
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

10 | P a g e

www.ijacsa.thesai.org

A Hybrid Approach for Automatic Question

Generation from Program Codes

Jawad Alshboul, Erika Baksa-Varga

University of Miskolc, Faculty of Mechanical Engineering and Informatics, Miskolc, Hungary

Abstract—Generating questions is one of the most challenging

tasks in the natural language processing discipline. With the

significant emergence of electronic educational platforms like e-

learning systems and the large scalability achieved with e-

learning, there is an increased urge to generate intelligent and

deliberate questions to measure students' understanding. Many

works have been done in this field with different techniques;

however, most approaches work on extracting questions from

text. This research aims to build a model that can conceptualize

and generate questions on Python programming language from

program codes. Different models are proposed by inserting text

and generating questions; however, the challenge is

understanding the concepts in the code snippets and linking them

to the lessons so that the model can generate relevant and

reasonable questions for students. Therefore, the standards

applied to measure the results are the code complexity and

question validity regarding the questions. The method used to

achieve this goal combines the QuestionGenAi framework and

ontology based on semantic code conversion. The results

produced are questions based on the code snippets provided. The

evaluation criteria were code complexity, question validity, and

question context. This work has great potential improvement to

the e-learning platforms to improve the overall experience for

both learners and instructors.

Keywords—Question generation; e-learning; python question

generator; semantic code conversion

I. INTRODUCTION

Automating question generation has become significant
with the increasing trend of online learning and its scalability
in recent years. Technical courses like learning programming
languages are more popular, and there is a massive demand for
such subjects. Questions are the primary approach used to
evaluate student knowledge [1]. Therefore, creating questions
becomes more challenging as the constant growth of e-learning
continues, more courses are created, and the pressure on
teachers is high. Intelligent and deliberate questions can
enhance student understanding and reduce the gap between
theory and practice in programming subjects [2]. For example,
the article in [3] monitors the performance and behavior of
students who engage in courses with self-assessment methods
in programming and problem-solving. The research in [4]
observes the decentralized practice by monitoring the intensity
and timing of the impact on student learning and problem-
solving in programming languages. The research paper [5]
addresses interactivity while solving problems in programming
languages based on learning objects. The article in [6] tries to
enhance the use of digital resources for students and
instructors. The research papers in [7] and [8] address the
learning objects that can be used in different contexts using

web3. Finally, the article in [9] suggests collaborative learning
to help instructors engage students in generating and evaluating
questions. The proposed method focuses on translating Python
code into text and uses an AI-based framework to generate
questions from the text. We also use ontology to connect and
conceptualize the logic of the programming language.
Applying ontology ensures interoperability with other systems
and reduces the overhead on educational platforms. This work
contributes to the e-learning platforms and improves the
overall experience for instructors of programming languages. It
also enhances the learning path for students who like to learn
and do exercises without repeating the same questions. The
outcome of this research is to generate meaningful questions
based on Python code to assist instructors in creating more
questions in a timely manner, thus ensuring students proper
learning of the potential programming language. Unlike similar
works, most recent research focuses on generating questions
from text, while some research focuses on generating questions
from visuals or images [10]. This work focuses on generating
questions from code snippets using semantic relations to
extract the concepts. Generating questions from
unconventional sources, such as code snippets, becomes
important in providing a better learning experience to large
groups of students, especially when dealing with limited
information.

A. Research Goal

The main goal of this research is to assist instructors and
students in properly evaluating student performance by
generating Python-based programming questions from existing
materials (i.e., code snippets). The automatic question
generation from code snippets will add the possibility of
generating a different set of questions based on the same code
snippet. Therefore, it leads to a better understanding of the
given topic.

B. Research Objectives

To achieve the primary goal of this research, the following
objectives are needed:

1) Implement a framework that can interpret Python

programming language into text.

2) Enable the framework to comprehend the text and build

connections between the programming structures and the

semantic concepts.

The rest of the paper is organized as follows: Section II
describes related work and some existing approaches. Section
III details the question generation framework implemented in
this research, and Section IV shows the results. Section V

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

11 | P a g e

www.ijacsa.thesai.org

presents a discussion that summarizes the results. Finally,
Section VI concludes the paper and mentions future work.

