
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

Machine Learning in Malware Analysis: Current
Trends and Future Directions

Safa Altaha1, Khaled Riad2
College of Computer Sciences & Information Technology,

King Faisal University, Al-Ahsa 31982, Saudi Arabia1

Computer Science Department, College of Computer Sciences & Information Technology,
King Faisal University, Al-Ahsa 31982, Saudi Arabia2

Mathematics Department-Faculty of Science, Zagazig University, Zagazig 44519, Egypt2

Abstract—Malware analysis is a critical component of cyber-
security due to the increasing sophistication and the widespread
of malicious software. Machine learning is highly significant in
malware analysis because it can process huge amounts of data,
identify complex patterns, and adjust to changing threats. This
paper provides a comprehensive overview of existing work related
to Machine Learning (ML) methods used to analyze malware
along with a description of each trend. The results of the survey
demonstrate the effectiveness and importance of three trends,
which are: deep learning, transfer learning, and XML techniques
in the context of malware analysis. These approaches improve
accuracy, interpretability, and transparency in detecting and an-
alyzing malware. Moreover, the related challenges and Issues are
presented. After identifying these challenges, we highlight future
directions and potential areas that require more attention and
improvement, such as distributed computing and parallelization
techniques which can reduce training time and memory require-
ments for large datasets. Also, further investigation is needed to
develop image resizing techniques to be used during the visual
representation of malware to minimize information loss while
maintaining consistent image sizes. These areas can contribute to
the enhancement of machine learning-based malware analysis.

Keywords—Malware; malware analysis; machine learning; deep
learning; transfer learning

I. INTRODUCTION

The increasing demand for computer system usage and
internet connectivity results in the continuous evolution and
change of malware [1]. As more people and businesses rely on
computers and the internet in their daily activities, the potential
attack surface for malware actors and attackers expands,
giving them more opportunities to exploit vulnerabilities and
compromise systems. Moreover, the widespread adoption of
the internet has connected millions of devices, which allows
malware to spread rapidly. Malicious actors can use the
internet to distribute malware through many channels, such
as: email attachments, malicious websites, or social media
platforms. Malware describes any software or collection of
instructions that are designed to intentionally affect computer
systems, businesses, or users by causing harm. [2]. The term
“malware” includes a wide range of threats, which include
viruses, worms, trojan horses, ransomware, adware, and
various other types of malicious software [3]. The detection
and analysis of malware has consistently been a major
concern and a challenging issue due to limitations in analysis
methodologies, performance accuracy, and approaches that
fail to identify unforeseen malware attacks. Malware analysis

involves the utilization of techniques from diverse fields such
as program analysis and network analysis. Its purpose is to
examine malicious samples in order to gain a comprehensive
understanding of various aspects, including their behavior
and the transformations they undergo over time [4]. Recently,
researchers have introduced various techniques for malware
analysis. These techniques are typically classified into
two groups: the first one is the signature-based techniques
and the second one is ML-based techniques. The first
techniques depend on predefined patterns or signatures of
known malware samples to identify and detect malicious
software. ML-based techniques for malware detection utilize
ML algorithms to analyze benign and malicious malware
samples. By examining these samples, the algorithms generate
learning patterns that can be used to detect both known and
unpredictable and new malware. This ability makes ML-based
approaches a preferred choice for malware detection. ML is
a core element of artificial intelligence, it typically enables
systems to automatically learn and improve from experience,
without requiring explicit programming for each task [5],
[6]. Compared to signature-based techniques, which rely
on predefined signatures, ML-based techniques are more
efficient in identifying new malware [7]. This is because the
accuracy of ML models depends on the features used and the
training set, allowing them to learn and detect the changing
characteristics of malware.

This paper aims to provide a comprehensive and up-to-date
overview of existing trends related to ML used to analyze,
detect, and classify malware, which includes a description
of each trend, its related challenges, and issues. In addition,
we include future direction suggestions. This research paper
attempts to address the following questions:

1) What are the trends related to malware analysis
mechanisms that use machine learning?

2) What are the potential issues and challenges related
to each trend related to malware analysis mechanism?

3) What could be the future directions of research in this
domain that need more investigations?

The rest of the paper is organized as follows. Section II
introduces the three basic approaches to malware analysis.
Section III presents the search strategy. Followed by section
IV which describes different trends in malware analysis using
ML. Section V states some challenges related to each trend. In

www.ijacsa.thesai.org 1267 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

Section VI, some future directions and work are highlighted.
Finally, Section VII concludes this work.

II. MALWARE ANALYSIS APPROACHES

Three basic approaches to malware analysis and detection
include static, dynamic, and hybrid analysis. All of them play
significant roles in the overall malware analysis process and
each contributes to the overall malware analysis process in
different ways.

Static analysis involves inspecting the structure of an
executable file without executing it. The executable file has
various static attributes, such as distinct sections and memory
compactness. The static analysis involves two parts: basic and
advanced. Basic static analysis focuses on the basic properties
and features of the malware to gain an initial understanding of
its characteristics. File size, file type, and header information
are extracted using various tools and examined during basic
static analysis. After basic static analysis, advanced static
analysis techniques can be applied to gain a deeper understand-
ing of the malware’s behavior and capabilities. The advanced
static analysis features require more in-depth tools to extract
and uncover the actual behavior of malware. Advanced static
analysis involves investigating the program commends in detail
[8]. The static analysis faces challenges in detecting obfuscated
malware, as it is unable to effectively analyze packed samples.
This limitation has been highlighted by Komatwar and Kokare
[9].

Dynamic analysis involves executing the program instruc-
tions and examining the behavior of malware. To secure the
machine from being affected by the malware, the dynamic
analysis is conducted within an isolated environment, like
a virtual machine or sandbox. Dynamic analysis can be di-
vided into two parts: basic and advanced. In basic dynamic
analysis, monitoring tools are used to examine the behaviors
of malware. On the other hand, advanced dynamic analysis
involves the use of debugging tools. These debuggers enable
the analysts to run individual commands, with the ability to
modify parameters and variables [8]. During dynamic analysis,
the software operates in an environment where it has full access
to all resources. At the conclusion of malware execution, the
controlled environment is restored to its default state, which
was captured at the beginning of the environment setup. An
agent within the controlled environment logs the software’s
behavior [10], [11]. Unlike static analysis, dynamic analysis
can deal with obfuscation and detect new malware.

Hybrid analysis is an approach that combines both static
analysis and dynamic analysis techniques to detect and ana-
lyze malware. This method begins by initially analyzing the
malware statically, examining its code and structure without
executing it. Then, dynamic analysis is applied to enhance the
overall analysis further. By incorporating dynamic analysis, the
hybrid approach overcomes the limitations of applying static
or dynamic analysis alone. It allows for a more comprehensive
understanding of the malware’s behavior. The combination
of both analysis approaches enhances the overall analysis
process and improves the effectiveness of malware detection
and analysis [12].

Table I presents the pros and the cons of each approach
[13],[14].

TABLE I. COMPARISON BETWEEN MALWARE ANALYSIS APPROACHES

Approaches Pros Cons

Static analysis
Require less time and less
power and memory con-
sumption.

Can’t detect obfuscation
and unknown malware.

Dynamic analy-
sis

The ability to detect un-
known malware

Consumes higher amount
of resources, unsafe, and
require more time.

Hybrid analysis Result in more accurate re-
sult.

