results eradicate that the RB –
Anonymization exhibits the nature of best privacy preservation
against Identity, Attribute, and Correlated linkages attacks with
negligible utility loss compared with the existing methods.

Keywords—Anatomization; anonymization; entropy; pearson’s
contingency coefficient; and KL – Divergence

I. INTRODUCTION

The Internet of Things (IoT) ecosystem facilitates col-
laboration across various computing devices ranging from
sensors to complex processing systems with cloud storage. In
the digitally connected world era, IoT adoption has rapidly
increased in multiple applications, such as Smart Homes,
Smart Healthcare, and so on [1]. The IoT plays a crucial role
in building a secure cyber-physical communication system as
the essential requirement for deploying Intelligent applications.
Smart Healthcare systems primarily focus on patient real-time
monitoring through sensors and data management via the cloud
for remote access, such as Mobi-Care and MEDiSN [2].

Fig. 1. Structure of smart hospital.

Fig. 1 describes the components deployed in the Smart
Hospital Structure with its various benefits to assess the
patients and the caretakers to build a pervasive surveillance
system. The evolution in the sensor’s technology assures
innovative and secure patient care in real-time and facilitates
the accessible collection of the patient’s spatiotemporal sensor
data [3]. The sequence of sensor data at the specific time of a
patient is known as sensor trajectory data. It helps to predict
patient-sensitive information such as symptoms, diseases, etc.
However, publishing such trajectory data along with multiple
sensitive attributes of a patient for the researchers/data miners
may result in a privacy breach [4]. Hence the challenge is
preserving the privacy of the patient data by providing equal
weightage for trajectory data and multiple sensitive attributes
against the potential privacy breach.

Most privacy preservation principles are designed to protect
the data against privacy breaches of patient sensitive informa-
tion. However, the Adversary with prior knowledge of partial
sensor trajectory data or a few sensitive attributes could infer
the patient data even after removing the identity attributes,
such as patient name and unique social identification number
from the database [5]. Further, the Adversary can imply various
linkage attacks with the prior knowledge to predict the patient’s
sensitive information with high probability [6].

Example: Consider the SMART Hospital “X,” which dig-
itally records and maintains patient data. The records may
have the patient’s ID, sensor trajectory, and medical data, as
represented in Table I. The sensor trajectory data is recorded
concerning time from the sensors deployed on the patient’s
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body, representing the pair of sensor data and time given as
(sen,t) [7] [8]. An example of the Patient data is as follows,
PId 7 is the patient ID, the data collected from the sensors x,
k, n, and p at the timestamps 1, 6, 7, and 8, respectively, with
the multiple sensitive attributes Fever, RITD Test, Influenza,
and Medicine. The recorded data must be made available
for the data miners for research [9]. In parallel, the hospital
wants to preserve the privacy of the patient’s sensitive data
from unauthorized usage by malicious data miners against the
following attacks [10]:

Identity linkage attack: In the published dataset, if the
trajectory of the sensor data for a patient is unique, then an
adversary can quickly identify a patient record along with the
patient’s sensitive data using his prior knowledge [11].

Attribute linkage attack: In the published dataset, the most
frequent occurrence of the sensitive values of a targeted victim
could result in an attribute linking attack. The adversary could
breach the sensitive information with high confidence even
though the unique sensor trajectory information of the victim
is not available [11].

Correlated-records linkage attack: In the published dataset,
when a patient has multiple records, there could be the
possibility of a Correlated-record linkage attack. For example,
the patient with PId 1 has the correlated records in row 1
and row 4, as shown in Table I. Having additional knowledge
about the correlated records by the adversary can predict both
trajectory data and the sensitive value of the victim with high
confidence [11].

In literature, various privacy preservation approaches have
been proposed for the trajectory data with single sensitive
attributes, such as Generalization, Perturbation, Clustering,
Differential Privacy, and Suppression, to defend against the
various linkage attacks [12] [13]. Similarly, Multi-sensitive
Bucketization, (p,k) —Angelization, and Generalization are the
approaches to preserve the privacy of the multiple sensitive at-
tributes along with the Quasi Identifiers but not with trajectory
data. To the best of our knowledge, we are the first to address
the privacy preservation approach for the dynamic trajectory
data generated by the sensors and Multiple Sensitive attributes
with trustfulness.

In this paper, we implement Reciprocal Bucketization as
the overall framework for anonymization. Further Suppression
and Slicing are implemented to anonymize the trajectory data
with Multiple Sensitive Attributes to ensure privacy from the
above three linkage attacks. The Bucketization approach helps
in the formation of buckets from the patient data table records,
on which the suppression and the slicing methods are parallelly
imposed on sensor trajectory data and MSA, respectively, to
anonymize the data via K-anonymity threshold by reducing the
data loss with efficient anonymization [14] [15].

The major contributions are summarized as follows:

• We present Reciprocal Bucketization (RB) an efficient
data anonymization model to preserve privacy in pub-
lishing the patient’s data by the Smart Hospitals.

• To the best of our knowledge, we are the first to
combine the Sensor trajectory data and MSA to ensure
the privacy requirements for data publishing to defend

against Identity, Attribute, and Correlated Linkage
attacks.

• We proposed a suppression method on the sensor
trajectory data and slicing on the MSA to achieve an
improved anonymization model with a reduced infor-
mation loss rate compared with earlier approaches.

