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Abstract—Enhancing educational outcomes across varied 

institutions like universities, schools, and training centers 

necessitates accurately predicting student performance. These 

systems aggregates the data from multiple sources—exam 

centers, virtual courses, registration departments, and e-learning 

platforms. Analyzing this complex and diverse educational data 

is a challenge, thus necessitating the application of machine 

learning techniques. Utilizing machine learning algorithms for 

dimensionality reduction simplifies intricate datasets, enabling 

more comprehensive analysis. Through machine learning, 

educational data is refined, uncovering valuable patterns and 

forecasts by simplifying complexities via feature selection and 

dimensionality reduction methods. This refinement significantly 

amplifies the efficacy of student performance prediction systems, 

empowering educators and institutions with data-driven insights 

and thereby enriching the overall educational landscape. In this 

particular research, the Decision Tree Classification (DTC) 

model is used for forecasting student performance. DTC stands 

out as a potent machine-learning method for classification 

purposes. Two optimization algorithms, namely the Fox 

Optimization (FO) and the Black Widow Optimization (BWO), 

are integrated to heighten the model's accuracy and efficiency 

further. The amalgamation of DTC with these pioneering 

optimization techniques underscores the study's dedication to 

harnessing the forefront of machine learning and bio-inspired 

algorithms, ensuring more precise and resilient predictions of 

student performance, ultimately culminating in improved 

educational outcomes. From the results garnered for G1 and G3, 

it is evident that the DTBW model demonstrated the most 

exceptional performance in both predicting and categorizing G1, 

achieving an Accuracy and Precision value of 93.7 percent. 

Conversely, the DTFO model emerged as the most precise 

predictor for G3, achieving an Accuracy and Precision of 93.4 

and 93.5 percent, respectively, in the prediction task. 

Keywords—Student performance; classification; decision tree 

classification; fox optimization; black widow optimization 

I. INTRODUCTION  

The expansion of educational data sourced from admission 
systems, academic information systems, and e-learning 
platforms is substantial. Nonetheless, a significant portion of 
this data remains untapped due to its intricate nature and sheer 
volume. The analysis of this data holds pivotal importance in 
forecasting student performance. Data mining, known as 
knowledge discovery in databases (KDD), has proven to be 
efficacious across diverse domains, including education, 
paving the way for the emergence of Educational Data Mining 
(EDM) [1, 2]. 

Forecasting student outcomes in education significantly 
relies on EDM, allowing the anticipation of various results like 

passing, failing, and grading. A core focus involves 
establishing an early alert system to reduce costs, save time, 
and optimize available resources. Enhanced educational 
techniques are vital in refining student performance, enabling 
educators to tailor teaching methods and provide extra support 
where needed. These predictions empower students to gauge 
their potential academic progress and take necessary actions. 
Long-term institutional goals are centered on fortifying student 
retention, ultimately enhancing the institution's standing, 
rankings, and the career prospects of its graduates [3]–[6]. 

Educational establishments utilize data mining, commonly 
referred to as EDM, to thoroughly analyze the available data. 
Machine learning algorithms serve as pivotal tools for 
uncovering essential knowledge. Accurate performance 
prediction is instrumental in early identification of struggling 
students [7, 8]. EDM supports institutions in refining and 
developing novel learning methods by examining educational 
data. However, predicting academic performance presents 
challenges due to the diverse factors influencing it [9, 10]. 
Technological progress has facilitated the development of 
effective machine-learning methods [11–16]. Recent scholarly 
research emphasizes the efficacy of machine learning 
techniques in advancing the field of education. 

Predicting student performance through machine learning 
(ML) is crucial for enhancing education in several ways. It 
enables early identification of academic struggles, allowing for 
timely interventions and personalized learning plans. By 
optimizing resource allocation and addressing factors 
influencing dropout rates, institutions can improve retention 
and graduation rates. Machine learning facilitates data-driven 
decision-making, adaptive assessments, and efficient 
educational planning. Continuous monitoring supports quality 
assurance, accountability, and a competitive advantage for 
institutions. Overall, it empowers educators to provide targeted 
support, leading to improved student outcomes and a more 
responsive education system. 

II. RELATED WORK 

Ajay et al. [17] investigated the influence of the "CAT" 
social factor in predicting student performance among Indians. 
They employed four classifiers and found that the IB1 model 
exhibited the highest accuracy at 82%. This factor categorized 
individuals based on social status, directly impacting 
educational outcomes. Dorina et al. [18] developed a predictive 
model for student success using various classification 
algorithms. While the MLP model achieved the highest 
accuracy for identifying successful students, it encountered 
challenges in handling high-dimensional data and class 
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imbalances. Carlos used machine learning to create a student 
failure prediction model, achieving a high accuracy of 92.7% 
with the ICRM classifier. However, due to varying student 
characteristics, their study did not encompass testing across 
different educational levels. Edin Osmanbegovic et al. [19] 
devised a model to predict student academic success while 
tackling data dimensionality issues. Despite Naïve Bayes 
achieving the highest accuracy at 76.65%, the model did not 
effectively address the class imbalance problem. 