Higher complexity and
higher cost.

Based on a study that was conducted by Gorment et al.
[1] for ML algorithms for malware detection, they found out
that most contributions on this domain use static analysis
with a percentage of 53.3% of the related studies, while
dynamic analysis accounted for 28.9% and followed by hybrid
analysis with percentage 17.8%. This demonstrates the high
effectiveness of static analysis as it is fast and safe. In addition,
it has a small false positive rate compared to dynamic analysis
[15].

III. RESEARCH STRATEGY

This section outlines the methodology employed in this
study, including the search strategy and the criteria used to de-
termine the final set of papers included in the analysis. Google
Scholar and other databases such as IEEE and ResearchGate
are used to search for existing related literature. We have
included research papers that are related to Malware analysis
and ML. After that, the duplicated papers were excluded. Also,
some papers were excluded for other reasons, such as they are
not relevant, the whole paper is not available, only the abstract
is provided, and some papers are written in foreign languages.

To make sure that we include recent and relevant research,
we selected papers published within the past four years.
Moreover, priority was given to papers that focused on ideas or
objectives that have been the focus in recent years and had not
been explored by researchers in previous years. The selected
publications specifically emphasized contributions related to
malware analysis or detection in general, with a particular
focus on ML-based methods for malware analysis. By fol-
lowing this methodology, the goal of this study is to gather
a comprehensive and up-to-date collection of literature that
addresses the intersection of malware analysis and ML.

IV. TRENDS IN MALWARE ANALYSIS USING MACHINE
LEARNING

Numerous techniques, trends, and strategies have been
proposed for malware analysis and detection that make use
of ML. This section explores trends related to this domain
that was introduced and proposed by researchers in recent
years as the field of malware analysis and ML is dynamic
and continuously improving.

A. Deep Learning-based Malware Analysis

DL is an advanced subset of ML that brings ML closer to
the field of artificial intelligence. It enables the modeling of
complicated relationships and concepts by employing multiple
layers of representation [16]. The motivation behind DL is
the function and organization of the human brain and its
interconnected network of neurons. It consists of multiple

www.ijacsa.thesai.org 1268 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

Fig. 1. Difference between deep learning and machine learning.

layers of connected nodes, called neurons or units. Each neuron
takes inputs and then performs some computation to produce
an output that is used as input to the next layer. The layers
are organized hierarchically. In DL, each layer of a neural
network learns more abstract concepts from the data. The
higher layers build based on the representations learned by the
lower layers. DL does not require explicit feature engineering
or preprocessing of the data. Instead, it automatically extracts
relevant features and representations directly from the raw data
[17].

The motivation behind the adoption of DL in many fields
is the need to organize and analyze massive volumes of
data efficiently. Moreover, DL models have the capability
to learn and extract relevant features directly from the raw
input data during the training process [18], which is the
main difference between ML and deep learning as shown in
Fig. 1. It is commonly preferred and used in many domains,
including image processing, speech processing, healthcare, and
the rapidly expanding field of cybersecurity, which has seen a
surge in demand for DL techniques [15].

Rhode et al. [19] proposed a Recurrent Neural Network
(RNN) model for malware analysis and prediction. Their
focus was on examining the possibility of predicting that an
executable file is malicious or normal using a brief snapshot of
behavioral data. They found out that employing an ensemble
of RNN allows for accurate classification of whether an
executable is malicious or benign within the initial five seconds
of executing the file, achieving an impressive accuracy rate of
94%. Elayan and Mustafa [20] made use of two static fea-
tures of Android applications, which are Application Program
Interface (API) and permission, to present an approach for
detecting malware in Android applications. Gated Recurrent
Units (GRUs) were used, which is a type of RNN. GRU
consisted of three blocks: input block, middle block, and output
block. The approach achieved good results, correctly predicting
98.0% of the dataset. It showed high scores in both recall
and precision, successfully detecting 99.2% of the malware
samples.

Catak et al. [21] developed a classification method using
Long Short-Term Memory (LSTM). LSTM is a DL method
that was developed as an improvement over RNN. LSTM was
specifically designed to address the limitations of RNN. The

malware is analyzed and detected based on the API class
that the Windows operating system makes; this is used as
a representation of the patterns of malicious software. The
classifier’s result indicates a high level of accuracy, reaching
up to 95%. McDole et al. [22] introduced a study focusing
on the analysis of malware detection techniques in cloud
Infrastructure-as-a-Service (IaaS) environments, along with
exploring the potential of using CNN. The proposed malware
detection by Ravi et al. [23] used a CNN to detect malware
in smart healthcare systems for both Windows and Android.
The proposed approach achieved an accuracy of 98% in the
Windows dataset and 97% in the Android dataset.

Bayazit et al. [24] developed comparative systems that is
based on DL for malware detection, where they employed
various approaches and compared the results of each approach.
The system used both Static and dynamic analysis with differ-
ent ML and DL classifiers. Moreover, A comparative analysis
is conducted, comparing traditional ML algorithms such as
Decision Trees, Random Forests, and DL algorithms including
LSTM, CNN-LSTM, ANN, and Multilayer Perceptron (MLP).
They found that LSTM achieved a high accuracy rate of
98.75% in static analysis classification. Additionally, the CNN-
LSTM deep learning algorithm showed a high accuracy rate
of 95.26% in dynamic analysis classification.

İbrahim et al. [25] introduced an approach that used
static analysis and the most important features from An-
droid applications, including two newly proposed features.
These features are then used as input for an API DL model
specifically developed for this purpose. The proposed method
is implemented and evaluated using a classified dataset of
Android applications. They focused on extracting the following
features: permissions, API calls, services, broadcast receivers,
and opcode sequences. Furthermore, they introduced two new
static features: application size and fuzzy hash.

Patil and Deng [26] showed how accuracy could be im-
proved using DL networks rather than the traditional ML
models by introducing a neural networks-based framework for
malware analysis that achieved high accuracy. The findings
from the experiment indicated that the DL-based malware
classification method achieves high accuracy in classification.
Moreover, they suggested that the backpropagation and gra-
dient descent mechanisms in DL help improve accuracy, true
positive rate, and reduced false positive rate.

Rodrigo et al. [27] designed a hybrid ML model for
Android malware detection. The model contained three fully
connected neural networks: The first network focused on static
features and achieved an accuracy of 92.9% when trained
on 840 static attributes. The second network is designed for
dynamic analysis and achieved an accuracy of 81.1% when
trained on 3722 dynamic attributes. The last network combined
both static and dynamic features, resulting in a hybrid model
that achieved an accuracy of 91.1% when trained on 7081
static and dynamic attributes. This demonstrates that the hybrid
analysis performs better than using static and dynamic features.

Obaidat et al. [28] presented an approach combining static
analysis techniques with advanced image-based DL algorithms
to improve the accuracy of malware detection in Java bytecode.
The proposed approach, called Jadeite, is designed to classify
Java bytecode files as malicious or benign using a combination

www.ijacsa.thesai.org 1269 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

of supervised DL and static analysis. It takes as input a
JAR file that contains the Java bytecode and consists of
three main components. The first component is the Bytecode
Transformation Engine, which converts the Java bytecode file
into a grayscale image. The second component is the Feature
Extraction Engine, which takes the features from the bytecode
file. Finally, the CNN classifier Engine takes both the grayscale
image and the features obtained from the previous steps. It
employs a CNN model to detect if the file is malicious or
benign.