The rest of the paper organizes as follows: Section II
introduces the related works with their benefits, and Section
III defines the basic definitions and notations incorporated.
Section IV describes the procedure involved in Reciprocal
Bucketization as the efficient anonymization model. The ex-
perimental results and comparative analysis with the existing
approach are given in Section V. Finally, Section VI concludes
the proposed approach.

II. LITERATURE REVIEW

In this section presents the advantages of Smart Health
Care, the recent research on the privacy preservation of trajec-
tory data, and the multiple sensitive attributes addressing the
various potential benefits and shortcomings.

Smart Health Care is a significant application of the IoT,
where the various aspects of Health Care are implemented for
ease of maintenance under the secured surveillance system.
Vedaei et al. [16] presented COVID-SAFE, an automated
health monitoring and surveillance system integrating IoT
devices with Machine Learning algorithms. The primary aim
is to improve the efficiency and accuracy of detecting and
monitoring COVID-19 patients in urban areas. The depreci-
ation of exposure to the coronavirus is more significant. Still,
deployment and maintenance costs are high, and there needs to
be a consideration for the security aspects of the data collected
in the IoT environment.

IoT devices are highly vulnerable to attacks, and the
medical data collected from those devices are highly significant
and need highly secured privacy schemes and policies. Luo
et al. [17] designed a Privacy Protector framework to defend
against linkage attacks and secretly share data by adopting
the Slepian-Wolf-coding-based secret sharing (SW-SSS). The
distributed nature of the framework stores the patient data
collected on the cloud server by assuring an efficient access
control scheme. Privacy Protector ensures the security of the
data collected, however securing the data in real-time is still
challenging.

Komishani et al. [18] presents a Preserving personalized
privacy in trajectory data publishing (PPTD) model for the
trajectory data associated with the sensitive attribute of moving
objects. The sensitive attribute generalization and trajectory
data local suppression approach balance the data utility and
privacy well. The linkages attacks such as identity linkage,
attribute linkage, and similarity attacks are demonstrated on the
anonymized data to the resistance of the data publishing. The
PPTD has been implemented on the City80K and Metro100K
datasets, and an extensive comparison is carried out with KCL.
With less data loss and high privacy protection, the PPTD
outstands in its performance aspects, but multiple sensitive
attributes are yet to address with efficient data utility.

Addressing the various linkage attacks, such as attribute,
record linkage, and similarity attacks on the trajectory data,
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TABLE I. SMART HOSPITAL SENSOR TRAJECTORY DATASET WITH MULTIPLE SENSITIVE ATTRIBUTES (PTB ).

PId Trajectory Multiple Sensitive Attributes
Symptom Diagnostic Method Disease Treatment

1 x1 → d2 → z3 → p4 → k6 → p8 Abdominal pain X-ray Abdominal Cancer Chemotherapy
2 k6 → n7 → p8 Weight loss Antibody Test HIV Medication
3 z3 → k6 → n7 → p9 Eating disorders Body mass index (BMI) Obesity Nutrition control
1 x1 → d2 → n5 → k6 → p9 Fever Molecular diagnostic methods Cholera Antibiotic
4 x1 → d2 → k6 → n7 → p9 Infection ELISA Test HIV ART
5 d2 → n5 → k6 → n7 Diarrhea RT-PCR Tests Dengue Antibiotic
6 x1 → z3 → n7 → p8 Shortness of breath FeNO test Asthma Medication
7 x1 → k6 → n7 → p8 Fever RITD Tests Influenza Medicine
8 n5 → k6 → p9 Weight loss MRI Scan Lung Cancer Radiation Therapy
9 d2 → n5 → n7 → p9 Chest tightness Methacholine challenge tests Inflammation Medication
10 p4 → n7 → p8 Pain or discomfort Biopsy Test Skin cancer Radiation Therapy
11 z3 → p4 → k6 → p8 Abdominal pain Ultrasound Dyspepsia Antibiotic

Yao et al. [19] have designed an anonymous technique called
Enhanced l-diversity Data Privacy Preservation for publishing
trajectory data (EDPP). EDPP defends against the background
knowledge of the trajectory data to predict the sensitive at-
tributes by identifying critical spatial-temporal sequences that
cause privacy leakage. The method adopts perturbation and
enhanced l - diversity with well-defined privacy constraints to
ensure more excellent data utility. However, the approach must
be extended for a greater trajectory length with indexing and
multiple sensitive attributes.

Adding Noise to the trajectory data to ensure privacy
through a vector-based grid environment is a new effort by
Tojiboev et al. [20] Adding Noise before data publishing
results in low complexity and greater privacy, but data handling
and rebuilding the original data is challenging. Differential
privacy is a modern, robust privacy preservation approach
that implements a query mechanism to minimize privacy
loss. Added Noise on the trajectory data and implementing
differential privacy as the privacy protection model poses a
challenge in data utility. They are considering the sensitive
attribute label and adopting Generative Adversarial Network
(GAN), an effective privacy preservation model implemented
by Yao [21] The GAN ensures balanced data privacy and
data utility. However, the computational speed and addressing
the multi-source trajectory data and sensitive attributes are
challenges for Differential Privacy.

Wen et al. [22] proposed a dynamic privacy level model
by defining the relationship between privacy requirements
and location features. The optimal differential privacy model
is designed on the trajectory data by filtering the template
trajectory with the semantic similarities on the trajectory as
the constraint. The model publishes the data on randomization
of the locations on the user trajectory data to balance privacy
and data utility. However, adopting differential privacy on the
multiple sensitive attributes and the dynamic trajectories is
challenging.