A study [20] utilized various data mining methods to 
predict course dropouts in the context of EDM challenges. The 
support vector machine, with specific predictors, offered the 
most accurate classifications. However, including earned 
grades from prerequisite courses posed a limitation due to 
potential improvements in student knowledge during the 
course. Another study [21] aimed to enhance the ID3 model for 
predicting student academic performance, overcoming its 
inefficiencies in selecting attributes with numerous values. The 
proposed model significantly improved performance, achieving 
a high accuracy of 93% with the wID3 classifier. A study [22] 
introduced an early identification model for student failures, 
exploring multiple data mining methods and preprocessing 
techniques. Although the support vector machines 
outperformed other models, the study did not address reducing 
classification errors. Introducing an ensemble model, a study 
[23] aimed to identify underperforming students by combining 
classifiers. The ensemble model, incorporating standard-based 
grading assessments, outperformed individual classifiers, 
achieving an accuracy of 85%. 

Suggesting a predictive system for online student learning 
performance, another study [24] found that methods 
considering time-dependent variables achieved higher 
accuracy. However, the model was not tested in an offline 
mode, potentially affecting its performance. Thammasiri et al. 
[25] proposed a model to predict poor academic performance 
among freshmen. The combination of support vector machines 
with SMOTE achieved the highest accuracy of 90.24%, 
addressing class imbalance issues. Challenging assumptions, a 
study [26] emphasized the applicability of data mining in small 
datasets for predicting student success. Although achieving 
over 90% accuracy with Reptree, the model did not effectively 
handle high data dimensionality or class balancing challenges. 
Addressing multiclass classification issues, a study [27] 
proposed a multi-level model to improve overall accuracy. This 
model, involving resampling and two levels of classification, 
achieved over 90% accuracy for both overall model and 
individual class predictions, using J48 as a key classifier. 

III. OBJECTIVE 

The core aim of this research was to establish a robust 
machine-learning model designed for predicting Student 
Performance, drawing on data from credible sources. The study 
focused on leveraging the Decision Tree Classification (DTC) 
technique. An innovative approach was introduced by 
seamlessly integrating two optimization algorithms: Fox 
Optimization (FO) and Black Widow Optimization (BWO). 
This unique amalgamation of techniques was intended to 
significantly boost the Accuracy and Precision of the predictive 
model, thereby offering more effective forecasts of student 

performance within an educational setting. The DTC model is 
instrumental in predicting student performance in Mathematics 
due to its ability to comprehend and represent intricate 
relationships within data. Specifically tailored for educational 
contexts, the DTC method efficiently delineates critical factors 
influencing math performance. Its hierarchical structure allows 
for identifying significant decision paths, highlighting key 
determinants such as study habits, prior academic 
achievements, and socio-economic backgrounds. By 
comprehensively mapping these interdependencies, the DTC 
model predicts outcomes accurately and unveils pivotal 
insights essential for targeted interventions and tailored 
academic support, thereby enhancing student performance in 
Mathematics. 

This study underscores the vital role of data-driven 
predictive models in education, advocating for a 
comprehensive approach to evaluate students' academic 
performance. Demonstrating the effectiveness of data mining 
techniques, including clustering and classification, the research 
innovatively integrates the DTC model with FO and BWO. 
This integration highlights the potential of combining machine 
learning and optimization algorithms to enhance precision, 
providing a robust toolkit for addressing challenges in students' 
academic journeys. The thorough evaluation process reveals 
the significant potential of these hybrid models to improve the 
DTC model's classification accuracy and precision, 
contributing to advancements in academic performance 
prediction. 

IV. MATERIALS AND METHODOLOGY 

A. Data Preparation 

The primary aim of this study revolves around constructing 
a robust method to accurately evaluate students' academic 
performance while considering various contextual factors that 
influence it. To accomplish this objective, the initial dataset 
necessitates crucial preprocessing steps. The first essential step 
involves converting textual data into numerical values, a 
foundational requirement for conducting machine learning 
tasks. This conversion is pivotal as it facilitates effective data 
analysis and enables the application of advanced statistical 
techniques. The dataset encompasses a diverse range of 
variables that potentially impact students' academic outcomes, 
encompassing factors such as sex, school, urban or rural 
residency (address), age, family size (famsize), parental 
cohabitation status (Pstatus), parental education and 
occupations (Medu, Fedu, Mjob, and Fjob), school choice 
motivation (reason), weekly study time (studytime), guardian, 
home-to-school travel time (traveltime), current health status, 
past class failures (failures), participation in supplementary 
education (schoolsup), family educational support (famsup), 
engagement in extra paid classes, involvement in 
extracurricular activities, attendance at nursery school, 
aspirations for higher education, access to the internet, student 
absences, weekday (Dalc), and weekend (Walc) alcohol 
consumption, involvement in romantic relationships, quality of 
family relationships, free time, and frequency of socializing. 

This research aims to predict and categorize students' 
academic performance, utilizing the G1 and G3 variables. G3 
represents final grades obtained from school reports, ranging 
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from zero (indicating the lowest grade) to 20 (representing the 
highest grade). These grades are segmented into four distinct 
levels: Poor (0–12), Acceptable (12–14), Good (14–16), and 
Excellent (16–20), allowing for a more nuanced evaluation of 
student achievement. This methodology seeks to establish a 
comprehensive framework for comprehending and assessing 
academic performance within a myriad of contextual factors, 
ultimately contributing to improvements in educational 
practices and developing policies in the academic sphere. 