Fig. 2. Deep learning models used in the research papers.

Fig. 2 presents the deep learning techniques used by the
authors in the research papers. The Figure shows that the
most commonly used deep learning technique is CNN which
indicates its effectiveness and efficiency in malware analysis.
Following CNN, RNN is the next commonly used technique,
followed by DNN and LTSM. Below is a comparative analysis
these DL algorithms in malware detection:

• CNNs can learn the key and important features with-
out human involvement, which is its main advantage.
it is commonly used in computer vision fields for
image processing and pattern recognition. Hence, it
has been successful in image-based malware detec-
tion by extracting features from binary or grayscale
representations of malware [29].

• RNNs are usually used for analyzing sequential data,
making them applicable for code-based malware de-
tection. They can capture dependencies and patterns
in code instructions, enabling the identification of
malicious behavior [30].

• DNNs also known as feedforward neural networks,
can learn complex patterns and relationships in the
input data, making them capable of detecting malware
based on learned representations. Wang et al. [31] have
stated that recent studies have shown that using DNNs
in malware detection allows for the recognition of
abstract patterns from extensive collections of malware
samples. This enhances the ability to detect various
types of malware, providing a more comprehensive
approach.

• LSTMs are a type of RNN that can effectively capture
long-term dependencies in sequential data, making
them suitable for code-based malware analysis [30].

B. Transfer Learning-based Malware Analysis

The concept of transfer learning has been explored in
the literature since the 1990s, using different names such as
learning to learn, life-long learning, and knowledge transfer
[32]. It is a valuable technique in ML that addresses the chal-
lenge of limited training data. It allows us to use knowledge
gained from a source domain and apply it to a target domain,
even when the training and test data are dependent and not
identically distributed. This approach is particularly helpful in
domains where improving performance is difficult due to a lack
of enough training data [33]. The main difference between
traditional ML and transfer learning lies in the treatment of
tasks and the use of previous knowledge. In traditional ML,
each task is treated independently, and the model needs to learn
from scratch for each task. There is no sharing or transfer
of knowledge between tasks, and the model starts from the
beginning for each new task. On the other hand, transfer
learning involves taking knowledge and insights obtained from
previous tasks or domains and transferring them to the learning
process of a new task. Instead of starting from scratch, the
model can benefit from the knowledge extracted from other
source tasks [34]. Fig. 3 shows that the traditional ML learns
the task from scratch. This means that they are trained on
specific datasets related to the task. On the other hand, transfer
learning uses the knowledge gained from a learning system and
applies it to another learning system [35].

Transfer learning offers several advantages, including faster
learning and reduced reliance on large training data. By ap-
plying knowledge from related tasks or domains, the learning
process becomes quicker because the model is built based
on existing knowledge. Also, the need for a large amount of
training data is reduced as the model can generalize effectively
by taking advantage of the existing knowledge [32].

Fig. 3. Learning process of traditional ML and transfer learning.

Chen [36] introduced an approach that used deep transfer
learning for static malware classification. He showed that the
proposed technique has better performance compared to train-
ing from scratch and other traditional ML models. Moreover,
the transfer learning scheme speeds up the training phase in
deep neural networks while maintaining high performance in
classification.

Bhodia et al. [37] used transfer deep learning for malware
analysis and detection based on image analysis. The authors
converted executable files into images and used DL models
for image recognition. To train the models, they used transfer

www.ijacsa.thesai.org 1270 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

learning by applying existing DL models that have been
trained before on large image datasets. Transfer DL result was
compared to a simpler k-Nearest Neighbor approach (k-NN).
In certain cases, the k-NN learning technique had better perfor-
mance than the proposed models. However, in simulated zero-
day experiments, the proposed models had better performance
compared to k-NN. Ahmad et al. [38] proposed an approach
for classifying malware into nine different classes. They treated
the malware binaries as image data and applied various ML
and DL techniques. Logistic Regression, ANN, CNN, transfer
learning on CNN, and LSTM models were used to achieve
the classification results. Additionally, they employed transfer
learning with InceptionV3 for training, which showed better
results, particularly when compared to the LSTM model.

Acharya et al. [39] presented a transfer learning approach
for efficient Android malware detection. First, the authors
performed malware detection using the traditional ML models
such as CNN and then they used the transfer learning technique
to compare between them. They transferred the relevant fea-
tures and information from a model that was trained before to
a target model, and it was found that transfer learning resulted
in low computational costs.

Prima and Bouhorma [40] suggested a framework for
classifying malware using transfer learning. The proposed
approach used pre-trained DL models that have been trained on
large image datasets. In this framework, the input is a grayscale
image that represents the malicious program. Then, this image
is passed over a block of convolutional layers. The output is
the class of the malware. According to their findings, Prima
and Bouhorma stated that CNN shows better performance
compared to traditional ML techniques, particularly in domains
like image classification. Zhao et al. [41] proposed a malware
classification method that incorporates transfer learning, multi-
channel image vision features, and CNN. The methodology
involves several steps. First, they extracted features from
malware samples and converted them into grayscale images of
three different types. To ensure a consistent size, they process
the grayscale image sizes using an algorithm. Next, they
synthesized the three grayscale images into three-dimensional
RGB images. These RGB images are than used for training
and classification.

Panda et al. [42] used two malware image datasets, namely
Malevis and MalImg. For preparing the datasets, they per-
formed pre-processing and resized each image to 224x224
pixels. Since the datasets were relatively small, they applied a
technique to increase the amount of data available for training.
To evaluate the accuracy of the proposed model, they used the
MalImg dataset as a baseline. On the other hand, the Malevis
dataset was used to build a transfer learning on CNN. The
approach involved developing a transfer learning model from
scratch. The extracted features are used as input to three neural
network models: the autoencoder, the gated recurrent unit,
and the multi-layer perceptron. The result of the multi-layer
perceptron model is the final classification by taking the output
from the gated recurrent unit model as its input. Tasyurek and
Arslan [43] proposed a fast and accurate model that is based
on CNN. The model converts the features obtained from the
manifest file to an RGB format image. Then, these images are
used to train the model with the transfer learning technique.
The experiment results in high accuracy equal to 98.3% and

quick prediction due to the use of transfer learning.

He et al. [44] claimed that the traditional ML models are
not effective in accurately identifying previously unknown and
zero-day malware using Hardware-Based Malware Detection.
So, they proposed a Hardware-Based Malware Detection based
on deep neural networks and transfer learning. the proposed
solution which is based on image-based hardware events
showed better performance than the existing ML methods.
It achieves a high detection rate of 97% at runtime, using
only the top four hardware events. Additionally, the solution
maintains a low false positive rate and does not require any
hardware redesign overhead. Ngo et al. [45] proposed a model
that extracts both static and dynamic features for detecting
malware. Then, they presented a technique for transferring
knowledge that is obtained from a big source model, which is
trained on the previously extracted features, to a small target
model. The authors stated that the proposed model reduces the
time required for prediction.

C. Explainable Machine Learning-based Malware Analysis

In order to create ML models that are reliable to humans,
researchers have discussed various techniques for explaining
and interpreting these models to users. This field of study,
known as “explainability,” focuses on reasoning and decision-
making processes employed by ML models. Explainability in-
cludes any technique that helps users or developers understand
the behavior of ML models [46].