Kanwal et al. [23] present (p, l)- Angelization for pub-
lishing 1:M, an individual with multiple records resisting a
correlation attack. The Angelization method eliminates explicit
Identifier by splitting the table into quasi-identifiers and multi-
ple sensitive attributes. Quasi-attribute generalization and mul-
tiple sensitive attribute weight and dependency are computed
for anonymization through (p, l)- Angelization. The algorithm
performs well under static datasets without republications, but
republication is an issue with data utility for the dynamic

dataset.

The privacy preservation methods like generalization and
bucketization pose a challenge to data utility. To overcome
these issues slicing method is proposed by Li et al. [24] The
slicing method can be applicable horizontally and vertically
on the given data records; the membership disclosure attack
is primarily defended. The significant advantage of slicing
is to handle the high dimensional data with minimized data
loss on the complete records. Overlapping slicing ensures high
privacy by duplicating an attribute into more than one column.
However, the utilization of the anonymized data still needs to
be improved.

Heap Bucketization-anonymity (HBA) model is proposed
by et al. [25], where the method develops an anonymization
approach for quasi-identifiers and the sensitive attribute. HBA
anatomizes the complete records to anonymize the sensitive
attributes using slicing and Heap Bucketization of the quasi-
identifier using k-anonymity and slicing. The KL - Divergence
is used for validation in terms of utility and privacy by defend-
ing against background knowledge attacks, quasi-identifier at-
tacks, membership attacks, and fingerprint correlation attacks.
HBA results in less utility loss with greater privacy; HBA
has yet to address the dynamic, unstructured data and semi-
sensitive attributes.

Sensitive Label Privacy Preservation with Anatomization
(SLPPA), a scheme for privacy preservation, is designed by
Yao et al. [26] to address the various background knowledge
attacks. The SLPPA adopts two phases in implementation, i.e.,
Table Division and Group Division. The entropy and mean-
square contingency coefficient is computed for anonymiz-
ing by adding uncertainty during table division. The group
division is performed by adopting the privacy constraints
and ensuring no overlapping groups in the published data.
SLPPA enhances data utility by defending against background
knowledge attacks. However, dynamic data anonymization is
yet challenging.

III. PROBLEM DESCRIPTION AND BASIC NOTATIONS

A. Problem Definition

The patient’s dataset (PTB), combines trajectory data
(PT

TB) and multiple sensitive attributes (PSA
TB ). Anonymize the

dataset so that the Adversary with the prior knowledge fails to
decode the individual identity through the trajectory data or the
MSA. The anonymization approach must ensure the defense
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mechanism against linkages attacks with optimal equilibrium
between privacy and data utility.

B. Notations

A patient’s dataset consists of patient data records, where
each record allows a unique patient identifier, sensory trajec-
tory data, and a set of sensitive values. The patient sensor
trajectory data with the MSA can be represented as:

PTB = {(PId1, T1, SA1), .......(PIdi, Ti, SAi)} (1)

Where, PId is unique identifier for a patient in PTB . Ti is
an Sensor Trajectory data for a patient possessing the MSA as
SAi. Ti is a sequence of data collected for the sensor’s at a
particular timestamp for a user i and it given as follows:

Ti = {(sen1, t1)
i, (sen2, t2)

i, .....(senn, tn)
i} (2)

We compute |Ti| as the number of sensors moving points
for a patient ‘i’. For an Example |T4| = 5, i.e., five sensors
are recording the data in sequence for patient with ID 4,
concerning Table I.

Joinable trajectories are formed if there exists a sub-
trajectory for the given trajectory. Let’s consider TK =
{tK1 , tK2 , tK3 , ..., tKn } as the sensor trajectory data and TS =
{ts1, ts2, ts3, . . . ., tsm} as the sub trajectory of user K then |TS |is
the sub trajectory satisfying the condition n¡=m and |TS | must
be subset of |TK |. The trajectories can be merged using union
operation.

C. Adversary Model

The Adversary could breach the patient’s privacy in two
significant ways (1) the Adversary’s Prior Knowledge of
Trajectory Data and (2) the Adversary’s goal to hit the victim
by knowing a sensitive values from MSA. Let’s consider that
Avok is one of the patients in the smart hospital, and his details
are recorded in Table I. Consider ‘A’ as the Adversary, which
could be a data collector itself and aims to find the sensitive
attributes of the targeted victim. With the prior knowledge
about Avok, the adversary ‘A’ can perform the following
attacks[27]:

Identity linkage attack: If adversary ‘A’ knows about
Avok’s sensor trajectory, i.e., sensor ‘d’ measures the oxygen
level at timestamp 2 and sensor ‘p’ measure the blood pressure
at timestamp 4, respectively, then A can claim that the record
T1 belongs to Avok. The adversary can declare with 100%
confidence that the record belongs to Avok and access the
sensitive attributes because d2, p4 is the only sub-trajectory
that belongs to the T1 record.

Attribute linkage attack: If adversary ‘A’ knows about
Avok’s partial sensor trajectory, i.e., sensor ‘k’ measures the
heart rate at timestamp 6 and sensor ‘n’ measures the body
temperature at timestamp 7, respectively. The table contains
three records, T2, T4, and T5, with the sub-trajectory k6, n7
can be identified by A. Adversary ‘A’ can forecast that Avok
has HIV disease with 67% confidence because out of three

records under multiple sensitive attributes, two records have
the disease as HIV.