Fig. 1 displays a correlation matrix detailing the 
relationships among input and output variables within this 
study. It notably highlights the positive influence of parental 
education, particularly maternal education, on students' 
academic performance. Moreover, factors such as daily and 
weekly alcohol consumption, prior academic failures, and 
student age demonstrate discernible impacts on school grades. 
Ultimately, the matrix underscores the critical importance of 
both study time and parental education as pivotal factors 

contributing to academic success. Notably, there is a strong 
positive correlation (0.8264) between grades in the first period 
("G1") and final grades ("G3"), indicating that students who 
perform well in the initial period tend to have higher final 
grades. Additionally, some demographic and lifestyle factors 
exhibit correlations. For instance, parental education levels 
("Medu" and "Fedu") show moderate positive correlations, 
implying a potential influence on academic performance. The 
variable "sex" demonstrates a weak negative correlation with 
"age" (-0.0437), suggesting a slight tendency for younger 
students to be male. 

The correlation matrix provides a snapshot of associations 
between different variables, offering insights into potential 
patterns and relationships. However, it is important to approach 
these correlations cautiously, as correlation does not imply 
causation and other factors may contribute to the observed 
relationships.

 

Fig. 1. Correlation matrix for the input and output variables. 

B. Evaluation of Models' Applicability 

In academic studies focused on classification problems, 
Accuracy is a widely employed metric used to evaluate the 
overall performance of a model. It relies on four fundamental 
components: True Positives (TP), True Negatives (TN), False 
Positives (FP), and False Negatives (FN). TP signifies accurate 
predictions, TN represents correct negative predictions, FP 
indicates incorrect positive predictions, and FN denotes 

inaccurate negative predictions. However, Accuracy tends to 
favor the majority class, offering limited insights in situations 
where data is imbalanced. Three additional evaluation 
metrics—Recall, Precision, and F1-Score—are utilized to 
overcome this limitation. Recall evaluates the model's 
capability to correctly identify all relevant instances within a 
specific class, which is crucial in reducing False Negatives. 
Precision measures the accuracy of positive predictions, aiming 
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to minimize False Positives, instances predicted as positive but 
not belonging to the class. F1-Score, combining Precision and 
Recall, provides a balanced assessment of model performance, 
particularly valuable in scenarios with imbalanced data, 
considering both minority and majority classes. Defined by 
mathematical equations, these metrics collectively provide a 
deeper understanding of a classification model's effectiveness. 
They are especially beneficial in challenging situations 
involving imbalanced data, where the interpretation of 
Accuracy might be misleading. The utilization of these metrics 
empowers researchers and data analysts to make more 
informed decisions and adjustments to enhance model 
performance in such intricate scenarios [28]. 
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C. Decision Tree Classification (DTC) 

A decision tree takes the form of a structure resembling a 
flowchart, where each internal node conducts a test based on an 
attribute, with each branch signaling the outcome of that 
particular test. Meanwhile, every leaf node, also termed a 
terminal node, denotes a distinct class label. Making 
predictions with a decision tree involves assessing the attribute 
values of a given data point, typically referred to as a tuple, by 
following a path from the root of the tree to a leaf node 
containing the projected class label for that specific data point. 
The strength of decision trees lies in their ease of conversion 
into classification rules. They serve as predictive models in 
decision tree learning, enabling the translation of observations 
about an object into conclusions about its intended value. 
These models have diverse applications in statistics, data 
mining, and machine learning, particularly in classification 
trees, which specifically handle finite class values. Compared 
to other classification methods, decision tree construction is 
commonly recognized as a swift process [29]. 

The decision tree relies on three key parameters: 

1) D (Data Partition): D represents the initial dataset 

containing training examples and their respective class labels. 

2) Attribute list: This parameter comprises attributes that 

detail the features of the data. 

3) Attribute selection method: This parameter defines the 

strategy used to select the most suitable attribute for creating 

divisions or branches in the decision tree. Common methods 

involve measures like information gain or the Gini index. 

Here is an overview of how the algorithm operates: 

 It initiates by establishing a node labeled "A." 

 If all the examples in the present dataset share the same 
class, "A" becomes a leaf node designated with that 
common class label. 

 When the attribute list is empty, node "A" transforms 
into a leaf node, now tagged with the class that most 
frequently appears among the data samples. 

 The algorithm then selects the attribute to split the data 
in a way that generates the purest subsets. 

 Node "A" is assigned this selected attribute as the 
decision criterion. 

 If the chosen attribute is discrete, it is removed from the 
attribute list. 

 The data is segregated into subsets based on the 
outcomes of the selected attribute. 

 If any of these subsets are empty, a leaf node is linked 
to node "A," labeled with the majority class of the 
original dataset. 

 For non-empty subsets, the process repeats recursively, 
commencing with the creation of a new node until all 
data partitions have been addressed. 

 Ultimately, the algorithm returns the resulting decision 
tree structure. 

This algorithm is a foundational process for constructing 
decision trees, commonly applied in tasks involving data 
classification and predictive modeling within machine learning 
and data analysis contexts. 

DTC is a preferred method for predicting student 
performance due to its interpretability, ability to handle non-
linear relationships, versatility with mixed data types, ease of 
implementation, and avoidance of overfitting through pruning. 
DTC is suitable for educational datasets with both categorical 
and numerical variables, making it applicable to real-world 
scenarios. Additionally, decision trees can be part of ensemble 
methods, offering improved predictive accuracy. The 
transparency of decision tree models is valuable in educational 
contexts, enabling stakeholders to understand and discuss 
predictions. 