II. RELATED WORK

The question generation process is a relatively complex and
challenging task. It requires adequate experience, high
knowledge of the material, and time. With the emergence of
online learning, it has become a necessity. The first types of
question generation models, such as syntax-based, semantic-
based, and other models, started in 2014 [11].

Ontologies are a powerful tool for standardizing knowledge
representation, which can be helpful in a wide range of
domains, including e-learning. By modeling learning materials
with ontologies, it is possible to create more personalized and
effective learning experiences, allowing learners to achieve
their goals more efficiently [12].

Domain knowledge models can be extremely useful in
representing knowledge in a standardized and structured
manner, aiding the teaching and learning processes. Python and
Owlready2 are used to create the model implementation.
Python is a popular programming language for various
applications, including machine learning and data analysis. It
includes many libraries and frameworks for developing
sophisticated software systems. Owlready2 is a Python-based
ontology library that simplifies creating and manipulating
ontologies in Python code. The researchers created a flexible
model that can be used to represent knowledge in a way that
can be easily integrated into e-learning systems by
implementing the domain knowledge model using Python and
Owlready2. It could help develop adaptive learning systems
that can tailor the learning experience to the needs of individual
students [13].

Despite its importance, implementing question-generation
approaches for programming concepts is partially applied in
the modern world. Programming languages are an essential
topic in computer science and software development, and there
is a great demand for effective and efficient ways to teach
programming concepts. Developing question-generation
approaches for programming languages makes it possible to
create many practice questions that can be used to reinforce
learning and test understanding [14].

To aid students in their learning, Urazova [15] discusses the
development of a system to automatically generate questions
regarding UML database design and evaluate student
responses. The system generates questions and evaluates
student responses using artificial intelligence and methods for
natural language processing. The goal is to give students a
valuable and practical tool to assess their knowledge of and
develop their expertise in UML database design.

A study by Russell in [16] investigated the application of
automated code-tracing exercises for teaching introductory
programming (CS1) courses. Code tracing is a teaching method
in which students mentally run code, follow the control flow,
and note the values of variables at each stage. The researchers
used an automated system to create code-tracing tasks and
assess student responses. The purpose of this system was to
serve as a tool for teaching students programming ideas and
problem-solving techniques. The researchers evaluated the

system's efficacy through studies and student polls and
contrasted it with more conventional teaching techniques. The
article details the possible advantages of automated code-
tracing exercises in CS1 courses and the challenges and
limitations that must be addressed.

The use of large language models to automatically provide
programming tasks and related code explanations has been
used recently. A solution using artificial intelligence was
developed to help teachers and instructors construct and deliver
efficient programming assignments. A sizable language model
was trained on text and computer code to provide workouts and
explanations for programming. The model was assessed based
on the usefulness and quality of the activities and explanations
produced through tests and questionnaires. The promise of
leveraging extensive language models for automated
programming exercise production is discussed in the study,
along with the difficulties and restrictions that must be
overcome [17].

Automated programming exercise creation and code
explanation have several drawbacks, including bias potential,
dependency on large language models, limited capacity to
assess student comprehension, significant computing needs,
and difficulty in generating high-quality training data. The
quality of the language models determines how well the
exercises and explanations are created, and there is a chance
that the models might be biased. The systems automatically
assessing student knowledge could not be reliable and might
need a lot of computer power. Producing high-quality training
data for large language models is challenging and time-
consuming. When utilizing these technologies in educational
contexts, these constraints must be taken into account [18].

III. QUESTION GENERATION FRAMEWORK

Question generation involves computer understanding of
the available materials to propose plausible questions to
students. However, two approaches are usually effective: AI-
based or semantic-based [12]. The current work uses a
combination of both semantic and AI methods to properly
generate questions from code snippets based on semantic code
conversion. The primary motivation for using the semantic
approach is maintaining concept relations in the programming
language keywords to increase system intelligence on the
programming language rules. Other approaches would not
accurately represent the programming language rules,
keywords, and concepts. This section will detail the framework
architecture, the technology used, and the approach to generate
questions.