The term “XAI” (eXplainable Artificial Intelligence) was
introduced by the Defense Advanced Research Projects
Agency (DARPA) in 2017. Since then, it has gained popular-
ity across various fields, including healthcare, transportation,
legal, finance, military, and scientific research. XML refers to
the development and application of ML models and algorithms
that are transparent, interpretable, and able to provide under-
standable explanations for their predictions or decisions. XML
aims to bridge the gap between the complexity of traditional
ML models and the need for human interpretability and
understanding. In traditional ML, models such as deep neural
networks can be complex and hard to understand. They operate
as black boxes, making predictions without providing any
explanation for the underlying reasoning or factors that affect
the output. This lack of transparency can be a challenging
issue, especially in domains where trust, accountability, and
interpretability are important, such as healthcare, finance, and
legal systems [47]. In contrast, the goal of XML techniques
is to make models more transparent by providing explanations
for their predictions.

Alani and Awad [48] introduced a lightweight Android
malware detection system that applies of XML techniques.
The system uses static features extracted from applications to
classify the application as malicious or benign. The results
of the experiment show an accuracy rate of over 98%, while
the system remains lightweight and consumes little device’s
resources. Moreover, the classifier model is interpreted using
Shapley Additive Explanation (SHAP) values. Liu et al. [49]
also have proposed Android malware detection based on XAL.
This study takes a different approach compared to other
research. Instead of focusing on evaluating how well ML
classifiers detect malware and identify the causes, it applies

www.ijacsa.thesai.org 1271 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

XML approaches. The goal is to understand what ML-based
models learn during training. They stated that authors should
have a better understanding of how ML models work, rather
than just focusing on improving the accuracy. ladarola et
al. [50] presented a DL model that is based on images for
detecting which family the malware belongs to. Moreover,
they explained the system prediction by using LIME as the
explanation method. They achieved high accuracy equal to
93.4%.

Manthena [51] stated that many existing studies in the
field of malware analysis lack transparency and explainability
regarding the predictions made by their models. This absence
of information about the models’ decisions is a significant
issue, particularly in the context of malware analysis. Man-
thena presented an online malware analysis by applying XML,
such as KernalSHAP, TreeSHAP, and DeepSHAP to analyze
and evaluate the reliability of the performance metrics. By
doing so, she emphasized the importance of applying XML
techniques in the context of online malware detection. While
Manthena used SHAP as an XML technique, Kinkead et al.
[52] used Local Interpretable Model-Agnostic Explanations
(LIME) to explain the predictions of a ML model. They have
developed a method that used CNN to identify significant
locations within an Android app’s opcode sequence. These
identified locations are believed to play a key role in detecting
malware. Secondly, they have conducted a comparison between
the locations highlighted by CNN and the locations identified
as important by LIME. This comparison allows us to evalu-
ate the consistency between the two methods in identifying
significant locations for malware detection. After conducting
the experiment, they found out that the positions in the opcode
sequences classified as malicious by CNN closely match those
classified as most malicious by LIME.

Lu and Thing [53] proposed an android malware detection
using three model explanation methods, which are Modern
Portfolio Theory (MPT), SHAP, and LIME. They conducted an
experiment to compare these methods regarding the explana-
tion ability. The result of the experiment showed that the MPT
is considered valuable to security analysis as it can be used
to determine the reasons that the classifiers are fooled by the
adversarial samples. Iadarolaa et al. [54] proposed a method
for Android malware detection and family identification that
depends on representing applications as images. These images
are then used as input to an explainable DL model specifically
designed by the authors. The purpose of this approach is to
provide a transparent and interpretable solution for detecting
and identifying malware in Android applications. The proposed
methodology can be divided into two main parts. The first
part involves training the model using appropriate techniques
and data to achieve perfect performance. The second part
of the methodology is responsible for the interpretability of
the model’s learning process. This aspect emphasizes under-
standing and explaining how the model makes predictions or
decisions. Pan et al. [55] proposed a solution that focuses
on overcoming the limitations of current malware detection
methods, which include prediction inaccuracy and a lack
of transparency. To address these two challenges, they have
developed a hardware-assisted malware detection framework
using an XML algorithm based on regression.

Manthena et al. [56] addressed the block box characteristics

Fig. 4. XML Methods.

found in many ML and DL models such as CNN and Feed-
Forward Neural Net (FFNN) by proposing a malware detection
system that is trained on an online dataset and using SHAP
in order to explain the outcome of the model. Sharma et al.
[57] proposed an explainable system for malware detection
using traffic analysis. Explainability in this model is gained
by using features of the network traffic that are understandable
by humans and interpretable ML decision trees for detecting
malware.

Fig. 4 shows that the most commonly used methods for
model explanation in malware analysis are SHAP and LIMA.
The main difference between these methods is that SHAP
provides a general explanation, whereas LIME produces local
reasoning. This means that SHAP provides an explanation
regarding the performance of the model across all samples.
LIMA Interpret the prediction of a model for a specific
sample[58].

Table II provides a summary of the analyzed papers for the
reader and researcher to have a clear understanding.

D. Major Findings and Discussion

This section discusses some key findings based on the
surveyed works in the above section. According to the previous
section, the majority of current studies make use of DL models.
The use of DL models allows for effective detection and
classification of malware based on complex patterns and fea-
tures. Additionally, transfer learning has been widely applied
in malware analysis, using pre-trained models on large datasets
to enhance the performance of malware detection systems.
Moreover, XML techniques have gained attention in the field
of malware analysis. XML methods provide an understanding
of the decision-making process of the models, that ensure
transparency and interpretability. Overall, the surveyed works
show the effectiveness and importance of using DL, transfer
learning, and XML techniques in the context of malware
analysis.

The method of converting the samples or the files to an
image before processing is used by many researchers based
on surveyed work, such as [28], [37], [38], [40], [41], [42],
[43], [44], [50], [54].

www.ijacsa.thesai.org 1272 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

TABLE II. SUMMARY OF RECENT WORKS

Authors Pub.
year Focus/Objective Platform

Machine-
learning

techniques
used

Rhode et al. [19] 2018
Performing early detection of Mali-
ciousness of a file within the initial 5
seconds of its execution.

Windows 7
Executable
file RNN

Elayan and Mustafa [20] 2021

Utilizing DL techniques, specifically
the GRU architecture of Recurrent
Neural Networks to detect malware in
Android applications.

Android

Obaidat et al. [28] 2022
Identifying Java bytecode malware
programs through static analysis and
image-based DL classification.

Java
program

McDole et al [22] 2021 Analyzing malware in a cloud environ-
ment by utilizing DL. Cloud IaaS CNN

Ravi et al. [23] 2022

Proposing a method for malware de-
tection on Windows and Android op-
erating system in smart healthcare sys-
tems.

Windows
and Android
OS

Catak et al. [21] 2020
Using LSTM for malware analysis
based on API calls in Windows oper-
ating systems.

Windows
OS LSTM

Bayazit et al. [24] 2023
Present and compare the use of static
and dynamic analysis in DL-based
malware binary classification.

Android

LSTM,
CNN-
LSTM,
ANN and
MLP .

Rodrigo et al. [27] 2021 Using hybrid ML for Android malware
detection. Android

Fully
connected
neural
networks

İbrahim et al. [25] 2022 Using static analysis for android mal-
ware detection. Android Deep learn-

ing

Patil and Deng [26] 2020
Comparing the accuracy of the DL ap-
proach and traditional ML in malware
analysis.