D. Fox optimization (FO) 

The Fox Optimization Algorithm (FO) draws inspiration 
from the hunting behavior of red foxes and is structured around 
two primary phases: exploitation and exploration. The 
exploitation phase mimics a fox closing in on its prey, utilizing 
strategies to optimize the immediate vicinity. Conversely, the 
exploration phase is influenced by the relative distance 
between the fox and its target. This algorithm functions with a 
consistent population of foxes, maintaining a set structure as 
detailed below [30]: 

 ̅                  (5) 

In the identification of each fox   ̅  within the t-th iteration, 

a notation ( ̅ 
 )

 
 is introduced. In this context,   represents the 

count of foxes, while j denotes the specific coordinates within 

the solution space, delineated by the dimensions.   ̅     
[    

        
        

            
    ]  is employed to denote 

each point within the solution space       , where     
 . Furthermore, with regard to the solution space, a function 
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     is regarded as the standard function of n variables. If 

the value of this function,  (  ̅    ) ,  represents a global 

maximum or minimum within the interval      , then 

(  ̅    ) is deemed the optimal solution. 

When foxes struggle to find prey, family members embark 
on the quest for food. When a more promising area is 
discovered, they share and communicate this location within 
the population, effectively supporting it and considering the 
associated cost. The metric utilized for this dissemination relies 
on the Euclidean squared distance. 

    ̅      ̅     √‖  ̅      ̅   ‖   (6) 

  ̅   represents the individuals within the population 
shifting their positions towards the direction of the best 
performer. 

  ̅      ̅           ̅      ̅      (7) 

Here, α is randomly chosen from the range 

(      ̅      ̅    ) , while S signifies the 'sign' word. The 

random value β, ranging between 0 and 1, remains consistent 
for all individuals in the population. This value embodies the 
behavior of the fox as: 

{
                                    
                                               

 (8) 

An advanced Cochleoid equation elucidates the behavior of 
individuals when β influences the movement of the population 
in a given iteration. Two components determine the fox radius: 
          representing the initial observation angle, and 
           as a scaling parameter. This value is preset for 
all individuals in the population, symbolizing random 
alterations in distance as the fox approaches the target. 
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In this context, δ, fluctuating between 0 and 1, stands as a 
random value set at the beginning of the algorithm, contingent 
upon prevailing weather conditions. The movement pattern for 
the population of individuals is articulated as follows: 

Where "ac" in   
   signifies "actual," and         , and so 

on, up to     , all exist within the range of       . 

5% of the least successful candidates are selected based on 
the criterion function to replicate this action in each iteration. 
This selection is a subjective assumption aimed at introducing 
slight variations within the group. In iteration t, the two top-
performing individuals are chosen for an alpha couple. 

The pair comprises ( ̅   )
 
   ( ̅   )

 
, while the center of 

the habitat is calculated using a specific equation. The square 
of the individual Euclidean distance between the couple 
determines the habitat range. 

         
( ̅   )

 
 ( ̅   )

 

 
  (11) 

            √‖  ̅        ̅     ‖ (12) 

In this context, 'H' denotes the Habitat. Each iteration 
involves the selection of a random parameter 'q' ranging from 0 
to 1, governing the substitutions conducted throughout the 
repetition in the following manner: 

{

                                     

                      
                                                

                    

 (13) 

The top two candidates indicated as ( ̅   )
 
 and ( ̅   )

 
, 

are amalgamated to generate a new candidate, denoted as 

( ̅     )
 
, where "rep" signifies reproduction. This fusion takes 

place in the following manner: 

( ̅     )
 
   

( ̅   )
 
  ( ̅   )

 

 
  (14) 

The Steps of the Fox Optimization algorithm is represented 
as Algorithm 1.

ALGORITHM. 1. PSEUDO-CODE OF FO 

Commence, 

Establish the algorithm's parameters: the fitness functions       the number of iterations  , the initial fox observation angle   , the maximum population size  , 

weather conditions  , and the solution space range        
Create a population of   foxes randomly distributed within the solution space. 
t= 0 

while   ≤   do 

Define iteration coefficients: fox proximity change ( ), scaling parameter ( ).  
For every fox within the current population, 

Organize individuals based on their fitness function values, 

Select   ̅    
Compute the repositioning of individuals  
If the new position is superior to the previous one, then 

Relocate the fox to the new position, 

else 
Revert the fox to its previous location, 

end if 

Determine the parameter β to define the fox's hunting awareness, 
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If the fox remains unnoticed, then  

Calculate the fox's observation radius ( )  
Compute the repositioning  

else 

The fox maintains its current position to remain concealed, 

end if 
end for 

Arrange the population following the fitness function, 

Eliminate the poorest-performing foxes from the group, or they fall victim to hunters, 
Introduce new foxes into the population as nomadic foxes outside the habitat or through reproduction from the alpha couple within the herd 

t + +, 

end while 

Return the fittest fox   ̅  , 
Stop. 

