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Abstract—Generating questions is one of the most challenging 

tasks in the natural language processing discipline. With the 

significant emergence of electronic educational platforms like e-

learning systems and the large scalability achieved with e-

learning, there is an increased urge to generate intelligent and 

deliberate questions to measure students' understanding. Many 

works have been done in this field with different techniques; 

however, most approaches work on extracting questions from 

text. This research aims to build a model that can conceptualize 

and generate questions on Python programming language from 

program codes. Different models are proposed by inserting text 

and generating questions; however, the challenge is 

understanding the concepts in the code snippets and linking them 

to the lessons so that the model can generate relevant and 

reasonable questions for students. Therefore, the standards 

applied to measure the results are the code complexity and 

question validity regarding the questions. The method used to 

achieve this goal combines the QuestionGenAi framework and 

ontology based on semantic code conversion. The results 

produced are questions based on the code snippets provided. The 

evaluation criteria were code complexity, question validity, and 

question context. This work has great potential improvement to 

the e-learning platforms to improve the overall experience for 

both learners and instructors. 

Keywords—Question generation; e-learning; python question 

generator; semantic code conversion 

I. INTRODUCTION 

Automating question generation has become significant 
with the increasing trend of online learning and its scalability 
in recent years. Technical courses like learning programming 
languages are more popular, and there is a massive demand for 
such subjects. Questions are the primary approach used to 
evaluate student knowledge [1]. Therefore, creating questions 
becomes more challenging as the constant growth of e-learning 
continues, more courses are created, and the pressure on 
teachers is high. Intelligent and deliberate questions can 
enhance student understanding and reduce the gap between 
theory and practice in programming subjects [2]. For example, 
the article in [3] monitors the performance and behavior of 
students who engage in courses with self-assessment methods 
in programming and problem-solving. The research in [4] 
observes the decentralized practice by monitoring the intensity 
and timing of the impact on student learning and problem-
solving in programming languages. The research paper [5] 
addresses interactivity while solving problems in programming 
languages based on learning objects. The article in [6] tries to 
enhance the use of digital resources for students and 
instructors. The research papers in [7] and [8] address the 
learning objects that can be used in different contexts using 

web3. Finally, the article in [9] suggests collaborative learning 
to help instructors engage students in generating and evaluating 
questions. The proposed method focuses on translating Python 
code into text and uses an AI-based framework to generate 
questions from the text. We also use ontology to connect and 
conceptualize the logic of the programming language. 
Applying ontology ensures interoperability with other systems 
and reduces the overhead on educational platforms. This work 
contributes to the e-learning platforms and improves the 
overall experience for instructors of programming languages. It 
also enhances the learning path for students who like to learn 
and do exercises without repeating the same questions. The 
outcome of this research is to generate meaningful questions 
based on Python code to assist instructors in creating more 
questions in a timely manner, thus ensuring students proper 
learning of the potential programming language. Unlike similar 
works, most recent research focuses on generating questions 
from text, while some research focuses on generating questions 
from visuals or images [10]. This work focuses on generating 
questions from code snippets using semantic relations to 
extract the concepts. Generating questions from 
unconventional sources, such as code snippets, becomes 
important in providing a better learning experience to large 
groups of students, especially when dealing with limited 
information. 

A. Research Goal 

The main goal of this research is to assist instructors and 
students in properly evaluating student performance by 
generating Python-based programming questions from existing 
materials (i.e., code snippets). The automatic question 
generation from code snippets will add the possibility of 
generating a different set of questions based on the same code 
snippet. Therefore, it leads to a better understanding of the 
given topic. 

B. Research Objectives 

To achieve the primary goal of this research, the following 
objectives are needed: 

1) Implement a framework that can interpret Python 

programming language into text. 

2) Enable the framework to comprehend the text and build 

connections between the programming structures and the 

semantic concepts. 

The rest of the paper is organized as follows: Section II 
describes related work and some existing approaches. Section 
III details the question generation framework implemented in 
this research, and Section IV shows the results. Section V 
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presents a discussion that summarizes the results. Finally, 
Section VI concludes the paper and mentions future work. 