-

Kinkead et al. [52] 2021
Using Explainable CNNs for devel-
oping Android Malware Detection
method.

Android .

ladarola et al. [50] 2023 Explinable DL model on images for
Malware fimaly detection. - Explainable

CNNs

Pan et al. [55] 2020 Addressing two limitations: inaccuracy
in predictions and lack of transparency - Explainable

RNN

Liu et al. [49] 2022

Researchers should focus on having a
better understanding of how ML mod-
els work, rather than just focusing on
improving the accuracy of the models.

Android
Explainable
machine
learning

Manthena [51] 2022
Addressing the lack of Explainable ML
approaches for online malware analy-
sis.

-

www.ijacsa.thesai.org 1273 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

Alani and Awad [48] 2022

Explaining the reasons behind the se-
lected features using Shapley additive
explanation values to ensure that the
high accuracy of the classifier come
from explainable conditions.

Android
Explainable
machine
learning

Manthena et al. [56] 2023 Addressing the block box issue that
found in many Ml and DL models -

Lu and Thing [53] 2022
Designing Android malware analysis
and Comparing the explanation be-
tween different explanation methods.

Android

Sharma et al. [57] 2023 Explainable malware detection using
network traffic features -

Explainable
Decision
tree

Iadarolaa et al. [54] 2021
Using explainable deep learning model
for detecting malware and identifying
their family.

mobile
Explainable
deep
learning

Chen [36] 2019 Demonstrating that transfer learning
outperforms training from scratch. -

Bhodia et al. [37] 2019 Malware detection and classification
based on image analysis

Executable
files

Transfer
deep
learning

Prima and Bouhorma
[40] 2020

CNN have better performance com-
pared to traditional learning tech-
niques.

-

Panda et al. [42] 2023 Developing a transfer learning model
from scratch IoT

Acharya et al. [39] 2023
Using transfer learning for mobile mal-
ware detection to lower the computa-
tional cost.

Mobile

Zhao et al. [41] 2023
Solving the problem of existing DL
model for malware detection which is
long training time

-

Ahmad et al. [38] 2023
Classifying malware, with nine differ-
ent class using CNN-transfer learning
model

-
Transfer
learning on
CNN

Ngo et al. [45] 2023

Addressing the limitations of feature
aggregation while using static and dy-
namic features and transferring knowl-
edge from big to small models.

-

Tasyurek and Arslan
[43] 2023 Fast CNN-based transfer learning for

malware analysis Android

He et al. [44] 2022
Using a deep neural network and trans-
fer learning for detecting zero-day mal-
ware.

-
Transfer
learning on
DNN

www.ijacsa.thesai.org 1274 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

Usually, the malware sample comes as an executable file in
binary format. To perform malware representation, the byte in
the binary file is converted to pixels in the image containing
textural patterns which results in better visualization of the
malware [59], [60]. Malware representation of a file before
processing it is very common in malware analysis files because
by using this approach, researchers avoid the need for and
dependency on features engineering process and methods [61],
[62]. Moreover, it allows for a visual representation of the
malware and incorporates computer vision with this domain
[63].

V. LIMITATIONS AND CHALLENGES

Over time, various trends in malware detection and analysis
have emerged, each with its limitations and drawbacks. As
a result, researchers have shifted their focus to alternative
technologies that aim to detect malware in real-time with min-
imal false positives and increase detection and classification
accuracy. This section discusses the challenges and limitations
associated with each trend based on the analyzed papers in the
previous sections.

A. Limitations and Challenges Found in Papers using Deep
Learning

• Rhode et al. [19] used RNN for early-stage malware
detection assuming that the malware will execute the
malicious activities within the first five seconds. But
what if the attacker or adversaries are aware that
the first 5 seconds of a file’s execution are used to
determine whether it is malicious or not, they can
manipulate the file’s behavior to avoid detection. By
introducing long periods of sleep or inactivity at the
beginning of a malicious file, so, the attacker can trick
the system into classifying the file as safe. We suggest
incorporating additional features or mechanisms in the
system to capture and analyze behavior beyond the
initial 5 seconds, such as by extracting and analyzing a
broader range of features, like system calls, or network
activity to gain a deeper understanding of the file’s
intent.

• Obaidat et al. [28] used DL with a large dataset for
Java malware detection. DL architectures rely heavily
on supervised learning, which requires a large amount
of labeled samples to train the model effectively. As
mentioned by Kadam and Vaidya in [64], using a
small number of samples does not allow the model to
learn the underlying features accurately in the training
stage, and processing such a large amount of data in
DL requires extensive training time and needs high
processing power.

• The dataset used by Catak et al. [21] has an unequal
distribution of instances for each malware Category.
For example, there are 1001 rows labeled as Worms
and only 379 samples for Adware. This may affect
the performance of the model in classification [65]. To
address this issue, we can use data resampling tech-
niques. Data resampling is used for class-imbalance
problems which aim to balance the distribution of
instances across different classes by either increasing

the number of instances in the minority class (over-
sampling) or decreasing the number of instances in the
majority class (undersampling). This helps to mitigate
the impact of class imbalance on the model’s training
process [66].

B. Limitations and Challenges Found in Papers using Transfer
Learning

• In the work of Panda et al. [42], the transfer learning
model may struggle to handle malware images with
varying sizes. Inconsistencies in image sizes can lead
to challenges in the model’s ability to learn meaningful
features and patterns. Resizing or standardizing the
images to a fixed size is typically required as a
pre-processing step, which can add complexity and
potential loss of information. Moreover, the model
proposed in this paper is incapable of detecting unseen
malware. this may lead to a prolonged classification
process because of the need for pre-processing the
malware images before classifying the malware.

• Niu et al. [67] and Pan and Yang [68] mentioned that
transfer learning suffers from an issue called negative
transfer. Negative transfer refers to a phenomenon in
which the application of transfer learning leads to
a decrease in performance or some impact on the
target task. It occurs when the knowledge learned
from the source domain is not relevant or compatible
with the target task. So, instead of benefiting the
target task, the transferred knowledge may introduce
noise or incorrect assumptions that affect the model’s
capability to generalize and make accurate predictions.
We can mitigate the risk of negative transfer by using
an ensemble of models trained with different source
domains. By combining different sources of trans-
ferred knowledge, the ensemble can take advantage
of the strengths of each model and reduce the impact
of negative transfer.

• Based on paper of Prima and Bouhorma [40] and
Panda et al. [42], We can conclude that transfer
learning requires large datasets. Even though the use
of a large dataset can achieve high accuracy, it is
time-consuming and may require more computational
resources [69]. Incremental learning could partially
solve this problem. Instead of training the model on
the entire large dataset at once, incremental learning
can be employed to train the model on smaller subsets
of data sequentially, gradually increasing the complex-
ity of the task. This way, computational resources can
be used more efficiently, and the time required for
training can be reduced.

C. Limitations and Challenges Found in Papers using XML

• The work proposed by Alani and Awad [48] has
been acknowledged for its accuracy and efficiency,
requiring minimal time for malware detection. How-
ever, a limitation of this approach is its inability to
effectively detect unknown and obfuscated malware.
This limitation arises from the fact that the proposed
method relies on static features for malware detec-
tion. Static features typically refer to characteristics

www.ijacsa.thesai.org 1275 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

extracted from the file or code without considering
dynamic behaviors or run-time information. Applying
dynamic analysis along with static analysis can pro-
vide more valuable information regarding the behavior
of malware during execution because dynamic analy-
sis can capture actions such as file system modifica-
tions, network communications, process interactions,
and system calls, which can help identify malicious
activities and detect previously unknown or obfuscated
malware.