 

E. Black Widow Optimization (BWO)  

The BWO is a recent and intriguing meta-heuristic 
approach for tackling complex numerical optimization 
challenges [31]. BWO incorporates operators commonly found 
in evolutionary algorithms, akin to Genetic Algorithms (GAs) 
[31]. Like other evolutionary algorithms, BWO employs 
criteria resembling natural evolutionary processes, such as 
selection, reproduction, and mutation, which vary and 
distinguish it from other evolutionary methods. However, what 
sets BWO apart is its simulation of the unique mating behavior 
of black widow spiders. Furthermore, BWO exhibits 

distinctions from traditional evolutionary algorithms, 
contributing to its strong performance in solving complex 
problems. This algorithm draws inspiration from Darwin's 
theory of natural selection, characterized by species evolving 
and the emergence of new ones. BWO is known for its rapid 
convergence and ability to evade local optima, making it well-
suited for solving various optimization problems with multiple 
local optima. This success is attributed to BWO's balanced 
approach, maintaining harmony between the exploration and 
exploitation phases. For a visual representation of the BWO 
process (see Fig. 2). 

 
Fig. 2. Flowchart of the BWO. 

The primary steps of the BWO can be summarized as 
follows: 

1) Step one: Initialization 

During this step, the population consists of a specific 
number of widows, denoted as N, where each widow is 
represented as an array of size       , signifying a potential 
solution to the problem. This array can be described as follows: 

      (               
), where      corresponds to the 

dimensionality of the optimization problem.      can also be 
understood as the count of threshold values the algorithm aims 
to determine. Here,    represents the      candidate solution 
within the array. 

The fitness of each widow is determined by evaluating the 
fitness function, denoted as f, for every widow in the set 

(               
) . This fitness value can be expressed as 

follows: fitness = f(widow), which is equivalent to         
 (               

). The optimization procedure commences 

by initializing a population of spiders randomly in a matrix of 
dimensions          . Subsequently, pairs of parents are 

selected randomly to engage in the reproduction step, which is 
followed by the mating process. During or after mating, the 
male black widow is consumed by the female. 

2) Step two: Procreate 

During the procreation step, an alpha (α) array is generated. 
This alpha array has the same length as a widow array and is 
filled with random numbers. Subsequently, offspring is 
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generated using alpha (α) and Eq. (14), where    and    
represent the parents and    and    denote the offspring. The 
outcome of the crossover operation is assessed and then stored 
for further processing. 

                        

               

(15) 

3) Step three: Cannibalism 

The cannibalism process can be classified into various 
categories, including sexual cannibalism, sibling cannibalism, 
and a commonly observed form in which baby spiders 
consume their mother. Following the implementation of the 
cannibalism mechanism, the resulting new population is 
assessed and saved in a variable referred to as     . 

4) Step four: Mutation 

The mutation process involves randomly selecting a 
number of individuals, denoted as        , from the 
population to undergo mutation. Each selected solution has two 
elements within their array randomly exchanged in this 
mutation operation. After applying mutation, the resulting new 
population is evaluated and stored in a new population 
variable, typically named     . Finally, the new population is 
obtained by combining (or migrating) the individuals from 
     and     . Subsequently, this combined population is 
sorted, aiming to identify the best widow with      dimensions 
in terms of threshold values. Algorithm 2 provides the pseudo-
code for the BWO algorithm. 

ALGORITHM 2: PSEUDO-CODE OF BWO ALGORITHM 

Initialize: Maximum number of iterations, rate of procreating, rate of 
Cannibalism, rate of mutation; 

while                     do 

for       to    do 

Randomly select two solutions as parents from     . 

Generate D children  
Destroy father. 

Based on the cannibalism rate, destroy some of the children (newly 

achieved solutions). 

Save the remaining solutions into     . 

end for 

Based on the mutation rate, calculate the number of mutation children 

  . 

for       to    do 

Select a solution from     . 
Mutate randomly one chromosome of the solution and generate a new 

solution. 

Save the new one into     . 
end for 

Update              . 
Returning the best solution. 

Return the best solution from pop. 

end while  

V. RESULTS AND DISCUSSION 

A.  Convergence Results 

In this study, two powerful metaheuristic optimization 
algorithms, the FO and BWO, were employed to fine-tune and 
optimize the DTC model's hyperparameters, particularly the 
DTFO and DTBW hybrid models. The primary aim was to 
enhance the predictive accuracy of these models. To evaluate 
the convergence of these optimization methods, two 
convergence curves (one related to G1 and the other related to 
G3) were utilized (see Fig. 3), tracking accuracy over 200 
iterations. This curve visually demonstrated the evolution of 
Accuracy with each iteration, enabling the assessment of 
convergence progress and rate. In the case of G1 values, both 
models initially showed similar convergence rates of nearly 
0.8, but the DTFO model ultimately achieved higher accuracy 
(almost 0.94). Notably, a linear pattern in the trend line around 
the 160-iteration mark indicated the optimal computational 
efficiency point for the DTFO model. On the other hand, 
regarding the G3 values, the DTFO model registered a lower 
convergence value at the beginning and a higher convergence 
value at the final iteration; it achieved a high convergence 
value of 0.92 at the final stage. 