Correlated-records linkage attack: From the given Table,
Avok has multiple records. If adversary ‘A’ knows the number
of records Avok has in the dataset and also knowledge about
Avok’s sensor trajectory x1, k6. This makes the adversary pre-
dict with 100% confidence with his prior correlated knowledge
that Avok has Asthma plus dengue could be specifically on the
Sensor trajectory data. Similarly, if the Adversary ‘A’ knows
the two sensitive attributes out of four, like the Symptom:
Abdominal pain and Treatment: Chemotherapy, the adversary
could correlate them to say confidently that the patient has
Abdominal Cancer.

D. Privacy Requirement

The goal of anonymizing the patient dataset from adver-
saries requires adopting the following privacy requirements in
our proposed approach [28].

1) Bucketization: The patient’s dataset (PTB) , which is
a combination of sensor trajectory data (PT

TB) and multiple
sensitive attributes (PSA

TB ), is partitioned into ‘n’ buckets with
a constraint of a maximum bucket size of three patient records.
On partitioned, each bucket is named with Bucket ID. Further
bucketization helps in carrying the suppression and slicing
parallelly.

2) Suppression: Suppression is the method of eliminating
the critical sensor trajectory point from the patient trajectory
data. A sensor trajectory point is critical if and only if the
trajectory point fails to satisfy the K-1 threshold defined and
the suppression metric. The critical point is eliminated only
with the corresponding trajectory to enhance the data utility
by minimizing the data loss, which could express as Local
Suppression [29].

3) Slicing: It’s a method to anonymize the data using a
partition. Partition could be carried vertically or horizontally
to get the randomly permutated sliced table. The attribute
partition is carried out by slicing Table III vertically into
two slices, say (Disease, Symptom) and (Diagnostic Method,
Treatment) [30].

E. Utility Metrics

To maintain the trade-off between the patient’s privacy and
data utility in the published anonymized dataset. It’s required
to define the Reciprocal Bucketization to ensure less data loss
through cumulated sensitive attribute representation under the
same bucket. The suppression metric measures the suppression
score of every sensor trajectory point and helps find the critical
trajectory point to remove. The computation of the suppression
score of one sensor point from the critical trajectory is as
follows.

SupressionScore =
NT Bi CP

NT Bi
(3)

Where,NT Bi CP : Number of Trajectories in Bucket with
the Critical Point and NT Bi : Number of Trajectories in the
bucket
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On the computation of the suppression score for both the
sensor points from the trajectory, one point is selected as
critical by finding the maximum among them. If both the points
have the same suppression score, the leftmost sensor trajectory
point is declared the critical point to remove [31].

IV. PROPOSED SYSTEM

The reciprocal Bucketization anonymity model proposes
the design workflow as shown in the Fig. 2 and algorithm to
prevent the privacy leakage of patients’ data from the three
linkage attacks. The proposed model consists of the following
four phases,

Fig. 2. Workflow of reciprocal bucketization model.

1) Bucketization and Partition.
2) Local Suppression on Sensor Trajectory Data (PT

TB).
3) Slicing of MSA (PSA

TB ).
4) Publishing Anonymized Dataset on Merging PT

TB
and PSA

TB

The primary goal of the proposed model is to ensure less data
loss with high privacy preservation. The detailed procedure for
the above four phases is in the following sub-sections.

Algorithm 1 Reciprocal Bucketization
INPUT: Patient Data PTB , Bucket Size
OUTPUT: Anonymised Patient Data PA

TB .
1: anatomize (Patient Data PTB)
2: Sort Disease Value(Patient Data PTB)
3: Bucket ID = 0, count = 0, i = 1
4: for k ← 1 to len(PTB) do
5: if count ≤ Bucket Size then
6: Bucket ID = i
7: count = count+ 1
8: else
9: count = 0

10: i = i+ 1
11: end if
12: end for
13: SplitPTB =PT

TBwithBucket ID,PSA
TBwithBucket ID

14: PTA
TB = Anonymise Trajectory(PT

TB)

15: PSAA
TB = Anonymise Sensitive Attribute(PSA

TB )

16: PA
TB = merge(PTA

TB ,PSAA
TB )

17: return PA
TB

A. Bucketization and Partition

The primary goal of this step is to create the Bucket based
on the user input bucket size, then partition Table II into two
table’s Table III and Table V, having sensor trajectory and
MSA, respectively. Before the bucket creation, the entire Table
I is sorted according to the Disease column from the MSA
to get Table II and a new column, Bucket ID, where each
patient’s record is added with the bucket number sequentially
corresponding to the bucket size. I.e., if the user input bucket
size is 3, then the first three records from Table II are
allocated with bucket number 1, and so on for the rest of the
buckets. Further, Table II is divided into two Tables to carry
Suppression on the Trajectory data and Slicing on MSA to
achieve the anonymization effectively.

B. Local Suppression on Sensor Trajectory Data (PT
TB)

On the sensory trajectory data PT
TB , the Local Suppression

method is implemented to remove the critical trajectory points
from the patient’s PTB dataset and generate the anonymized
trajectory dataset. The algorithms depict the steps involved in
the trajectory suppression, and the procedure is as follows:

TABLE III. SENSOR TRAJECTORY DATA (PT
TB )

PId Trajectory Bucket ID
1 x1 → d2 → z3 → p4 → k6 → p8 1
6 x1 → z3 → n7 → p8 1
1 x1 → d2 → n5 → k6 → p9 1
5 d2 → n5 → k6 → n7 2
11 z3 → p4 → k6 → p8 2
2 k6 → n7 → p8 2
4 x1 → d2 → k6 → n7 → p9 3
9 d2 → n5 → n7 → p9 3
7 x1 → k6 → n7 → p8 3
8 n5 → k6 → p9 4
3 z3 → k6 → n7 → p9 4
10 p4 → n7 → p8 4
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TABLE II. SORTING DISEASE COLUMN AND BUCKET ID ASSIGNMENT