• In many cases, there exists a trade-off between model
performance and interpretability as stated by Anto-
niadi et al. [70] and Arrietaet al.[71]. This means that
as models become more interpretable, their predictive
accuracy may decrease. Conversely, highly accurate
models may be less interpretable. making a balance
between interpretability and performance is a chal-
lenge in XML, as it requires finding the right level
of transparency without decreasing the accuracy.

• The split of the dataset in Kinkead et al. [52] for train-
ing, validation, and testing was not fair. A balanced
split is typically recommended to make sure that both
the training and testing samples have a representative
distribution of malware and benign samples. the best
resampling technique for this case is cross-validation
which is considered the standard resampling technique
for splitting the dataset into training, validation, and
testing sets [72].

• Unlike accuracy or precision, interpretability lacks
standard evaluation metrics. Measuring the quality of
explanations is still an active area of research. The
absence of widely accepted evaluation criteria makes
it challenging to compare and evaluate different XML
methods [73] [74].

VI. FUTURE DIRECTIONS

In the previous section, several issues and limitations that
need to be addressed to develop a system that has the ability
to detect, analyze, and classify malware efficiently are listed.
In this section, we will highlight some areas for future work
that researchers can use to help mitigate the mentioned issues:

A. The use of a Moderate-sized and Balanced Dataset

As mentioned in the previous section some research papers
used very large datasets and other papers suffered from unbal-
anced datasets. This problem is because the researchers believe
that larger datasets lead to higher accuracy and reduce bias.
While this belief is common, it is important to consider that
there are potential challenges linked with very large datasets.
By working with a dataset of moderate size, computational re-
sources and time required for training models can be reduced.
Another issue that needs to be taken care of is the use of
up-to-date datasets because it is important for maintaining the
relevance and applicability of the study in real-time scenarios.

B. Domain Distance Measure

Addressing the issue of negative transfer in transfer learn-
ing is an important research challenge that needs to be

addressed in the future. Negative transfer leads to worse
performance compared to not transferring at all. Therefore,
it is essential to find ways to prevent negative transfer from
happening in transfer learning. An accurate measurement of
domain distance is another important research aspect that
needs attention to solve this problem. When applying transfer
learning techniques, it is essential to rate the similarity or
dissimilarity between the source and target domains correctly.
Existing approaches for measuring domain distance often rely
on assumptions that may not capture the true underlying
relationships between domains. This can cause inappropriate
transfer of knowledge and performance degrading. Developing
robust and accurate methods for evaluating domain distance
will enable better identification of relevant knowledge for
transfer and make the adaptation of models to new domains
more effective [67].

C. Image Resizing and Standardization

Resizing images to a fixed size is a common preprocessing
step to address inconsistencies in image sizes. This step
ensures that the input images have a consistent size and format,
which is essential for many ML models. However, it’s impor-
tant to carefully consider the impact of resizing on the loss of
information [75]. So further investigation regarding resizing
techniques to minimize information loss while maintaining a
consistent and reasonable image size for efficient processing
is needed.

D. Distributed Computing and Parallelization

To facilitate the training process and reduce the time
required for large dataset processing, researchers should con-
sider making use of distributed computing techniques and
parallelization. This involves distributing the workload across
multiple computing resources, such as GPUs or multiple
machines, to train the model in parallel. Parallelization can
significantly reduce the training time and reduce the memory
resource requirements [76]

E. Comparative Evaluations

We recommend more future research regarding evaluating
the quality of the explanation of an XML. One way to
solve this is by comparative evaluations. It means comparing
different XML methods on fixed benchmarks or datasets. By
applying multiple XML methods to the same dataset or task,
their performance in terms of interpretability can be compared.
This can be done using qualitative analyses by experts or by
developing quantitative metrics that consider different elements
of interpretability.

VII. CONCLUSIONS

Malware analysis is a critical component of cybersecurity
due to the increasing sophistication and the widespread of
malicious software. Understanding malware is key to devel-
oping strong defenses. Malware analysis helps identify and
classify different types of malware, which makes it easier to
detect and prevent future attacks. ML plays a key role in
malware analysis due to its ability to analyze large amounts
of data and detect complex patterns. In this paper, we provide
a survey of existing trends related to malware analysis using

www.ijacsa.thesai.org 1276 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

ML including a description of each trend. The surveyed works
show the effectiveness and importance of applying DL, transfer
learning, and XML techniques in the context of malware
analysis. These approaches contribute to improved accuracy,
interpretability, and transparency in detecting and analyzing
malware. Moreover, the challenges and limitations related to
each trend are explored. Based on the survey results, we also
provide some future directions to be investigated that have the
potential to shape the future of malware analysis. These areas
may offer exciting opportunities for further improvement in
the field in order to overcome the challenges faced by the
researchers.

Despite the valuable insights this paper provides, it is
important to acknowledge its limitations. The sample size was
relatively small, which may limit the generalizability of the
findings. Future research should aim to replicate these findings
with larger samples.

ACKNOWLEDGMENT

This work was supported by the Deanship of Scientific
Research, Vice Presidency for Graduate Studies and Scientific
Research, King Faisal University, Saudi Arabia [Grant No.
5520].

REFERENCES

[1] N. Z. Gorment, A. Selamat, L. K. Cheng, and O. Krejcar, “Machine
learning algorithm for malware detection: Taxonomy, current challenges
and future directions,” IEEE Access, 2023.

[2] U. V. Nikam and V. M. Deshmuh, “Performance evaluation of machine
learning classifiers in malware detection,” in 2022 IEEE International
Conference on Distributed Computing and Electrical Circuits and
Electronics (ICDCECE). IEEE, 2022, pp. 1–5.

[3] M. S. Akhtar and T. Feng, “Malware analysis and detection using
machine learning algorithms,” Symmetry, vol. 14, no. 11, p. 2304, 2022.

[4] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning
techniques for malware analysis,” Computers & Security, vol. 81, pp.
123–147, 2019.

[5] I. H. Sarker, A. Kayes, S. Badsha, H. Alqahtani, P. Watters, and
A. Ng, “Cybersecurity data science: an overview from machine learning
perspective,” Journal of Big data, vol. 7, pp. 1–29, 2020.

[6] I. Sarker, “Machine learning: algorithms, real-world applications and
research directions. sn comput sci 2: 160,” 2021.

[7] M. T. Ahvanooey, Q. Li, M. Rabbani, and A. R. Rajput, “A survey on
smartphones security: software vulnerabilities, malware, and attacks,”
arXiv preprint arXiv:2001.09406, 2020.

[8] Ö. Aslan and A. A. Yilmaz, “A new malware classification framework
based on deep learning algorithms,” Ieee Access, vol. 9, pp. 87 936–
87 951, 2021.

[9] R. Komatwar and M. Kokare, “Retracted article: a survey on malware
detection and classification,” Journal of Applied Security Research,
vol. 16, no. 3, pp. 390–420, 2021.

[10] M. Ijaz, M. H. Durad, and M. Ismail, “Static and dynamic malware
analysis using machine learning,” in 2019 16th International bhurban
conference on applied sciences and technology (IBCAST). IEEE, 2019,
pp. 687–691.