II. RELATED WORK 

The question generation process is a relatively complex and 
challenging task. It requires adequate experience, high 
knowledge of the material, and time. With the emergence of 
online learning, it has become a necessity. The first types of 
question generation models, such as syntax-based, semantic-
based, and other models, started in 2014 [11]. 

Ontologies are a powerful tool for standardizing knowledge 
representation, which can be helpful in a wide range of 
domains, including e-learning. By modeling learning materials 
with ontologies, it is possible to create more personalized and 
effective learning experiences, allowing learners to achieve 
their goals more efficiently [12]. 

Domain knowledge models can be extremely useful in 
representing knowledge in a standardized and structured 
manner, aiding the teaching and learning processes. Python and 
Owlready2 are used to create the model implementation. 
Python is a popular programming language for various 
applications, including machine learning and data analysis. It 
includes many libraries and frameworks for developing 
sophisticated software systems. Owlready2 is a Python-based 
ontology library that simplifies creating and manipulating 
ontologies in Python code. The researchers created a flexible 
model that can be used to represent knowledge in a way that 
can be easily integrated into e-learning systems by 
implementing the domain knowledge model using Python and 
Owlready2. It could help develop adaptive learning systems 
that can tailor the learning experience to the needs of individual 
students [13]. 

Despite its importance, implementing question-generation 
approaches for programming concepts is partially applied in 
the modern world. Programming languages are an essential 
topic in computer science and software development, and there 
is a great demand for effective and efficient ways to teach 
programming concepts. Developing question-generation 
approaches for programming languages makes it possible to 
create many practice questions that can be used to reinforce 
learning and test understanding [14]. 

To aid students in their learning, Urazova [15] discusses the 
development of a system to automatically generate questions 
regarding UML database design and evaluate student 
responses. The system generates questions and evaluates 
student responses using artificial intelligence and methods for 
natural language processing. The goal is to give students a 
valuable and practical tool to assess their knowledge of and 
develop their expertise in UML database design. 

A study by Russell in [16] investigated the application of 
automated code-tracing exercises for teaching introductory 
programming (CS1) courses. Code tracing is a teaching method 
in which students mentally run code, follow the control flow, 
and note the values of variables at each stage. The researchers 
used an automated system to create code-tracing tasks and 
assess student responses. The purpose of this system was to 
serve as a tool for teaching students programming ideas and 
problem-solving techniques. The researchers evaluated the 

system's efficacy through studies and student polls and 
contrasted it with more conventional teaching techniques. The 
article details the possible advantages of automated code-
tracing exercises in CS1 courses and the challenges and 
limitations that must be addressed. 

The use of large language models to automatically provide 
programming tasks and related code explanations has been 
used recently. A solution using artificial intelligence was 
developed to help teachers and instructors construct and deliver 
efficient programming assignments. A sizable language model 
was trained on text and computer code to provide workouts and 
explanations for programming. The model was assessed based 
on the usefulness and quality of the activities and explanations 
produced through tests and questionnaires. The promise of 
leveraging extensive language models for automated 
programming exercise production is discussed in the study, 
along with the difficulties and restrictions that must be 
overcome [17]. 

Automated programming exercise creation and code 
explanation have several drawbacks, including bias potential, 
dependency on large language models, limited capacity to 
assess student comprehension, significant computing needs, 
and difficulty in generating high-quality training data. The 
quality of the language models determines how well the 
exercises and explanations are created, and there is a chance 
that the models might be biased. The systems automatically 
assessing student knowledge could not be reliable and might 
need a lot of computer power. Producing high-quality training 
data for large language models is challenging and time-
consuming. When utilizing these technologies in educational 
contexts, these constraints must be taken into account [18]. 

III. QUESTION GENERATION FRAMEWORK 

Question generation involves computer understanding of 
the available materials to propose plausible questions to 
students. However, two approaches are usually effective: AI-
based or semantic-based [12]. The current work uses a 
combination of both semantic and AI methods to properly 
generate questions from code snippets based on semantic code 
conversion. The primary motivation for using the semantic 
approach is maintaining concept relations in the programming 
language keywords to increase system intelligence on the 
programming language rules. Other approaches would not 
accurately represent the programming language rules, 
keywords, and concepts. This section will detail the framework 
architecture, the technology used, and the approach to generate 
questions. 