PId Trajectory Multiple Sensitive Attributes
Symptom Diagnostic Method Disease Treatment Bucket ID

1 x1 → d2 → z3 → p4 → k6 → p8 Abdominal pain X-ray Abdominal Cancer Chemotherapy 1
6 x1 → z3 → n7 → p8 Shortness of breath FeNO test Asthma Medication 1
1 x1 → d2 → n5 → k6 → p9 Fever Molecular diagnostic methods Cholera Antibiotic 1
5 d2 → n5 → k6 → n7 Diarrhea RT-PCR Tests Dengue Antibiotic 2
11 z3 → p4 → k6 → p8 Abdominal pain Ultrasound Dyspepsia Antibiotic 2
2 k6 → n7 → p8 Weight loss Antibody Test HIV Medication 2
4 x1 → d2 → k6 → n7 → p9 Infection ELISA Test HIV ART 3
9 d2 → n5 → n7 → p9 Chest tightness Methacholine challenge tests Inflammation Medication 3
7 x1 → k6 → n7 → p8 Fever RITD Tests Influenza Medicine 3
8 n5 → k6 → p9 Weight loss MRI Scan Lung Cancer Radiation Therapy 4
3 z3 → k6 → n7 → p9 Eating disorders Body mass index (BMI) Obesity Nutrition control 4
10 p4 → n7 → p8 Pain or discomfort Biopsy Test Skin cancer Radiation Therapy 4

The algorithm accepts PT
TB sensor trajectory data with

Bucket IDs, adversary prior knowledge delta, and threshold K
to produce anonymized sensor trajectory data as the output.
In the suppression procedure, the primary step is to group
all the trajectory data into two groups: one with a similar
Bucket ID for which the anonymization is to be carried and
the other group with all remaining Bucket IDs. Split the
trajectory data into two sets, say set X consists of trajectory
data with ‘1’ as the Bucket ID, and set Y consists of the
records with remaining Bucket ids. Now from set X, find all
the sub-trajectories of length 1 and verify that those trajectories
appeared with a minimum of K-1 times in set Y. If any of
the sub-trajectories fails to leave traces of K-1 times, those
trajectories are eliminated; else, trajectories are preserved as
same.

TABLE IV. ANONYMIZED TRAJECTORY DATA (PTA
TB )

PId Trajectory Bucket ID
1 z3 → p4 → k6 → p8 1
6 z3 → n7 → p8 1
1 d2 → n5 → k6 → p9 1
5 d2 → n5 → k6 → n7 2
11 z3 → p4 → k6 → p8 2
2 k6 → n7 → p8 2
4 d2 → k6 → p9 3
9 d2 → n5 → p9 3
7 k6 → n7 → p8 3
8 n5 → k6 → p9 4
3 z3 → k6 → n7 → p9 4
10 p4 → p8 4

Similarly, find all the sub-trajectories of length 2 from set
X and validate with set Y for the minimum traces to K-1 times,
failing to eliminate a trajectory point that does not satisfy the
condition by computing the suppression score. Else keep the
trajectory the same in the record. Repeat the procedure to
calculate the critical trajectory point till the length of the sub-
trajectory equals the adversary prior knowledge length delta.
The complete process has to iterate for all the Bucket ID’s for
the PTBT to generate an anonymized sensor trajectory record
PTBTA, as shown in Table IV.

Consider an example of the sensor trajectory x1→ d2→
z3 → p4 → k6 → p8 , which belongs to Bucket ID 1. The
sensor trajectory is validated by computing the suppression
score for critical trajectory points of the length 1 and 2,
respectively, and found that the trajectory points x1 and d2 are
critical to eliminating. On the complete trajectory iteration, the
anonymized trajectory is z3→ p4→ k6→ p8.

Algorithm 2 Anonymise Trajectory(PT
TB)

INPUT: Sensor-Trajectory data PT
TB with Bucket ID, A′s prior

knowledge ∂ with maximum length ρ, K threshold
OUTPUT: Anonymized Sensor Trajectory data PTA

TB .
1: Scan Sensor Trajectory Table PT

TB

2: let SA = {set of all distinct sensitive values under the same
Bucket ID}

3: for each sa ∈ SA do
4: i = 1,Crp = ∅,Dri = ∅
5: P = {PT

TBr | PT
TBr ∈ PT

TB ∧ PT
TBr(sa) = sa}

6: Q = PT
TBr − {P}

7: for each PT
TBr ∈ P do

8: Crp = {τr | τr ⊆ PT
TBr∧ | τr |= 1}

9: for each τr ∈ Crp do
10: if (| τr ∈ PT

TBr |∀PT
TBr

∈Q≥ K) then
11: Dri = Dri ∪ τr
12: else
13: remove τr from PT

TBr ∈ P
14: end if
15: end for
16: end for
17: while (i+ 1 ≤ ρ) do
18: for each τr ∈ Dri join with successive τr+i in Dri do
19: if (| τr ∪ τr+i ∈ PT