[11] J. Lee, H. Jang, S. Ha, and Y. Yoon, “Android malware detection using
machine learning with feature selection based on the genetic algorithm,”
Mathematics, vol. 9, no. 21, p. 2813, 2021.

[12] N. Tarar, S. Sharma, and C. R. Krishna, “Analysis and classification
of android malware using machine learning algorithms,” in 2018
3rd International Conference on Inventive Computation Technologies
(ICICT). IEEE, 2018, pp. 738–743.

[13] N. K. Gyamfi and E. Owusu, “Survey of mobile malware analysis,
detection techniques and tool,” 11 2018, pp. 1101–1107.

[14] V. Rao and K. Hande, “A comparative study of static, dynamic and
hybrid analysis techniques for android malware detection,” International
Journal of Engineering Development and Research, vol. 5, no. 2, pp.
1433–1436, 2017.

[15] U.-e.-H. Tayyab, F. B. Khan, M. H. Durad, A. Khan, and Y. S. Lee, “A
survey of the recent trends in deep learning based malware detection,”
Journal of Cybersecurity and Privacy, vol. 2, no. 4, pp. 800–829, 2022.

[16] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE transactions on emerging topics
in computational intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[17] N. Rusk, “Deep learning,” Nature Methods, vol. 13, no. 1, pp. 35–35,
2016.

[18] Karthick Jonagadla, “Deep learning in financial markets,”
https://www.quantace.in/deep-learning-application-financial-markets/,
2023, accessed: November 9, 2023.

[19] M. Rhode, P. Burnap, and K. Jones, “Early-stage malware prediction
using recurrent neural networks,” computers & security, vol. 77, pp.
578–594, 2018.

[20] O. N. Elayan and A. M. Mustafa, “Android malware detection using
deep learning,” Procedia Computer Science, vol. 184, pp. 847–852,
2021.

[21] F. O. Catak, A. F. Yazı, O. Elezaj, and J. Ahmed, “Deep learning based
sequential model for malware analysis using windows exe api calls,”
PeerJ Computer Science, vol. 6, p. e285, 2020.

[22] A. McDole, M. Gupta, M. Abdelsalam, S. Mittal, and M. Alazab, “Deep
learning techniques for behavioral malware analysis in cloud iaas,”
Malware analysis using artificial intelligence and deep learning, pp.
269–285, 2021.

[23] V. Ravi, M. Alazab, S. Selvaganapathy, and R. Chaganti, “A multi-view
attention-based deep learning framework for malware detection in smart
healthcare systems,” Computer Communications, vol. 195, pp. 73–81,
2022.

[24] E. Calik Bayazit, O. Koray Sahingoz, and B. Dogan, “Deep learning
based malware detection for android systems: A comparative analysis,”
Tehnički vjesnik, vol. 30, no. 3, pp. 787–796, 2023.

[25] M. İbrahim, B. Issa, and M. B. Jasser, “A method for automatic android
malware detection based on static analysis and deep learning,” IEEE
Access, vol. 10, pp. 117 334–117 352, 2022.

[26] R. Patil and W. Deng, “Malware analysis using machine learning and
deep learning techniques,” in 2020 SoutheastCon, vol. 2. IEEE, 2020,
pp. 1–7.

[27] C. Rodrigo, S. Pierre, R. Beaubrun, and F. B. El Khoury, “A hybrid
machine learning-based malware detection model for android devices.
electronics 2021, 10, 2948,” 2021.

[28] I. Obaidat, M. Sridhar, K. M. Pham, and P. H. Phung, “Jadeite: A novel
image-behavior-based approach for java malware detection using deep
learning,” Computers & Security, vol. 113, p. 102547, 2022.

[29] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamarı́a, M. A. Fadhel, M. Al-Amidie, and L. Farhan,
“Review of deep learning: Concepts, cnn architectures, challenges,
applications, future directions,” Journal of big Data, vol. 8, pp. 1–74,
2021.

[30] P. Maniriho, A. N. Mahmood, and M. J. M. Chowdhury, “A survey
of recent advances in deep learning models for detecting malware in
desktop and mobile platforms,” arXiv preprint arXiv:2209.03622, 2022.

[31] Q. Wang, W. Guo, K. Zhang, A. G. Ororbia, X. Xing, X. Liu, and C. L.
Giles, “Adversary resistant deep neural networks with an application to
malware detection,” in Proceedings of the 23rd ACM sigkdd interna-
tional conference on knowledge discovery and data mining, 2017, pp.
1145–1153.

[32] R. Ribani and M. Marengoni, “A survey of transfer learning for
convolutional neural networks,” in 2019 32nd SIBGRAPI conference on
graphics, patterns and images tutorials (SIBGRAPI-T). IEEE, 2019,
pp. 47–57.

[33] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey
on deep transfer learning,” in Artificial Neural Networks and Machine
Learning–ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part
III 27. Springer, 2018, pp. 270–279.

[34] H. M. K. Barznji, “Transfer learning as new field in machine learning,”
2020.

www.ijacsa.thesai.org 1277 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

[35] M. Ranaweera and Q. H. Mahmoud, “Virtual to real-world transfer
learning: A systematic review,” Electronics, vol. 10, no. 12, 2021.
[Online]. Available: https://www.mdpi.com/2079-9292/10/12/1491

[36] L. Chen, “Deep transfer learning for static malware classification,” arXiv
preprint arXiv:1812.07606, 2018.

[37] N. Bhodia, P. Prajapati, F. Di Troia, and M. Stamp, “Trans-
fer learning for image-based malware classification,” arXiv preprint
arXiv:1903.11551, 2019.

[38] M. Ahmed, N. Afreen, M. Ahmed, M. Sameer, and J. Ahamed,
“An inception v3 approach for malware classification using
machine learning and transfer learning,” International Journal of
Intelligent Networks, vol. 4, pp. 11–18, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2666603022000252

[39] S. Acharya, U. Rawat, and R. Bhatnagar, “A computationally inexpen-
sive method based on transfer learning for mobile malware detection,”
in Proceedings of Fourth International Conference on Computer and
Communication Technologies: IC3T 2022. Springer, 2023, pp. 263–
274.

[40] B. Prima and M. Bouhorma, “Using transfer learning for malware clas-
sification,” The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. 44, pp. 343–349, 2020.

[41] Z. Zhao, S. Yang, and D. Zhao, “A new framework for visual
classification of multi-channel malware based on transfer learning,”
Applied Sciences, vol. 13, no. 4, 2023. [Online]. Available:
https://www.mdpi.com/2076-3417/13/4/2484

[42] P. Panda, O. K. CU, S. Marappan, S. Ma, and D. Veesani Nandi,
“Transfer learning for image-based malware detection for iot,” Sensors,
vol. 23, no. 6, p. 3253, 2023.

[43] M. Tasyurek and R. S. Arslan, “Rt-droid: a novel approach for real-time
android application analysis with transfer learning-based cnn models,”
Journal of Real-Time Image Processing, vol. 20, no. 3, pp. 1–17, 2023.

[44] Z. He, A. Rezaei, H. Homayoun, and H. Sayadi, “Deep neural network
and transfer learning for accurate hardware-based zero-day malware
detection,” in Proceedings of the Great Lakes Symposium on VLSI 2022,
2022, pp. 27–32.