A. Architecture 

To generate questions from existing Python code snippets, 
an interpreter is needed to dissolve the codes into more 
understandable concepts. Python or any other programming 
language is constructed using operators, variables, and 
functions. Operators such as +,-, AND usually do the actual 
computing. At the same time, variables are used to store values 
and recall them with operators to perform specific tasks. 
Functions contain a list of variables, loops, and operators to be 
executed in order. The ontology will categorize and 
conceptualize the list of commands (i.e., variables, operators, 
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etc.) and the relationships between the concepts in the script. It 
will build an explained version of the code by processing the 
code line by line and creating semantic relationships based on 
the input. Subsequently, the translated code is generated and 
inserted into an AI question generator called “QuestGen” [19]. 
This model will generate open-ended questions. Fig. 1 shows 
the framework data flow and its components. 

Awareness of existing technologies and software is 
essential to construct any framework or software. Such 
awareness can improve productivity and help address many 
issues that take a long time. As a result, in this work, we 
implemented a framework using various third-party software. 
Table I describes this case's environment settings, tools, and 
applied libraries. As mentioned earlier, we have used the 
QuestGen AI model, an open-source NLP library dedicated to 
creating simple question-generation methods. It is on a mission 
to become the world's most sophisticated question-generation 
AI by utilizing cutting-edge transformer models like T5, 
BERT, and OpenAI GPT-2, among others. The primary 
objective of QuestGen AI is to simplify the question-
generation process, providing support to educators, content 
creators, and learners in developing educational materials. This 
tool significantly enhances the efficiency of teaching and 
learning resource development through automation, ultimately 
facilitating a more effective educational experience. 

Before generating questions, the QuestGen AI model 
expects a text as input. The ontology mentioned next is 
responsible for converting the snippet code from the Python 
programming language into text that humans can understand. 
Subsequently, this model can generate questions based on the 
inserted text. The software supports four types of questions, 
and they are as follows: 

 Questions with Several Choices (MCQs) 

 Boolean (Yes/No) Questions 

 Open-ended Questions 

 Question Paraphrase 

For the current study, only open-ended questions are 
considered. Since learning a programming language focuses on 
understanding the content of a code, it is more suitable to use 
open-ended questions to assess student knowledge properly. 

B. Ontology Design 

The ontology is built and compiled using the OWLReady2 
library in Python. Such a library would support automating 
manual activities like adding instances to the ontology. 
However, the main components and the relationships between 
concepts should be implemented manually to maintain logical 
correctness. Translating code into text starts with assigning 
keywords to ontology classes and describing these keywords. 
For example, the "=" sign is described in the ontology as an 
"equal sign", a value of the Assignment subclass in the 
operator class. The output of the ontology implemented in 
Python and OwlReady2 is then imported into Protégé for 
visualization purposes since the visualization is not yet 
supported on OwlReady2. Fig. 2 shows the ontology design 
visualization in Protégé. 

 
Fig. 1. Proposed framework architecture. 

TABLE I.  RESEARCH QUESTIONS AND CORRESPONDING RESEARCH 

OBJECTIVES 

Name Description 

OwlReady2 Python library to implement Ontology V 0.37 

Protege 
Software Application for viewing and modifying 

ontology 

Jupyter Notebook IDE to develop the framework 

QuestGen AI-based application to generate questions from the text 

Python V 3.11.1 

 
Fig. 2. Ontology design visualization using protégé. 