A. Architecture

To generate questions from existing Python code snippets,
an interpreter is needed to dissolve the codes into more
understandable concepts. Python or any other programming
language is constructed using operators, variables, and
functions. Operators such as +,-, AND usually do the actual
computing. At the same time, variables are used to store values
and recall them with operators to perform specific tasks.
Functions contain a list of variables, loops, and operators to be
executed in order. The ontology will categorize and
conceptualize the list of commands (i.e., variables, operators,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

12 | P a g e

www.ijacsa.thesai.org

etc.) and the relationships between the concepts in the script. It
will build an explained version of the code by processing the
code line by line and creating semantic relationships based on
the input. Subsequently, the translated code is generated and
inserted into an AI question generator called “QuestGen” [19].
This model will generate open-ended questions. Fig. 1 shows
the framework data flow and its components.

Awareness of existing technologies and software is
essential to construct any framework or software. Such
awareness can improve productivity and help address many
issues that take a long time. As a result, in this work, we
implemented a framework using various third-party software.
Table I describes this case's environment settings, tools, and
applied libraries. As mentioned earlier, we have used the
QuestGen AI model, an open-source NLP library dedicated to
creating simple question-generation methods. It is on a mission
to become the world's most sophisticated question-generation
AI by utilizing cutting-edge transformer models like T5,
BERT, and OpenAI GPT-2, among others. The primary
objective of QuestGen AI is to simplify the question-
generation process, providing support to educators, content
creators, and learners in developing educational materials. This
tool significantly enhances the efficiency of teaching and
learning resource development through automation, ultimately
facilitating a more effective educational experience.

Before generating questions, the QuestGen AI model
expects a text as input. The ontology mentioned next is
responsible for converting the snippet code from the Python
programming language into text that humans can understand.
Subsequently, this model can generate questions based on the
inserted text. The software supports four types of questions,
and they are as follows:

 Questions with Several Choices (MCQs)

 Boolean (Yes/No) Questions

 Open-ended Questions

 Question Paraphrase

For the current study, only open-ended questions are
considered. Since learning a programming language focuses on
understanding the content of a code, it is more suitable to use
open-ended questions to assess student knowledge properly.

B. Ontology Design

The ontology is built and compiled using the OWLReady2
library in Python. Such a library would support automating
manual activities like adding instances to the ontology.
However, the main components and the relationships between
concepts should be implemented manually to maintain logical
correctness. Translating code into text starts with assigning
keywords to ontology classes and describing these keywords.
For example, the "=" sign is described in the ontology as an
"equal sign", a value of the Assignment subclass in the
operator class. The output of the ontology implemented in
Python and OwlReady2 is then imported into Protégé for
visualization purposes since the visualization is not yet
supported on OwlReady2. Fig. 2 shows the ontology design
visualization in Protégé.

Fig. 1. Proposed framework architecture.

TABLE I. RESEARCH QUESTIONS AND CORRESPONDING RESEARCH

OBJECTIVES

Name Description

OwlReady2 Python library to implement Ontology V 0.37

Protege
Software Application for viewing and modifying

ontology

Jupyter Notebook IDE to develop the framework

QuestGen AI-based application to generate questions from the text

Python V 3.11.1

Fig. 2. Ontology design visualization using protégé.

Logical correctness would enforce semantic meaning on
the written script. For example, an “elif” statement syntax is
valid in Python. However, it cannot exist without having an
“if” statement before it. An “elif” should only be coming after
an “if”. Furthermore, logical correctness would connect all the
keywords and describe the semantic relationship between
steps. Most essential aspects of Python programming language
in the designed ontology are classified as classes and
subclasses. For example, in this study, we have categorized the
Python language elements and constructs into four main

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

13 | P a g e

www.ijacsa.thesai.org

classes: Control Structure, Function, Library, and Operator.
Each subclass of the Operator class contains several instances
that would map each instance to the operator class. Such
mapping would assist in enforcing the logical correctness of
the translated snippet. Fig. 3 shows an instance definition from
the constructed ontology. The ontology's capabilities aim to
structure the Python programming language to ensure that the
computer can collect vocabulary text about the keywords and
build sentences based on the combination of the programming
language keywords, which can be fed later into the question
generation model. The main limitation is that the ontology
should be built manually by adding the explanation of all
instances, which can be challenging to implement. Further
research is needed to improve this approach. Fig. 4 shows a
part of the ontology in Python script.

Fig. 3. Instance definition of subtraction.

Fig. 4. Ontology in python.