TBr |∀PT
TBr

∈Q≥ k) then
20: Dri+1 = Dri+1 ∪ {τr ∪ τr+i}
21: else
22: tr = τr ∪ τr+i

23: remove χ(t) from PT
TBr ∈ P

24: end if
25: end for
26: i = i+ 1
27: end while
28: end for

C. Slicing of Multiple Sensitive Attributes (PSA
TB )

Anonymizing the MSA PSA
TB obtained after Bucketization

and Partition implements the following slicing steps. In the
slicing procedure, we first measure the weight of each sensitive
attribute through the concept of entropy. Entropy refers to
the average value of the information in each message gained.
The sensitive attribute with higher entropy measures results as
the qualitative information container. The entropy is measured
with the following formula:

WSA = −
DSA∑
j=1

p(Svi) log(p(Svi)) (4)
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TABLE V. MULTIPLE SENSITIVE ATTRIBUTE (PSA
TB )

PId Symptom Diagnostic Method Disease Treatment Bucket ID
1 Abdominal pain X-ray Abdominal Cancer Chemotherapy 1
6 Shortness of breath FeNO test Asthma Medication 1
1 Fever Molecular diagnostic methods Cholera Antibiotic 1
5 Diarrhea RT-PCR Tests Dengue Antibiotic 2
11 Abdominal pain Ultrasound Dyspepsia Antibiotic 2
2 Weight loss Antibody Test HIV Medication 2
4 Infection ELISA Test HIV ART 3
9 Chest tightness Methacholine challenge tests Inflammation Medication 3
7 Fever RITD Tests Influenza Medicine 3
8 Weight loss MRI Scan Lung Cancer Radiation Therapy 4
3 Eating disorders Body mass index (BMI) Obesity Nutrition control 4
10 Pain or discomfort Biopsy Test Skin cancer Radiation Therapy 4

Where SA is Sensitive Attribute, {Sv1, Sv2, Sv3, ...., Svi}
set of possible values under SA. p(Svi) possibility that Svi is
considered and DSA number of distinct sensitve attributes.

The slicing procedure continues to find the association after
computing the weight of each sensitive attribute using entropy.
We adopt Pearson’s Contingency Coefficient in the association
computation to measure the association between two sensitive
attributes. The analysis obeys the following formula:

ϕ2(SA1, SA2) =

∑n1
i=1

∑n2
j=1

(p(SAij)−p(SAi)p(SAj))
2

p(SAi)p(SAj)

min{n1, n2} − 1
) (5)

where, n1 and n2 are the total number of distinct values
of SA1 and SA2 respectively. p(SAij) represents the chance
from SAij . p(SAi) and p(SAj) are the boundary totals, where
p(SAi) =

∑n2
j=1 and p(SAj) =

∑n1
i=1

On the computation of the weights of each sensitive
attribute and the association among them, we combine the
four columns of the MSA to form two columns for generating
the sliced table. The sensitive attribute with the higher weights
is selected as the slice’s first column to avoid the adversaries’
ease of data access. Then we choose the second column of
the slice, with the maximum average association coefficient,
with the other column. Doing so maximizes the association
between the sensitive attributes in the same silce, and the
coefficient for attributes in the different slices is minimized.
After completing the above procedure, Table V with sensitive
attributes like Symptoms, Diagnostic Method, Disease, and
Treatment generates Table VI. Table VI has two slices on the
attributes (Disease, Symptom) and (Diagnostic Method, and
Treatment) to efficiently anonymize the data.

D. Publishing Anonymized Dataset on Merging PTA
TB and

PSAA
TB

The anonymized sensor trajectory data and MSA data are
merged to get the Table to give the input to the Reciprocal
Bucketization. In this procedure, the sensor trajectory data
remains untouched. In return to the Bucket ID, the MSA
is combined to form three tuples having the three patients’
data records under the same Bucket ID, which can reduce the
adversary’s confidence in identifying the individual through
sensor trajectory data or the multiple sensitive attributes. In
merging the corresponding records, the Patient ID is the

Algorithm 3 Anonymise Sensitive Attribute(PSA
TB )

INPUT: Multiple Sensitive Attributes PSA
TB with Bucket ID

OUTPUT: Anonymized Multiple Sensitive Attributes PSAA
TB .

1: Scan Multiple Sensitive Attributes Table PSA
TB

2: for each attribute in PSA
TB do

3: compute WSA store in WSAArray
4: end for
5: SA Max1 = First Max(WSAArray)

6: SA Max2 = Second Max(WSAArray)

7: Slice 01 = (SA Max1)

8: Slice 02 = (SA Max2)

9: Compute Pearson Contingency Coefficient of MSA excluding
(SA Max1)and(SA Max2)

10: compute ϕ2(SA1, SA2) store in PCCSAArray

11: PCC Max1 = FirstMax(PCCSAArray)

12: PCC Max2 = SecondMax(PCCSAArray)

13: Slice 01 = (SA Max1, PCC Max1)

14: Slice 02 = (SA Max2, PCC Max2)

15: return(Slice 01,Slice 02)

referral point. Finally, the anonymized data is published by
sorting the records according to the patient ID as represented
in the Table VII.

The RB – Anonymization model generates the anonymized
dataset to be published, as represented in Table VII, and
it is resistant to Identity, Attribute, and Correlated linkage
attacks. To our knowledge, RB -Anonymization model is
the first approach to anonymize the trajectory data with the
MSA. If adversary prior expertise with the sensor trajectory
length delta = 2 as d2,p4, then Adversary ’A’ can perform all
three linkage attacks on Table I as discussed in Section III.
However, the Adversary fails to identify Avok’s record from
Table VII because the not even one record with d2,p4. Only
by finding the sensory trajectory point d2, the Adversary could
declare the identification with less than 37% confidence. The
MSA couldn’t be reached with the same Adversary’s prior
knowledge.