Logical correctness would enforce semantic meaning on 
the written script. For example, an “elif” statement syntax is 
valid in Python. However, it cannot exist without having an 
“if” statement before it. An “elif” should only be coming after 
an “if”. Furthermore, logical correctness would connect all the 
keywords and describe the semantic relationship between 
steps. Most essential aspects of Python programming language 
in the designed ontology are classified as classes and 
subclasses. For example, in this study, we have categorized the 
Python language elements and constructs into four main 
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classes: Control Structure, Function, Library, and Operator. 
Each subclass of the Operator class contains several instances 
that would map each instance to the operator class. Such 
mapping would assist in enforcing the logical correctness of 
the translated snippet. Fig. 3 shows an instance definition from 
the constructed ontology. The ontology's capabilities aim to 
structure the Python programming language to ensure that the 
computer can collect vocabulary text about the keywords and 
build sentences based on the combination of the programming 
language keywords, which can be fed later into the question 
generation model. The main limitation is that the ontology 
should be built manually by adding the explanation of all 
instances, which can be challenging to implement. Further 
research is needed to improve this approach. Fig. 4 shows a 
part of the ontology in Python script. 

 

Fig. 3. Instance definition of subtraction. 

 

Fig. 4. Ontology in python. 

C. Parser 

The parser's job is to detach a block of codes into pieces 
that can match the ontology based on keywords and custom 
conditions. These conditions are adjusted depending on the 
inserted snippets. This model uses the ontology to create 
sentences. It analyzes keywords in the parser and generates 
sentences explaining the code. For example, a=10, the parser 
would create “a is a variable. a value is 10”. Fig. 5 illustrates 
how the code parser algorithm works in the implemented 
system. 

 
Fig. 5. Algorithm steps of the code’s parser explanation. 

This parser helps turn Python code (and maybe other types 
later) into sentences using a set of rules. It maintains whatever 
logic the ontology possesses about the code. Then, it is fed into 
the AI model to generate proper questions based on the code 
interpretation by ontology. The limitation of this parser is that 
it might struggle with complicated code because it needs 
specific filters to understand the context and collect the 
keywords. Fig. 5 describes the steps involved in processing the 
input and generating results. Initially, the ontology file must be 
loaded into the environment using an OWL file. Subsequently, 
the Python source code is provided to the application, where 
filters extract keywords and retrieve explanations from the 
defined ontology. Finally, the 'explained code' is passed to the 
QuestionGenAI framework to generate questions. 

D. Question Generation 

Over time, there is a growing demand for question 
generation, a trend that could significantly alleviate the burden 
on educators and trainers. This is particularly beneficial for 
scalable learning formats such as online courses. Many models 
exist for generating questions from regular text; however, 
understanding code and generating questions from code 
snippets is not applied due to its complexity. Code-to-text 
conversion is a challenging task. However, the semantic 
relationships between the concepts in the ontology are an 
excellent solution. Fig. 6 shows the whole procedure to 
translate code into text. In Fig. 6, the code undergoes validation 
by a parser checker responsible for scrutinizing its syntax. 
Once the code is confirmed as error-free, the checker directs it 
to the ontological translator, acting as the parser within our 
architecture. This parser transforms the code into coherent 
sentences, forwarding them to the Question Generator AI 
model to generate reasonable questions. An explanation of the 
Question Generator AI model is provided in the subsequent 
section. 

 
Fig. 6. Question-generation process. 

E. QuestionGen AI 

The QuestGen AI model is an AI model that can generate 
questions using AI. The QuestGen project is available in an 
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open-source format [18]. The model is already trained and can 
generate high-quality questions based on text fed into the 
model. Instructors can choose the type of question that can be 
generated; however, we have only applied open-ended 
questions. The results summarized in the subsequent section 
show that the AI model can generate reasonable questions 
based on the input text and its level of clarity. 

 Input: The model can process various types of input, 
including structured, unstructured, and context-based 
content such as passages, documents, and articles. 

 Field of application: The model is tailored to support 
the education field across diverse disciplines such as 
science, history, language arts, and more. However, it 
does not have the capability to execute or generate 
programming language code. 

 Generation method: It is a semantic-based model 
designed to comprehend inserted text by leveraging 
concepts and contextual awareness. This procedure is 
divided into two main steps. Firstly, it begins with 
entity recognition, wherein the model extracts crucial 
information such as dates, names, and relationships, 
employing part-of-speech tagging. Next, the model 
applies question templates to the extracted information 
to match the most suitable predefined question 
template. To improve question quality, various methods 
are employed, including probabilistic approaches to 
refine wording and phrasing within the questions. 