 
Fig. 3. Convergence of hybrid models. 
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B. Hyperparameter 

Table I displays the results of hyperparameter tuning for 
four different decision tree models, each associated with a 
specific target variable (G1 or G3). The hyperparameters 
include `max_depth` (maximum depth of the tree), 
`min_samples_split` (minimum samples required to split an 
internal node), `min_samples_leaf` (minimum samples 
required at a leaf node), and `max_leaf_nodes` (maximum 
number of leaf nodes). The values in each cell represent the 
chosen hyperparameter settings for the corresponding model 
and target variable. The hyperparameter tuning process aims to 
optimize the performance of the decision tree models in 
predicting student outcomes (G1 or G3). 

The overall influence involves balancing model complexity 
and generalization. Higher values tend to lead to more complex 

models prone to overfitting, while lower values result in 
simpler models that generalize better. Hyperparameter tuning 
aims to find the optimal combination for the effective 
prediction of student outcomes. 

TABLE I.  RESULT OF HYPERPARAMETER 

Hyperparameter 

Model (Target) 

DTFO 

(G1) 

DTBW 

(G1) 

DTFO 

(G3) 

DTBW 

(G3) 

max_depth 71 661 106 467 

min_samples_split 0.001 0.209 0.001 0.116 

min_samples_leaf 0.0005 0.0038 0.0005 0.0415 

max_leaf_nodes 580 5 1270 4 

 

C. Comparing results of predictive models  

This study focused on constructing three prediction models 
employing a classification approach to forecast students' exam 
performance in Mathematics and systematically improve their 
forthcoming grades. The models comprised a single Decision 
Tree Classification (DTC) and two optimized models using the 
Fox Optimization (FO) and the Black Widow Optimization 
(BWO). The dataset was split, allocating 70% for training and 
30% for testing to assess their predictive performance. Table II 
and Fig. 4 illustrate the Accuracy, Precision, Recall, and F1-
score for training, testing, and all phases across all models in 
predicting G1 and G3 scores. 

 G1 Scores 

Among the three models, the DTBW model exhibited 
superior training performance compared to the others, as 

evidenced by higher metric values during training than in the 
testing phase. The maximum metric values achieved by DTBW 
were 0.937 for all four metrics (Accuracy, Precision, Recall, 
and F1-Score). On the contrary, the DTC model obtained the 
lowest values, with 0.822 for Accuracy and Recall, 0.818 for 
Precision, and 0.82 for F1-Score. 

 G3 Scores 

Considering the mentioned models (DTC, DTFO, and 
DTBW), DTFO exhibited superior performance compared to 
the others, evident from its higher metric values. The maximum 
metric values achieved by DTFO were 0.934 for Accuracy and 
Recall and 0.935 for Precision and F1-Score. In contrast, the 
DTBW model obtained the lowest values, with 0.822 for 
Accuracy and Recall, 0.825 for Precision, and 0.823 for F1-
Score. 

TABLE II.  RESULT OF PRESENTED MODELS 

 

Model Phase 

Index values 

Accuracy Precision Recall F1 _core 

G1 

DTC 

Train 0.914 0.914 0.914 0.912 

Test 0.822 0.818 0.822 0.820 

All 0.914 0.914 0.914 0.912 

DTFO 

Train 0.927 0.927 0.927 0.925 

Test 0.831 0.826 0.831 0.825 

All 0.927 0.927 0.927 0.925 

DTBW 

Train 0.937 0.937 0.937 0.937 

Test 0.881 0.884 0.881 0.881 

All 0.937 0.937 0.937 0.937 

G3 

DTC 

Train 0.916 0.916 0.917 0.915 

Test 0.856 0.854 0.856 0.852 

All 0.916 0.916 0.917 0.917 

DTFO 

Train 0.932 0.932 0.932 0.932 

Test 0.864 0.869 0.864 0.866 

All 0.934 0.935 0.934 0.935 

DTBW 

Train 0.924 0.924 0.924 0.924 

Test 0.822 0.825 0.822 0.823 

All 0.924 0.924 0.924 0.924 
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Fig. 4. Column plot for the evaluation of developed models. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

1303 | P a g e  

www.ijacsa.thesai.org 

Following data processing and a comprehensive evaluation 
of the models' classification capabilities during the training and 
testing phases, 395 students were extensively examined based 
on their test results (G1 and G3 values). These students were 
categorized into four distinct groups: Poor (comprising 
students with scores ranging from 0 to 12), Acceptable 
(encompassing those with scores ranging from 12 to 14), Good 
(enrolling students with scores ranging from 14 to 20), and 
Excellent (comprising students with scores ranging from 16 to 
20). The Index values for Precision, Recall, and F1-score are 
presented in Table III for G1 and Table IV for G3, which are 
used as evaluation metrics for assessing the classification 
performance of the developed models across the various 
student categories. A comparative analysis has been conducted 
in the subsequent section, considering each of these three Index 
values. As a result of this categorization, in the case of G1, 41 
(10.38%) students were identified within the Excellent 
category, 54 (13.67%) within the Good category, 68 (17.21%) 
within the Acceptable category, and 232 (58.73%) within the 
Poor category. On the other hand, regarding G3 values, 40 
(10.13%) students were identified within the Excellent 
category, 60 (15.19%) within the Good category, 62 (15.7%) 
within the Acceptable category, and 232 (58.73%) within the 
Poor category. 

D. Precision 

 G1 Scores 

The DTFO model demonstrated the highest values in the 
Good and Poor groups, achieving precision scores of 0.942 and 
0.945, respectively. Conversely, the DTBW model obtained a 
maximum precision value of 0.947 for the Acceptable group. 
As for the excellent group, the DTC model outperformed 
others, attaining a precision score of 0.925. 

