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Abstract—Category decomposition-based within pixel 

information retrieval method is proposed together with its 

application to partial cloud extraction from satellite imagery 

pixels.  A comparative study was conducted for estimation of the 

sea surface temperature of the pixel suffered from partial cloud 

cover within a pixel. Three methods for estimation of partial 

cloud cover within a pixel, based on the proposed category 

decomposition-based method with Generalized Inverse Matrix 

Method: GIMM and well-known Least Square Method: LSM 

and Maximum Likelihood Method: MLH, were compared. It was 

found that around 9% of RMS (Root Mean Square) error can be 

achieved. Also, it was found that estimation accuracy highly 

depends on variance of representative vectors for cloud and the 

ocean or observed noise. The experimental results with simulated 

data show RMS error of GIMM are highly dependent to the 

noise followed by MLH and LSM. The results also show the best 

estimation accuracy can be achieved for MLH followed by LSM 

and GIMM. 

Keywords—Category decomposition; information retrieval; 

cloud cover estimation; Generalized Inverse Matrix Method: 

GIMM and well-known Least Square Method: LSM and Maximum 
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I. INTRODUCTION 

When estimating the sea surface temperature using visible 
thermal infrared radiometer data such as NOAA (National 
Oceanic and Atmospheric Administration) / AVHRR (Advance 
Very High-Resolution Radiometer), MOS-1 (Marine 
Observation Satellie-1) / VTIR (Visible and Thermal Infrared 
Radiometer), for example, as is clear from the MCSST (Multi-
Channel Sea Surface Temperature) [1] algorithm, there is only 
a small amount in the pixel. However, the pixels that are likely 
to have clouds are detected and excluded from the target of sea 
surface temperature estimation. Especially in the case of 
MCSST, the acquisition rate of data not covered by clouds is 
low because the policy of punishing suspicions is strictly 
checked for this possibility. As a result, many observation day 
data are required to obtain a good scene in which all pixels are 
not covered with clouds, which often hinders the estimation of 
the 10-day average sea surface temperature. 

Even if a small cloud exists in the pixel, if the brightness 
temperature of the cloud can be known and the area occupancy 
can be estimated, it can be corrected to some extent and used. 
Assuming that the brightness temperature of this cloud is equal 
to that of the pixel covered with 100% cloud in the vicinity of 

the core pixel, the method of estimating the cloud coverage rate 
will be examined here. That is, with the aim of creating 
products of average sea surface temperature in a short period of 
time, we propose a method for estimating the cloud coverage 
rate in pixels and examine its effect. 

In this paper, we take up the method of estimating the class 
occupancy in pixels proposed so far as a method of estimating 
the cloud coverage [2]-[8] and show the result of mutual 
comparison of estimation accuracy. These estimation methods 
have been proposed to estimate the class mixing ratio of mixed 
pixels (Mixel) consisting of multiple classes. When applying 
these to cloud coverage estimation, it becomes a problem to 
estimate the mixing ratio for the two classes of cloud and sea, 
and in general, the number of channels of visible thermal 
infrared radiometer data exceeds this, so the minimum square 
method is effective. It is considered to work. Therefore, we 
took up the least squares method that minimizes the square of 
the estimation error of the observation vector and the square of 
the estimation error of the mixing ratio. In addition, we 
conducted a theoretical study of the estimation error of these 
least square methods, and the estimation error is small. 

It is shown that it is possible to use both adaptively so as to 
become. We propose an "adaptive least squares method" based 
on that principle and apply the effect to actual data to confirm 
it. Furthermore, since it is expected that the spectral reflection 
and radiation characteristics of cloud pixels will vary widely, 
the maximum likelihood method that takes the variance into 
consideration was taken up as a comparison target and 
compared. 

In the next section, related research works are described in 
Section II followed by theoretical background and proposed 
method in Section III. Experiments and experiments results are 
mentioned in Section IV and Section V respectively and finally 
conclusion and work for future is explained in Section VI and 
Section VII respectively. 

II. RELATED RESEARCH WORKS  

As for the related research works to category 
decomposition, there are the followings, 

Maximum likelihood estimation of category proportion 
among Mixels is conducted [9]. Meanwhile, image 
classification from category proportions among Mixels is 
proposed [10]. On the other hand, decomposition of category 
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mixture in a pixel and its application for supervised image 
classification is proposed [11]. 