Similarly, knowing the partial sensor trajectory k6, n7 with
the significant MSA as the disease HIV could be predicted in
Table I. But from Table VII even though the k6, n7 trajectory is
repeated more than one time, the adversary failed to identify its
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TABLE VI. SLICED MULTIPLE SENSITIVE ATTRIBUTE (PSAA
TB )

PId (Disease, Symptom) (Diagnostic Method , Treatment) Bucket ID
1 (Abdominal Cancer , Abdominal pain) (X-ray , Chemotherapy) 1
6 (Cholera , Fever) (Molecular diagnostic methods , Antibiotic) 1
1 (HIV , Weight loss) (Antibody Test , Medication) 1
5 (Obesity , Eating disorders) (Body mass index (BMI) , Nutrition control) 2
11 (HIV , Infection) (ELISA Test , ART) 2
2 (Dengue , Diarrhea) (RT-PCR Tests , Antibiotic) 2
4 (Asthma , Shortness of breath) (FeNO test , Medication) 3
9 (Influenza , Fever) (RITD Tests , Medicine) 3
7 (Lung Cancer , Weight loss) (MRI Scan , Radiation Therapy) 3
8 (Inflammation , Chest Tightness) (Methacholine challenge tests , Medication) 4
3 (Skin cancer , Pain or discomfort) (Biopsy Test , Radiation Therapy) 4
10 (Dyspepsia , Abdominal pain) (Ultrasound , Antibiotic) 4

TABLE VII. MERGING AND RECIPROCAL BUCKETIZATION PA
TB

PId Trajectory (Disease, Symptom) (Diagnostic Method , Treatment)

1 z3 → p4 → k6 → p8
(Abdominal Cancer , Abdominal pain)
(Cholera , Fever)
(HIV , Weight loss)

(X-ray , Chemotherapy)
(Molecular diagnostic methods , Antibiotic)
(Antibody Test , Medication)

2 k6 → n7 → p8
(Obesity , Eating disorders)
(HIV , Infection)
(Dengue , Diarrhea)

(Body mass index (BMI) , Nutrition control)
(ELISA Test , ART)
(RT-PCR Tests , Antibiotic)

3 z3 → k6 → n7 → p9
(Inflammation , Chest Tightness)
(Skin cancer , Pain or discomfort)
(Dyspepsia , Abdominal pain)

(Methacholine challenge tests , Medication)
(Biopsy Test , Radiation Therapy)
(Ultrasound , Antibiotic)

1 d2 → n5 → k6 → p9
(Abdominal Cancer , Abdominal pain)
(Cholera , Fever)
(HIV , Weight loss)

(X-ray , Chemotherapy)
(Molecular diagnostic methods , Antibiotic)
(Antibody Test , Medication)

4 d2 → k6 → p9
(Asthma , Shortness of breath)
(Influenza , Fever)
(Lung Cancer , Weight loss)

(FeNO test , Medication)
(RITD Tests , Medicine)
(MRI Scan , Radiation Therapy)

5 d2 → n5 → k6 → n7
(Obesity , Eating disorders)
(HIV , Infection)
(Dengue , Diarrhea)

(Body mass index (BMI) , Nutrition control)
(ELISA Test , ART)
(RT-PCR Tests , Antibiotic)

6 z3 → n7 → p8
(Abdominal Cancer , Abdominal pain)
(Cholera , Fever)
(HIV , Weight loss)

(X-ray , Chemotherapy)
(Molecular diagnostic methods , Antibiotic)
(Antibody Test , Medication)

7 k6 → n7 → p8
(Asthma , Shortness of breath)
(Influenza , Fever)
(Lung Cancer , Weight loss)

(FeNO test , Medication)
(RITD Tests , Medicine)
(MRI Scan , Radiation Therapy)

8 n5 → k6 → p9
(Inflammation , Chest Tightness)
(Skin cancer , Pain or discomfort)
(Dyspepsia , Abdominal pain)

(Methacholine challenge tests , Medication)
(Biopsy Test , Radiation Therapy)
(Ultrasound , Antibiotic)

9 d2 → n5 → p9
(Asthma , Shortness of breath)
(Influenza , Fever)
(Lung Cancer , Weight loss)

(FeNO test , Medication)
(RITD Tests , Medicine)
(MRI Scan , Radiation Therapy)

10 p4 → p8
(Inflammation , Chest Tightness)
(Skin cancer , Pain or discomfort)
(Dyspepsia , Abdominal pain)

(Methacholine challenge tests , Medication)
(Biopsy Test , Radiation Therapy)
(Ultrasound , Antibiotic)

11 z3 → p4 → k6 → p8
(Obesity , Eating disorders)
(HIV , Infection)
(Dengue , Diarrhea)

(Body mass index (BMI) , Nutrition control)
(ELISA Test , ART)
(RT-PCR Tests , Antibiotic)

MSA due to the bucketization where three tuples are confusing
to decide, and the probability of finding is less than 0.2, which
is slightly negligible.

Correlated linkage attacks concerning multiple sensory
trajectories with the same patient ID and establishing the
relations among the sensitive attributes are well addressed by
RB – Anonymization. The significant bucketization process
brings down the confidence level of the adversary in the
correlated linkage attack to less than 30% as the outcome
of Bucketization and combining the records under the same
bucket ID.