 G3 Scores 

The DTC model demonstrated the highest values in the 
Excellent and Acceptable categories, achieving precision 
scores of 0.922 and 0.898, respectively. On the other hand, the 
DTFO model obtained a maximum precision value of 0.974 for 

the Poor group. As for the Good group, the DTBW model 
outperformed others, attaining a precision score of 0.9. 

E. Recall  

 G1 Scores 

The DTFO model displayed the highest scores in the 
Excellent, Good, and Acceptable groups, reaching 0.902, 
0.907, and 0.897, respectively. When it comes to the Poor 
group, the DTBW model delivered the top performance with a 
recall score of 0.978. 

 G3 Scores 

In the Excellent and Good categories, the DTBW model 
demonstrated the highest values, achieving Recall values of 
0.95 and 0.90, respectively. Furthermore, the DTC model 
obtained a maximum Recall value of 0.97 for the Poor group. 
While for the Acceptable group, the DTFO model 
outperformed others, attaining a score of 0.887. 

F. F1-score  

 G1 Scores 

A superior F1-score reflects the model's ability to balance 
precisely identifying positive cases (Precision) and 
encompassing all genuine positive cases (Recall). Upon 
considering all student categories, it becomes evident that the 
DTFO model demonstrated the highest values in the Good and 
Acceptable groups, achieving precision scores of 0.925 and 
0.91, respectively. In addition, the DTBW model obtained a 
maximum F1-Score value of 0.956 for the Poor group. Finally, 
in the case of the Excellent group, the DTC model 
outperformed others, attaining an F1-Score of 0.914. 

 G3 Scores 

In the Excellent and Good categories, the DTBW model 
demonstrated the highest values, achieving F1-Score values of 
0.927 and 0.90, respectively. Furthermore, the DTFO model 
outperformed others in the Poor category, attaining a score of 
0.965. While for the Acceptable group, the DTC model 
obtained a maximum F1-Score value of 0.876. 

TABLE III.  EVALUATION INDEXES OF THE DEVELOPED MODELS' PERFORMANCE BASED ON G1 

Model Grade 
Index values 

Precision Recall F1-score 

DTC 

Excellent 0.925 0.902 0.914 

Good 0.887 0.870 0.879 

Acceptable 0.912 0.765 0.832 

Poor 0.918 0.970 0.943 

DTFO 

Excellent 0.902 0.902 0.902 

Good 0.942 0.907 0.925 

Acceptable 0.922 0.897 0.910 

Poor 0.945 0.961 0.953 

DTBW 

Excellent 0.881 0.902 0.892 

Good 0.906 0.889 0.897 

Acceptable 0.947 0.794 0.864 

Poor 0.934 0.978 0.956 
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TABLE IV.  EVALUATION INDEXES OF THE DEVELOPED MODELS' PERFORMANCE BASED ON G3 

Model Grade 
Index values 

Precision Recall F1-score 

DTC 

Excellent 0.912 0.775 0.838 

Good 0.897 0.867 0.881 

Acceptable 0.898 0.855 0.876 

Poor 0.926 0.970 0.948 

DTFO 

Excellent 0.884 0.950 0.916 

Good 0.898 0.883 0.891 

Acceptable 0.859 0.887 0.873 

Poor 0.974 0.957 0.965 

DTBW 

Excellent 0.905 0.950 0.927 

Good 0.900 0.900 0.900 

Acceptable 0.855 0.855 0.855 

Poor 0.952 0.944 0.948 

 

The confusion matrix illustrated in Fig. 5 provides insights 
into accurately categorizing students into their respective 
grades and the misclassification into incorrect categories. In the 
case of G1 values, the DTFO model correctly categorized 37, 
49, 61, and 223 students into Excellent, Good, Acceptable, and 
Poor classes, respectively, with only 25 students being 
misclassified. On the other hand, the DTBW and DTC models 
misclassified 29 and 34 students, respectively. Notably, 
misclassifications in the two optimized models primarily 
occurred between neighboring categories, such as 6 and 10 
students for DTFO and DTBW, who were mistakenly placed in 
the Acceptable category instead of the Poor category. 
According to G3 values, the DTC model correctly categorized 
31, 52, 53, and 223 students into Excellent, Good, Acceptable, 
and Poor classes, respectively, with 33 misclassified students. 
On the other hand, the DTBW and DTFO models misclassified 
30 and 26 students, respectively. In the case of the single 
DTBW model, 9 students were inaccurately positioned in the 
Acceptable category instead of the Poor category. 

The actual number of students falling into the Poor, 
Acceptable, Good, and Excellent categories was 232, 68, 54, 
and 41, respectively, for G1, while 233, 62, 60, and 40 for G3 
values. Fig. 6 provides a visual representation of the student 
distribution across these categories based on measurement and 
classification model outcomes, facilitating a visual comparison. 
In the case of G1, the DTFO model exhibited the highest 
accuracy in correctly classifying students in the Acceptable, 
Good, and Excellent groups, identifying 61, 49, and 37 
students accurately, respectively. In the case of the Poor 
category, the DTBW model outperformed the other models, 
correctly classifying 227 students. Regarding the G3 values, 
the DTFO model exhibited the highest accuracy in correctly 
classifying students into Acceptable and Excellent groups, 
identifying 55 and 38 students accurately. When considering 
the Poor category, the DTC model outperformed the other 
models, correctly classifying 226 students. Furthermore, 
according to the Good category, the DTBW model performed 
best, identifying 54 students correctly. 
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Fig. 5. Confusion matrix for each model's accuracy. 
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Fig. 6. 3D column plot for the developed models' accuracy compared to measured value. 