 Question format: The model can propose various 
formats, including open-ended, multiple choice, 
true/false, and short answer. 

 Response format: The responses are generated in both 
text and JSON formats. Each type of question has its 
own format. For instance, multiple-choice questions 
prompt the system to produce the question stem and its 
corresponding answer choices. This distinction applies 
to all question types, and the resulting output is tailored 
accordingly. 

 Example: The sentence inserted into the model is “The 
Industrial Revolution was a period of significant 
economic and technological change that began in 
Britain during the late 18th century. It marked the 
transition from agrarian economies to industrialized 
ones, with advancements in machinery, transportation, 
and manufacturing.” 

 The generated questions for a true/false type of question 
are: 

o 'Is the industrial revolution the same as the 
'revolution?', 

o 'Was the industrial revolution a period of change?', 

o 'Was the industrial revolution a revolution in the 
18th century?' 

IV. RESULTS 

The results are generated in two versions, one utilizing our 
proposed model and the other without its use (i.e., by directly 
inserting the code into the QuestGen AI), as depicted in Fig. 7. 
The implemented framework facilitates the question-generation 
process, empowering teachers to automatically generate Python 
programming language assessment questions for testing 
students' knowledge. Fig. 8 depicts a straightforward code 
snippet featuring variable definitions. This figure illustrates 
specific variables alongside their assigned values, incorporated 
as a script within the ontology. A Python parser is employed to 
validate the text as proper code before generating any flawed or 
erroneous questions to mitigate the potential for incorrect 
syntax within the inserted code. Fig. 9 displays the translated 
text derived from the code, providing a textual interpretation 
for each line. The interpreter presents the variable type and 
specifies the assigned value for each variable. Fig. 10 
showcases the outcomes resulting from inserting the 
aforementioned text into the QuestGen AI model. Fig. 11 can 
be seen without having a context. The question generator failed 
to produce any meaningful questions except for the list 
variable, where it managed to generate a relevant question. 
However, the AI model could not comprehend all the lines, 
hence the presence of the ZERO {} symbol. Fig. 12 exhibits a 
Python code comprising class and object definitions presented 
as a string and passed through an ontology to translate it into 
text. Subsequently, this text is fed into the QuestionGen model 
to generate questions. In the subsequent examples, only the 
generated questions and context from QuestGen AI will be 
showcased, omitting the complete outputs. Moving on to Fig. 
13, it explains the preceding code snippet depicted in Fig. 12 
using natural language, preparing it for input into the AI 
generator. Following this, Fig. 14 displays the questions 
generated from the snippet description, demonstrating the 
relevance of the generated questions. However, Fig. 15 
illustrates the outcome of generating questions without 
providing a snippet description, resulting in improper questions 
marked by ZERO{} symbols and inaccuracies. This indicates 
the necessity of providing a description for accurate question 
generation. In the third example, depicted in Fig. 16, a function 
is defined to compute the area of a circle based on its radius. 
This code incorporates arithmetic operations and utilizes 
Python's 'math' module. Subsequently, Fig. 17 exhibits the 
output resulting from describing the aforementioned code to 
input into the AI model. Meanwhile, Fig. 18 displays the 
generated questions derived from the description of the code 
snippet involving mathematical operations. Conversely, Fig. 19 
showcases a question generated without describing the snippet. 
The results depicted in all figures are formatted in JSON, 
containing both the question and its solution. For open-ended 
questions, the QuestGen model provides the answer alongside 
the question, excluding the options. It is worth noting that there 
are warnings due to deprecated libraries utilized by the 
QuestionGen model, prompting necessary updates by the 
authors. 
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Fig. 7. Generating questions directly from code. 

 

Fig. 8. A code snippet with variable definitions. 

 
Fig. 9. Generated text from a code snippet. 

 
Fig. 10. Generated questions for variable definitions. 

 
Fig. 11. Generated questions without using the proposed approach. 

 
Fig. 12. Python code for defining classes and objects. 

 
Fig. 13. Generated explanation of the code in Fig. 12. 

 
Fig. 14. Generated questions for the more advanced snippet. 