V. RESULTS AND DISCUSSION

The proposed approach uses the Windows 10 operating sys-
tem, i5 processor with a minimum of 4GB RAM and 256 GB

SSD. The algorithm implementation uses the Python 3 version
of the Synthetic dataset. The number of instances considered
is more excellent than 10,000. The dataset’s attributes are
PId, Sensor Trajectory, Disease, Symptom, Diagnostic Method,
and Treatment. Disease, Symptom, Diagnostic Method, and
Treatment categorizes as MSA. The proposed approach’s per-
formance evaluates in terms of information loss in anonymized
sensor trajectory data and the utility loss in MSA (PA

TB).

A. Sensor Trajectory Information Loss

Information loss occurs during the anonymization process
because of the methods used, like generalization or suppres-
sion. Analysing the number of sensor trajectories information
loss in the resultant anonymized dataset is quite significant.
Eliminating the critical trajectory moving point results in
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(a) (b) (c)

Fig. 3. Mean sensor trajectory information loss in PTA
TB with K threshold values. (a) T- Drive dataset. (b) Geolife dataset. (c) Private dataset.

(a) (b) (c)

Fig. 4. Mean sensor trajectory information loss in PTA
TB with bucket size. (a) T- Drive dataset. (b) Geolife dataset. (c) Private dataset.

information loss during the procedure to satisfy the privacy
requirements.

The sensor trajectory information loss is computed as
follows between the PT

TB (Original Sensor Trajectory) and
PTA
TB (Anonymized Sensor Trajectory).

Information Loss(IL) of each record is computed as:

IL(P
TA
TBi) =

|PT
TBi| − |PTA

TBi|
|PT

TBi|
(6)

Total Trajectory Information Loss is computed as:

IL(P
TA
TB ) =

|PTA
TB |∑
i=1

IL(P
TA
TBi) (7)

where, PT
TBi represents total number of trajectory points

in ith record of PT
TB and PTA

TBi represents total number of
trajectory points in ith of PTA

TB .

Fig. 3 shows the mean sensor trajectory information loss
in the seven sensor trajectories corresponding to the various
K threshold values. The graph shows that the increase in K

values is directly proportional to the information loss on the
anonymized data due to the random increase in the critical tra-
jectory points, which failed to reach the privacy requirements.
Hence the data publisher has to adopt the K value carefully to
hold the moderate data loss and to preserve privacy.

Effect of Bucket Size: The RB anonymity model splits
the given records in the user input bucket size, where we
have taken as 3. The number of sensor trajectories that fall
under the bucket is directly proportional to the bucket size.
Anonymizing the trajectories while keeping the constraints of
K threshold values and adversary prior knowledge varies on
the bucket size. Fig. 4 represents the mean Information loss
of the patient’s sensor trajectory by keeping the adversary
prior knowledge sigma to 2 and changing the K threshold
values. The significant observation from the graph is that as
the bucket’s size increases, the information loss reduces due
to the more trajectories falling into the bucket and the less
elimination of trajectory critical point. It leads to quick access
to the sensitive attributes hence the bucket size has to be chosen
appropriately by providing equal significance to the sensor
trajectory and the multiple sensitive attributes.
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B. Utility Loss in Multiple Sensitive Attributes

The utility loss in MSA measures probability distribution
across the actual values and the RB – Anonymize data. We
adopt the Kullback – Leibler divergence metric to estimate
the probability distribution differences. The MSA PSA

TB table
is considered as actual values for implementing the KL diver-
gence as x1. x1(r) are the elements of the records for R, i.e.,
(r belongs to R). x2 is an estimated probability distribution
considered after anonymization (PA

TB). The KL divergence is
given as follows:

KLdiv(x1, x2) =
∑
r∈R

x1(r) log(
x1(r)

x2(r)
) (8)

Fig. 5. KL Divergence of MSA.

Fig. 5 represents the utility loss comparison between the
existing methods discussed in Section II with the proposed
RB – Anonymization model. We can notify the significant
differences, such as the (p,k) – angelization may assure high
privacy. Still, the estimated probability distribution increases,
resulting in a moderate utility loss. (c,k) – Anonymization
and RB – Anonymization approach has a slight difference in
the probability distribution with negligible utility loss; RB –
Anonymization model outperforms consistently even if bucket
size increases.

The analysis of the RB – Anonymization is validated by
measuring the execution time and the privacy loss. Since no
exact dataset has the sensor trajectory data and the multiple
sensitive attributes, we have built our own synthetic dataset
to evaluate the approach. The proposed model ensures its
high adaptability towards real-time applications through its
little execution time for anonymization with greater privacy.
A moderate number of records and sensitive attributes are
preferable since the execution time is proportional to both
attributes. As the RB – Anonymization approach outperforms
in terms of privacy, it also requires assuring the privacy
loss on publishing the anonymized data. The privacy loss is
negligible if there is less patient data exposure in terms of
sensor trajectory and the MSA. The proposed approach brings
new challenges to the adversaries through its stringent privacy
preservation approach.

VI. CONCLUSIONS

In this paper, we present a novel privacy preservation
method considering the Smart Hospital data, consisting of sen-

sor trajectory and the MSA. The proposed method outperforms
in defending Identity, Attribute, and Correlated linkage attacks
on data publishing. Our approach adopts a local suppression
to anonymize the sensor trajectory and the slicing for MSA
with a constraint on the bucket size. The proposed method
outperforms on comparing the information loss of the sensor
trajectory and MSA with (p,k) – angelization and (c,k) –
anonymization approaches implemented on the real-time and
synthetic dataset. As a future study, we are interested in
addressing all the various linkage attacks and, as the primary
concentration on the MSA, enabling our proposed method as
the best practice.
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