Category decomposition based on subspace method with 
learning process is proposed [12] together with category 
decomposition method for un-mixing of Mixels acquired with 
spaceborne based visible and near infrared radiometers by 
means of Maximum Entropy Method: MEM with parameter 
estimation based on Simulated Annealing: SA [13]. On the 
other hand, focusing on Mixels located at the boundary 
between two types of classes, an image decomposition 
algorithm that uses the class mixture ratio of Mixels and the 
spatial information of surrounding pixels of Mixels are 
investigated [14]. Research has also been conducted that adds, 
but it has not been applied to two or more types of class 
boundaries. Meanwhile, category decomposition requires an 
endmember extraction in the spectral space of distributions. 
When observation data, end member spectra, and content rates 
are each expressed as a matrix, Mixel decomposition can be 
regarded as a matrix decomposition problem. Due to physical 
conditions, all components of the matrix are non-negative 
values, so by applying non-negative matrix factorization 
(NMF), the end member spectrum and content can be 
estimated simultaneously [15]. In the data-driven approach, the 
material with the estimated endmember spectrum is finally 
identified by referring to the spectral library and searching for 
the closest spectrum. 

Sea ice concentration estimation method with satellite 
based visible to near infrared radiometer data based on 
category decomposition is proposed [16]. Also, category 
decomposition method based on matched filter for un-mixing 
of mixed pixels acquired with space borne based hyper-spectral 
radiometers is proposed [17]. 

Bi-directional Reflectance Distribution Function: BRDF 
effect on un-mixing, category decomposition of the Mixel of 
remote sensing satellite imagery data is estimated [18]. 

On the other hand, there are the following research works 
related to cloud overage estimation, 

A merged dataset for obtaining cloud free Infrared: IR data 
and a cloud cover estimation within a pixel for SST retrieval is 
proposed [19]. Meanwhile, estimation of partial cloud coverage 
within a pixel is conducted [20]. 

Comparative study on estimation of partial cloud coverage 
within a pixel is conducted [21]. On the other hand, adjacency 
effect of layered clouds estimated with Monte-Carlo simulation 
is estimated [22]. 

Evaluation of cirrus cloud detection accuracy of 
GOSAT/CAI (Green House Gasses Observation Satellite / 
Cloud and Aerosol Imager) and Landsat-8 with laser radar: 
lidar and confirmation with CALIPSO (Cloud-Aerosol Lidar 
and Infrared Pathfinder Satellite Observations) data is 
conducted [23]. Meanwhile, comparative study on cloud 
parameter estimation among GOSAT/CAI, MODIS (Moderate 
Resolution Imaging SpectroRadiometer), CALIPSO/CALIOP 
(Cloud-Aerosol LIdar with Orthogonal Polarization) and 
Landsat-8/OLI (Operational Land Imager - Landsat Science) 
with laser radar as truth data is conducted [24]. 

Thresholding-based method for rain, cloud detection with 
NOAA/AVHRR data by means of Jacobi iteration method is 
proposed [25]. Also, adjacency effects of layered clouds by 
means of Monte Carlo Ray Tracing: MCRT is investigated 
[26]. 

III. THEORETICAL BACKGROUND AND PROPOSED METHOD 

A. Category Decomposition and Classification Norms 

In order to estimate the maximum occupancy category in 
Mixel, category decomposition [1] is required to estimate the 
occupancy rate of each category. Several categorical 
decomposition methods have been devised [1-6], but in this 
study, the categorical decomposition is formulated using the 
maximum likelihood estimation method that takes observation 
errors into consideration. Using this theory has the advantage 
that unclassified pixels can be determined to be statistically 
meaningful. 

Mixel's spectroscopic vector: I, which is a mixture of 
information from N categories, is considered to be the linear 
combination of Pure pixel value: A and category occupancy: B 
shown in Eq. (1) plus the observation error vector: ε. 