C. Parser

The parser's job is to detach a block of codes into pieces
that can match the ontology based on keywords and custom
conditions. These conditions are adjusted depending on the
inserted snippets. This model uses the ontology to create
sentences. It analyzes keywords in the parser and generates
sentences explaining the code. For example, a=10, the parser
would create “a is a variable. a value is 10”. Fig. 5 illustrates
how the code parser algorithm works in the implemented
system.

Fig. 5. Algorithm steps of the code’s parser explanation.

This parser helps turn Python code (and maybe other types
later) into sentences using a set of rules. It maintains whatever
logic the ontology possesses about the code. Then, it is fed into
the AI model to generate proper questions based on the code
interpretation by ontology. The limitation of this parser is that
it might struggle with complicated code because it needs
specific filters to understand the context and collect the
keywords. Fig. 5 describes the steps involved in processing the
input and generating results. Initially, the ontology file must be
loaded into the environment using an OWL file. Subsequently,
the Python source code is provided to the application, where
filters extract keywords and retrieve explanations from the
defined ontology. Finally, the 'explained code' is passed to the
QuestionGenAI framework to generate questions.

D. Question Generation

Over time, there is a growing demand for question
generation, a trend that could significantly alleviate the burden
on educators and trainers. This is particularly beneficial for
scalable learning formats such as online courses. Many models
exist for generating questions from regular text; however,
understanding code and generating questions from code
snippets is not applied due to its complexity. Code-to-text
conversion is a challenging task. However, the semantic
relationships between the concepts in the ontology are an
excellent solution. Fig. 6 shows the whole procedure to
translate code into text. In Fig. 6, the code undergoes validation
by a parser checker responsible for scrutinizing its syntax.
Once the code is confirmed as error-free, the checker directs it
to the ontological translator, acting as the parser within our
architecture. This parser transforms the code into coherent
sentences, forwarding them to the Question Generator AI
model to generate reasonable questions. An explanation of the
Question Generator AI model is provided in the subsequent
section.

Fig. 6. Question-generation process.

E. QuestionGen AI

The QuestGen AI model is an AI model that can generate
questions using AI. The QuestGen project is available in an

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

14 | P a g e

www.ijacsa.thesai.org

open-source format [18]. The model is already trained and can
generate high-quality questions based on text fed into the
model. Instructors can choose the type of question that can be
generated; however, we have only applied open-ended
questions. The results summarized in the subsequent section
show that the AI model can generate reasonable questions
based on the input text and its level of clarity.

 Input: The model can process various types of input,
including structured, unstructured, and context-based
content such as passages, documents, and articles.

 Field of application: The model is tailored to support
the education field across diverse disciplines such as
science, history, language arts, and more. However, it
does not have the capability to execute or generate
programming language code.

 Generation method: It is a semantic-based model
designed to comprehend inserted text by leveraging
concepts and contextual awareness. This procedure is
divided into two main steps. Firstly, it begins with
entity recognition, wherein the model extracts crucial
information such as dates, names, and relationships,
employing part-of-speech tagging. Next, the model
applies question templates to the extracted information
to match the most suitable predefined question
template. To improve question quality, various methods
are employed, including probabilistic approaches to
refine wording and phrasing within the questions.

 Question format: The model can propose various
formats, including open-ended, multiple choice,
true/false, and short answer.

 Response format: The responses are generated in both
text and JSON formats. Each type of question has its
own format. For instance, multiple-choice questions
prompt the system to produce the question stem and its
corresponding answer choices. This distinction applies
to all question types, and the resulting output is tailored
accordingly.

 Example: The sentence inserted into the model is “The
Industrial Revolution was a period of significant
economic and technological change that began in
Britain during the late 18th century. It marked the
transition from agrarian economies to industrialized
ones, with advancements in machinery, transportation,
and manufacturing.”

 The generated questions for a true/false type of question
are:

o 'Is the industrial revolution the same as the
'revolution?',

o 'Was the industrial revolution a period of change?',

o 'Was the industrial revolution a revolution in the
18th century?'