[45] M. V. Ngo, T. Truong-Huu, D. Rabadi, J. Y. Loo, and S. G. Teo, “Fast
and efficient malware detection with joint static and dynamic features
through transfer learning,” in International Conference on Applied
Cryptography and Network Security. Springer, 2023, pp. 503–531.

[46] U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh,
R. Puri, J. M. Moura, and P. Eckersley, “Explainable machine learning
in deployment,” in Proceedings of the 2020 conference on fairness,
accountability, and transparency, 2020, pp. 648–657.

[47] X. Zhong, B. Gallagher, S. Liu, B. Kailkhura, A. Hiszpanski, and
T. Y.-J. Han, “Explainable machine learning in materials science,” npj
Computational Materials, vol. 8, no. 1, p. 204, 2022.

[48] M. M. Alani and A. I. Awad, “Paired: An explainable lightweight
android malware detection system,” IEEE Access, vol. 10, pp. 73 214–
73 228, 2022.

[49] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Explainable ai for
android malware detection: Towards understanding why the models
perform so well?” in 2022 IEEE 33rd International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2022, pp. 169–180.

[50] G. ladarola, F. Mercaldo1, F. Martinelli, and A. Santone, “Assessing
deep learning predictions in image-based malware detection with acti-
vation maps,” in Security and Trust Management: 18th International
Workshop, STM 2022, Copenhagen, Denmark, September 29, 2022,
Proceedings, vol. 13867. Springer Nature, 2023, p. 104.

[51] H. Manthena, “Explainable machine learning based malware analysis,”
Ph.D. dissertation, North Carolina Agricultural and Technical State
University, 2022.

[52] M. Kinkead, S. Millar, N. McLaughlin, and P. O’Kane, “Towards
explainable cnns for android malware detection,” Procedia Computer
Science, vol. 184, pp. 959–965, 2021.

[53] Z. Lu and V. L. Thing, ““how does it detect a malicious app?” explain-
ing the predictions of ai-based malware detector,” in 2022 IEEE 8th Intl
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl
Conference on High Performance and Smart Computing,(HPSC) and
IEEE Intl Conference on Intelligent Data and Security (IDS). IEEE,
2022, pp. 194–199.

[54] G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone, “Towards an
interpretable deep learning model for mobile malware detection and
family identification,” Computers & Security, vol. 105, p. 102198, 2021.

[55] Z. Pan, J. Sheldon, and P. Mishra, “Hardware-assisted malware detection
using explainable machine learning,” in 2020 IEEE 38th International
Conference on Computer Design (ICCD). IEEE, 2020, pp. 663–666.

[56] H. Manthena, J. C. Kimmel, M. Abdelsalam, and M. Gupta, “Analyzing
and explaining black-box models for online malware detection,” IEEE
Access, vol. 11, pp. 25 237–25 252, 2023.

[57] Y. Sharma, S. Birnbach, and I. Martinovic, “Radar: a ttp-based exten-
sible, explainable, and effective system for network traffic analysis and
malware detection,” 2023.

[58] K. Safjan, “Explaining ai - the key differences between lime and shap
methods,” Krystian’s Safjan Blog, 2023.

[59] “An enhancement for image-based malware classification using machine
learning with low dimension normalized input images,” Journal of
Information Security and Applications, vol. 69, p. 103308, 2022.

[60] A. Bensaoud, N. Abudawaood, and J. Kalita, “Classifying malware im-
ages with convolutional neural network models,” International Journal
of Network Security, vol. 22, no. 6, pp. 1022–1031, 2020.

[61] M. U. Demirezen, “Image based malware classification with multimodal
deep learning,” International Journal of Information Security Science,
vol. 10, no. 2, pp. 42–59, 2021.

[62] Z. Zhao, D. Zhao, S. Yang, L. Xu et al., “Image-based malware
classification method with the alexnet convolutional neural network
model,” Security and Communication Networks, vol. 2023, 2023.

[63] B. Saridou, I. Moulas, S. Shiaeles, and B. Papadopoulos, “Image-based
malware detection using & alpha;-cuts and binary visualisation,”
Applied Sciences, vol. 13, no. 7, 2023. [Online]. Available:
https://www.mdpi.com/2076-3417/13/7/4624

[64] S. Kadam and V. Vaidya, “Review and analysis of zero, one and few
shot learning approaches,” in Intelligent Systems Design and Applica-
tions: 18th International Conference on Intelligent Systems Design and
Applications (ISDA 2018) held in Vellore, India, December 6-8, 2018,
Volume 1. Springer, 2020, pp. 100–112.

[65] V. Khullar, M. Angurala, K. D. Singh, P. Prasant, V. Pabbi, and
M. Veeramanickam, “Exploring methods for dealing with class imbal-
ances in supervised machine learning structured datasets,” in 2023 3rd
International Conference on Advances in Computing, Communication,
Embedded and Secure Systems (ACCESS). IEEE, 2023, pp. 209–214.

[66] A. Estabrooks, T. Jo, and N. Japkowicz, “A multiple resampling method
for learning from imbalanced data sets,” Computational intelligence,
vol. 20, no. 1, pp. 18–36, 2004.

[67] S. Niu, Y. Liu, J. Wang, and H. Song, “A decade survey of transfer
learning (2010–2020),” IEEE Transactions on Artificial Intelligence,
vol. 1, no. 2, pp. 151–166, 2020.

[68] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[69] H. O. Ikromovich and B. B. Mamatkulovich, “Facial recognition using
transfer learning in the deep cnn,” Open Access Repository, vol. 4, no. 3,
pp. 502–507, 2023.

[70] A. M. Antoniadi, Y. Du, Y. Guendouz, L. Wei, C. Mazo, B. A. Becker,
and C. Mooney, “Current challenges and future opportunities for xai in
machine learning-based clinical decision support systems: a systematic
review,” Applied Sciences, vol. 11, no. 11, p. 5088, 2021.

[71] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcı́a, S. Gil-López, D. Molina, R. Benjamins et al.,
“Explainable artificial intelligence (xai): Concepts, taxonomies, op-
portunities and challenges toward responsible ai,” Information fusion,
vol. 58, pp. 82–115, 2020.

[72] B. Vrigazova, “The proportion for splitting data into training and test set
for the bootstrap in classification problems,” Business Systems Research:
International Journal of the Society for Advancing Innovation and
Research in Economy, vol. 12, no. 1, pp. 228–242, 2021.

[73] A. Das and P. Rad, “Opportunities and challenges in explainable
artificial intelligence (xai): A survey,” arXiv preprint arXiv:2006.11371,
2020.

www.ijacsa.thesai.org 1278 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 1, 2024

[74] L. Longo, R. Goebel, F. Lecue, P. Kieseberg, and A. Holzinger,
“Explainable artificial intelligence: Concepts, applications, research
challenges and visions,” in International cross-domain conference for
machine learning and knowledge extraction. Springer, 2020, pp. 1–16.

[75] J. J. Luke, R. Joseph, and M. Balaji, “Impact of image size on accuracy

and generalization of convolutional neural networks,” Int. J. Res. Anal.
Rev.(IJRAR), vol. 6, no. 1, pp. 70–80, 2019.

[76] K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, H. Cui, and E. Chang, “Paral-
lelizing support vector machines on distributed computers,” Advances
in neural information processing systems, vol. 20, 2007.

www.ijacsa.thesai.org 1279 | P a g e