 

Fig. 15. Generated questions without using the proposed model. 

 

Fig. 16. Code snippet containing a function and arithmetic operations. 
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Fig. 17. Generated explanation of the code in Fig. 16. 

 
Fig. 18. Generated questions using the proposed model. 

 
Fig. 19. Generated question without describing the snippet. 

V. DISCUSSION 

In this experiment, various code snippets were tested for 
translation using the proposed ontology and fed into the 
QuestionGen model to create open-ended questions. Table II 
outlines the test cases, the generated questions, and the 
difficulty level of the tested code. It is noticed that human 
evaluation of AQG results is more accurate than automatic 
assessments [10]. The validity of the generated code is rated on 
a scale of 1 to 5, where one represents the least validity and 
five indicates the highest validity. Difficulty is assessed based 
on script logic, with five denoting complexity and one 
representing simplicity. For instance, identifying variable 
assignments is relatively straightforward, while understanding 
inheritance is more challenging. Generating appropriate 
questions from sophisticated or advanced code snippets, such 
as those utilizing third-party libraries, still presents limitations. 
Composing accurate questions becomes increasingly tricky as 
code complexity and inter-line relationships grow. 
Consequently, further development is necessary to enhance 
outcomes. Addressing this need will lead to more advanced 
results. Nevertheless, this study introduces a new dimension to 
e-learning and supplements existing question-generation 
approaches that have proven effective in textual sources. 

TABLE II.  TYPES OF SYNTAX COVERED 

Test case 
Code level of 

difficulty 
Generated question Context 

Generated 

question validity 

a) Variable declaration 1 What is the value of xfoo? 
xfoo is a string variable and its 

value is 'foo' 
4 

b) list declaration 2 'What are the items in the list variable ab? 
'ab is a list variable and it has 2 
items' 

5 

c) Class declaration 3 What is a person? Person is a class definition 5 

d) Instance and property 

initialization 
4 What is a school an instance of? 

'school is an instance of the 

property' 
3 

e) Variable initialization, 

instance initialization, 

property. 

5 'What is var1 an instance of?' 

var1 is an instance of the 

Person class with name 'Jane' 
and age 25" 

4 

f) Inheritance identification 5 Who does a student inherit from? Student inherits from Person 5 

g) Libraries import 4 
What is the name of the module that is 

imported? 
Imported module: math 4 

h) Functions 4 What is a method definition? area is a method definition 3 

i) Variable type 4 What is r? 'r is a variable of type unknown' 4 

j) Functions result 5 'What is the calculated area of the circle? 
'a' represents the calculated area 
of the circle. 

5 

 

VI. CONCLUSION 

E-learning has become very popular recently, notably 
accelerated by the onset of the pandemic. One area that has 
gained considerable attention among researchers is the 
automatic generation of questions derived from learning 
materials. However, the predominant focus of existing efforts 
lies in generating questions from textual content. This work, 
however, concentrates on generating questions tailored for 

Python programming language learners derived explicitly from 
code snippets found in textbooks and course materials. 
Leveraging ontologies, this approach demands less 
computational resources, enhancing the scalability of the 
framework across diverse systems. The proposed framework 
harnesses ontological mapping, associating each syntactic 
element with its corresponding meaning and explanation. The 
process involves translating code into text and subsequently 
feeding this translated text into an AI-based model for question 
generation. It aims to alleviate the burden on educators and 
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reduce the repetition of the same questions for different groups 
of students. Moreover, the generated questions from code 
snippets serve to evaluate students' general understanding. 

However, the proposed approach still has some limitations. 
The generation of questions relies solely on the QuestGen AI 
model, which can occasionally result in poorly phrased 
questions due to its AI nature. Additionally, the model might 
struggle to identify certain third-party libraries in complex code 
snippets. Hence, it represents an opportunity for future work to 
facilitate the insertion and categorization of concepts from all 
libraries. Finally, exploring alternative models such as GPT 
and expanding the framework to recursively process all 
imported libraries would enable a deeper understanding of 
complex syntactic structures. This enhancement would 
empower the ontology to explain code snippets better and 
generate more nuanced and fitting questions. 
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