IV. RESULTS

The results are generated in two versions, one utilizing our
proposed model and the other without its use (i.e., by directly
inserting the code into the QuestGen AI), as depicted in Fig. 7.
The implemented framework facilitates the question-generation
process, empowering teachers to automatically generate Python
programming language assessment questions for testing
students' knowledge. Fig. 8 depicts a straightforward code
snippet featuring variable definitions. This figure illustrates
specific variables alongside their assigned values, incorporated
as a script within the ontology. A Python parser is employed to
validate the text as proper code before generating any flawed or
erroneous questions to mitigate the potential for incorrect
syntax within the inserted code. Fig. 9 displays the translated
text derived from the code, providing a textual interpretation
for each line. The interpreter presents the variable type and
specifies the assigned value for each variable. Fig. 10
showcases the outcomes resulting from inserting the
aforementioned text into the QuestGen AI model. Fig. 11 can
be seen without having a context. The question generator failed
to produce any meaningful questions except for the list
variable, where it managed to generate a relevant question.
However, the AI model could not comprehend all the lines,
hence the presence of the ZERO {} symbol. Fig. 12 exhibits a
Python code comprising class and object definitions presented
as a string and passed through an ontology to translate it into
text. Subsequently, this text is fed into the QuestionGen model
to generate questions. In the subsequent examples, only the
generated questions and context from QuestGen AI will be
showcased, omitting the complete outputs. Moving on to Fig.
13, it explains the preceding code snippet depicted in Fig. 12
using natural language, preparing it for input into the AI
generator. Following this, Fig. 14 displays the questions
generated from the snippet description, demonstrating the
relevance of the generated questions. However, Fig. 15
illustrates the outcome of generating questions without
providing a snippet description, resulting in improper questions
marked by ZERO{} symbols and inaccuracies. This indicates
the necessity of providing a description for accurate question
generation. In the third example, depicted in Fig. 16, a function
is defined to compute the area of a circle based on its radius.
This code incorporates arithmetic operations and utilizes
Python's 'math' module. Subsequently, Fig. 17 exhibits the
output resulting from describing the aforementioned code to
input into the AI model. Meanwhile, Fig. 18 displays the
generated questions derived from the description of the code
snippet involving mathematical operations. Conversely, Fig. 19
showcases a question generated without describing the snippet.
The results depicted in all figures are formatted in JSON,
containing both the question and its solution. For open-ended
questions, the QuestGen model provides the answer alongside
the question, excluding the options. It is worth noting that there
are warnings due to deprecated libraries utilized by the
QuestionGen model, prompting necessary updates by the
authors.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

15 | P a g e

www.ijacsa.thesai.org

Fig. 7. Generating questions directly from code.

Fig. 8. A code snippet with variable definitions.

Fig. 9. Generated text from a code snippet.

Fig. 10. Generated questions for variable definitions.

Fig. 11. Generated questions without using the proposed approach.

Fig. 12. Python code for defining classes and objects.

Fig. 13. Generated explanation of the code in Fig. 12.

Fig. 14. Generated questions for the more advanced snippet.

Fig. 15. Generated questions without using the proposed model.

Fig. 16. Code snippet containing a function and arithmetic operations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

16 | P a g e

www.ijacsa.thesai.org

Fig. 17. Generated explanation of the code in Fig. 16.

Fig. 18. Generated questions using the proposed model.

Fig. 19. Generated question without describing the snippet.

V. DISCUSSION

In this experiment, various code snippets were tested for
translation using the proposed ontology and fed into the
QuestionGen model to create open-ended questions. Table II
outlines the test cases, the generated questions, and the
difficulty level of the tested code. It is noticed that human
evaluation of AQG results is more accurate than automatic
assessments [10]. The validity of the generated code is rated on
a scale of 1 to 5, where one represents the least validity and
five indicates the highest validity. Difficulty is assessed based
on script logic, with five denoting complexity and one
representing simplicity. For instance, identifying variable
assignments is relatively straightforward, while understanding
inheritance is more challenging. Generating appropriate
questions from sophisticated or advanced code snippets, such
as those utilizing third-party libraries, still presents limitations.
Composing accurate questions becomes increasingly tricky as
code complexity and inter-line relationships grow.
Consequently, further development is necessary to enhance
outcomes. Addressing this need will lead to more advanced
results. Nevertheless, this study introduces a new dimension to
e-learning and supplements existing question-generation
approaches that have proven effective in textual sources.