G. Sensitivity analyzes 

SHAP (SHapley Additive exPlanations) values, derived 
from cooperative game theory, allocate feature contributions in 
ML models. They assess the impact of each feature on a 
model's prediction for a specific input, providing nuanced and 
interpretable insights. Adapted for use in ML, SHAP values 
offer a fair distribution of feature importance, aiding the 

interpretation of complex models by attributing predictions to 
individual features. 

Fig. 7(a) reveals that "absences," "Freetime," "mother's 
job," and "Health" stand out as pivotal elements for 
anticipating G1 performance. Additionally, the plot highlights 
the fluctuating significance of these features across the four 
grade levels, indicating that the determinants influencing G1 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

1307 | P a g e  

www.ijacsa.thesai.org 

scores are not uniform for all students. This underscores the 
variability in the impact of these factors across different grade 
levels. 

On the other hand, for G3 in Fig. 7(b), it was observed that 
"absences," "Goout," "mother's education," and "mother's job " 
had the greatest impact on the model's output.

 
 

                                                          (a)                                                                                                               (b) 

Fig. 7. SHAP value for the impact of inputs on model's output a) G1 and b) G3. 

VI. CONCLUSION 

This research underscores the crucial significance of 
predictive models based on data in education. It stresses the 
need to consider qualitative and quantitative elements for 
predicting and evaluating students' academic performance. The 
findings offer valuable guidance for policymakers, educational 
institutions, and students, aiming to enhance future academic 
outcomes. The study demonstrates the effectiveness of data 
mining techniques such as clustering, classification, and 
regression in understanding and proactively tackling the 
diverse challenges encountered by undergraduate students. 
Furthermore, the research introduces an innovative approach 
by combining the Decision Tree Classification (DTC) model 
with optimization algorithms such as Fox Optimization (FO) 
and Black Widow Optimization (BWO). This advanced 
methodology illustrates how integrating machine learning 
techniques and optimization algorithms can elevate the 
Precision and effectiveness of predictive models. It provides a 
robust toolkit for addressing the evolving challenges in 
students' academic journeys. The study's thorough evaluation 
process, which included dividing the models into training and 
testing sets, reveals that these hybrid models have the potential 
to enhance the classification capabilities of the DTC model 
significantly. This enhancement is reflected in notable 
improvements in Accuracy and Precision. Upon analyzing the 
results, it has been observed that the potential to significantly 
enhance the classification capabilities of the DTC model by 
these hybrid models is increasingly recognized. Based on the 
results, it can be concluded that: 

 In the case of G1 values, a marked improvement in 
Accuracy was achieved by applying FO and BWO 
optimization algorithms to the DTC model, with an 
increase of 1.42% and 2.51%, respectively. When the 
395 students were categorized based on their final 
grades, the exceptional ability of the BWO to augment 
classification Accuracy became evident. Specifically, 
the DTBW model displayed an impressive Accuracy 
rate of 93.7%, accurately classifying the majority of 
students, whereas the DTFO and DTC models 
misclassified 6.33% and 8.6% of all students, 
respectively.  

 With respect to G3 values, the improvement of 
Accuracy through the application of FO and BWO 
optimization algorithms to the DTC model was 1.96% 
for the application of FO and 0.87% for BWO. The 
DTFO model displayed an impressive Accuracy rate of 
93.4%, accurately classifying the majority of students, 
whereas the DTBW and DTC models experienced 
misclassification rates of 7.59% and 8.35%, 
respectively. 

The study sought to revolutionize academic performance 
prediction in education, assuming that predictive models 
significantly influence outcomes. Recognizing the holistic 
nature of student evaluation, it justified the importance of both 
qualitative and quantitative elements. Integration of machine 
learning with optimization algorithms was assumed to enhance 
predictive models, supported by literature. Standard practices 
in machine learning, such as thorough evaluation using training 
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and testing sets, were assumed to reflect model effectiveness. 
The assumption that misclassification rates indicate their direct 
measurement of prediction accuracy justified model 
performance. The study assumed that an increase in accuracy 
corresponded to improved classification capabilities, signifying 
enhanced predictions of students' final grades. Additionally, the 
assumption was made that optimization algorithms, specifically 
FO and BWO, led to marked improvements by fine-tuning 
decision tree models. Moreover, the research aimed to 
transform academic performance prediction in education, 
aligning with its overarching goal. Assumptions were 
strategically made to support this objective, including the 
significant influence of predictive models on academic 
outcomes, the importance of both qualitative and quantitative 
elements in predictions, and the enhancement of models 
through the integration of machine learning and optimization 
algorithms. Standard machine learning practices were assumed 
to reflect model effectiveness, with chosen metrics aligning 
with the study's goal of accurate predictions. The research 
assumed that improvements in accuracy corresponded to 
enhanced classification capabilities and that optimization 
algorithms led to marked improvements. 
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