TABLE II. TYPES OF SYNTAX COVERED

Test case
Code level of

difficulty
Generated question Context

Generated

question validity

a) Variable declaration 1 What is the value of xfoo?
xfoo is a string variable and its

value is 'foo'
4

b) list declaration 2 'What are the items in the list variable ab?
'ab is a list variable and it has 2
items'

5

c) Class declaration 3 What is a person? Person is a class definition 5

d) Instance and property

initialization
4 What is a school an instance of?

'school is an instance of the

property'
3

e) Variable initialization,

instance initialization,

property.

5 'What is var1 an instance of?'

var1 is an instance of the

Person class with name 'Jane'
and age 25"

4

f) Inheritance identification 5 Who does a student inherit from? Student inherits from Person 5

g) Libraries import 4
What is the name of the module that is

imported?
Imported module: math 4

h) Functions 4 What is a method definition? area is a method definition 3

i) Variable type 4 What is r? 'r is a variable of type unknown' 4

j) Functions result 5 'What is the calculated area of the circle?
'a' represents the calculated area
of the circle.

5

VI. CONCLUSION

E-learning has become very popular recently, notably
accelerated by the onset of the pandemic. One area that has
gained considerable attention among researchers is the
automatic generation of questions derived from learning
materials. However, the predominant focus of existing efforts
lies in generating questions from textual content. This work,
however, concentrates on generating questions tailored for

Python programming language learners derived explicitly from
code snippets found in textbooks and course materials.
Leveraging ontologies, this approach demands less
computational resources, enhancing the scalability of the
framework across diverse systems. The proposed framework
harnesses ontological mapping, associating each syntactic
element with its corresponding meaning and explanation. The
process involves translating code into text and subsequently
feeding this translated text into an AI-based model for question
generation. It aims to alleviate the burden on educators and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

17 | P a g e

www.ijacsa.thesai.org

reduce the repetition of the same questions for different groups
of students. Moreover, the generated questions from code
snippets serve to evaluate students' general understanding.

However, the proposed approach still has some limitations.
The generation of questions relies solely on the QuestGen AI
model, which can occasionally result in poorly phrased
questions due to its AI nature. Additionally, the model might
struggle to identify certain third-party libraries in complex code
snippets. Hence, it represents an opportunity for future work to
facilitate the insertion and categorization of concepts from all
libraries. Finally, exploring alternative models such as GPT
and expanding the framework to recursively process all
imported libraries would enable a deeper understanding of
complex syntactic structures. This enhancement would
empower the ontology to explain code snippets better and
generate more nuanced and fitting questions.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial assistance
from the Institute of Information Science, Faculty of
Mechanical Engineering and Informatics, University of
Miskolc.

REFERENCES

[1] Y. Ham and B. Myers, “Supporting Guided Inquiry with Cooperative
Learning in Computer Organization,” in Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, Minneapolis,
USA: ACM, Feb. 2019, pp. 273–279. doi:
https://doi.org/10.1145/3287324.3287355.

[2] R. S. J. d Baker, A. T. Corbett, and V. Aleven, “More Accurate Student
Modeling through Contextual Estimation of Slip and Guess Probabilities
in Bayesian Knowledge Tracing,” presented at the International
Conference on Intelligent Tutoring Systems, in Lecture Notes in
Computer Science, vol. 5091. Montreal, Canada: Springer Berlin
Heidelberg, Jun. 2008, pp. 406–415. doi: https://doi.org/10.1007/978-3-
540-69132-7_44.

[3] C.-Y. Chung and I.-H. Hsiao, “Investigating Patterns of Study
Persistence on Self-Assessment Platform of Programming Problem-
Solving,” in Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, ACM, Feb. 2020, pp. 162–168. doi:
https://doi.org/10.1145/3328778.3366827.

[4] C.-Y. Chung, C. Y. C. Edu, and I.-H. Hsiao, “From Detail to Context:
Modeling Distributed Practice Intensity and Timing by Multiresolution
Signal Analysis,” presented at the 14th International Conference on
Educational Data Mining, Virtual: International Educational Data
Mining Society, Jul. 2021. [Online]. Available:
https://educationaldatamining.org/edm2021/

[5] P. Brusilovsky, M. Yudelson, and I.-H. Hsiao, “Problem Solving
Examples as First Class Objects in Educational Digital Libraries: Three
Obstacles to Overcome Problem Solving Examples as Interactive
Learning Objects for Educational Digital Libraries,” J. Educ. Multimed.
Hypermedia, vol. 18, no. 3, pp. 267–288, Jul. 2009.

[6] R. Cafolla, “Project MERLOT: Bringing Peer Review to Web-Based
Educational Resources,” J. Inf. Technol. Teach. Educ., vol. 14, no. 2,
Apr. 2006.

[7] H. K. M. Al-Chalabi, “Evaluation of a Multi-Parameter E-learning
System using Web 3.0 Technologies,” presented at the 13th International
Conference on Electronics, Computers and Artificial Intelligence
(ECAI), Pitesti, Romania: IEEE, Jul. 2021, pp. 1–4. doi:
https://doi.org/10.1109/ECAI52376.2021.9515191.

[8] H. K. M. Al-Chalabi and U. C. Apoki, “A Semantic Approach to Multi-
parameter Personalisation of E-Learning Systems,” presented at the
International Conference on Modelling and Development of Intelligent
Systems, in Communications in Computer and Information Science, vol.
1341. Sibiu, Romania: Springer International Publishing, 2021, pp. 381–
393. doi: https://doi.org/10.1007/978-3-030-68527-0_24.

[9] P. Denny, A. Luxton-Reilly, and J. Hamer, “The PeerWise System of
Student Contributed Assessment Questions,” in Proceedings of the tenth
conference on Australasian computing education, Wollongong,
Australia, Jan. 2008, pp. 69–74. doi:
https://dl.acm.org/doi/10.5555/1379249.1379255.

[10] N. Mulla and P. Gharpure, “Automatic Question Generation: A Review
of Methodologies, Datasets, Evaluation Metrics, and Applications,”
Prog. Artif. Intell., vol. 12, no. 1, pp. 1–32, Jan. 2023, doi:
https://doi.org/10.1007/s13748-023-00295-9.

[11] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari, “A Systematic
Review of Automatic Question Generation for Educational Purposes,”
Int. J. Artif. Intell. Educ., vol. 30, no. 1, pp. 121–204, Mar. 2020, doi:
10.1007/s40593-019-00186-y.

[12] J. Alshboul and E. Baksa-Varga, "A Review of Automatic Question
Generation in Teaching Programming," Sci. Inf. Organ., vol. 13, no. 10,
pp. 45–51, 2022, doi: 10.14569/IJACSA.2022.0131006.

[13] H. A. A. Ghanim, J. Alshboul, and L. Kovács, “Development of
Ontology-based Domain Knowledge Model for IT Domain in E-Tutor
Systems,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 5, pp. 28–34,
2022, doi: https://dx.doi.org/10.14569/IJACSA.2022.0130505.

[14] J. Alshboul, H. A. A. Ghanim, and E. Baksa-Varga, “Semantic
Modeling for Learning Materials in E-Tutors Systems,” J. Softw. Eng.
Intell. Syst., vol. 6, no. 2, pp. 85–91, Aug. 2021.

[15] T. Urazova, “Building a System for Automated Question Generation and
Evaluation to Assist Students Learning UML Database Design,”
University of British Columbia, 2022. [Online]. Available:
https://open.library.ubc.ca/soa/cIRcle/collections/undergraduateresearch/
52966/items/1.0413656

[16] S. Russell, “Automated Code Tracing Exercises for CS1,” presented at
the Computing Education Practice 2022, Durham, United Kingdom:
ACM, Jan. 2022, pp. 13–16. doi:
https://doi.org/10.1145/3498343.3498347.

[17] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic Generation
of Programming Exercises and Code Explanations Using Large
Language Models,” presented at the International Computing Education
Research, Lugano, Switzerland: ACM, Aug. 2022, pp. 27–43. doi:
https://doi.org/10.1145/3501385.3543957.

[18] M. Sh. Murtazina and T. V. Avdeenko, “The Constructing of Cognitive
Functions Ontology,” presented at the 14th International Symposium
"Intelligent Systems, Moscow, Russia: Procedia Computer Science,
2021, pp. 595–602. doi: https://doi.org/10.1016/j.procs.2021.04.181.

[19] R. G. Golla, V. Tiwari, P. Chokhra, and H. Okada, “QuestGen AI.”
[Online]. Available: https://github.com/ramsrigouthamg/ Questgen.ai.