                                (1) 

where Ii: Observation pixel value of the i-th band, M: 
Number of bands. “t” represents transpose. Furthermore, A is 
expressed as follows: 

  [
       

   
       

] 

where Aij: i-band of pure pixel value of j-category, B = (B1, 

B2,…, BN) 
t
, Bj: Occupancy of category j. And, ε = (ε1, ε2,…, 

εM) 
t
, εi: observation error of the i-th band. Here, it is assumed 

that Aij follows the normal distribution of mean A
*
ij and 

variance σij
2
: N (A
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ij, σij

2
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2
), and the 

spectroscopic vector 1 is a random variable [4]. Here, if the 
pixel values of Pure pixels in each category are independent, 
the observed pixel values of the i-band: I, are the average A

*
i 

represented by Eq. (2) and Eq. (3), and the normal distribution 
of the variance σi

2
: N (A
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*
ij: The average of the pure pixel values of the i-

band j category, and σij
2
: the variance of the pure pixel values 

of the i band, j-category. It is also the variance of the 
observation error of the σei

2
: i band. 

Observed pixel value of the i-th band: Probability 
(likelihood) that Ii is observed: P (Ii) is expressed by Eq. (4). 
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Probability (likelihood) that the spectroscopic vector I is 
observed (likelihood): P(I) is expressed by Eq. (5), assuming 
that it is independent between each band. 

     ∏      
 
     (5) 

In general, each band of remote sensing data is not 
independent of each other, so it is necessary to make each band 
independent by orthogonalization transformation such as 
principal component analysis as preprocessing. Here, based on 
the concept of the maximum likelihood estimation method, the 
solution is to find the probability that the spectral vector is 
observed: P(I) and the occupancy rate: B I. Here, the 
occupancy rate: B has the following constraints if the type of 
category included in Mixel is known. 

∑   
 
                      (6) 

The category occupancy (maximum likelihood estimation 
value) estimated based on this method is expressed as B

*
, and 

the pixels are classified into category K of the maximum 
element B

*
k in B

*
. This method is called the Maximum 

Proportion Classifier (MPC). 

B. Determination of Unclassified Pixels 

In image classification methods such as the maximum 
likelihood method and the shortest distance method, 
restrictions are set according to those classification norms, and 
those exceeding the restrictions are regarded as unclassified 
pixels [8], [9]. This section describes how to determine 
unclassified pixels according to the maximum occupancy 
classification norm. 

Comparing Mixel and Pure Pixel, Pure Pixel expresses its 
pixel value by the mean and variance of the classified 
categories, while Mixel's pixel value is the occupancy rate of 
each category and their mean and variance. This indicates that 
Mixel has more independent parameters to express the pixel 
value of Mixel than Pure Pixel, and Mixel is a concept with a 
high degree of freedom. With these things in mind, this study 
proposes the following method for determining unclassified 
pixels. 

The fact that a Mixel can be classified into one category 
(Mixel can be represented by one category) means that the 
Mixel can be represented by a model with more constraints 
(fewer independent parameters) (Pure pixel hypothesis). That's 
what it means. In such a case, the Pure pixel hypothesis is 
tested using the model goodness-of-fit test [7], [10], and if the 
Pure pixel hypothesis holds, it can be classified, otherwise it 
cannot be classified. It is possible to do. Here, we propose two 
types of goodness-of-fit test methods. 

C. Goodness of Fit Determined by χ2
 Distribution [10] 

Suppose there are two models π1 and π2, and π1 is π2, which 
is a special case (the number of independent parameters is 
small). The likelihood ratio of the two models: β is defined by 
Eq. (7), where P (π) is the likelihood of the model π. 

a = P (π
*

1) / P (π
*

2)       (7) 

where, the superscript * represents the maximum likelihood 

estimator of the model π. Since π*
1 is a special case of π*

2, 

P (π*
1 ≤ P (π*

2)), and therefore β ≤ 1 holds. Here, χ
2
 of Eq. 

(8) is defined. 

χ
2
=-2 ln β   (8) 

χ
2
 asymptotically has a chi-square distribution with n = n2-

nl degrees of freedom. Here (nl and n2 are the number of 
independent parameters of the models π1 and π, respectively), 
and the percentile value χ

2
 (n) of 100 by α% (α: significance 

level, 0 <α<1) of the chi-square distribution with n degrees of 
freedom, α) and χ

2
 can be compared to test whether π, is 

significantly inferior to π2 (χ
2
 (n, α) <χ

2
). 

When this goodness-of-fit test is used to determine 
unclassified pixels according to the maximum occupancy 
classification standard, only the maximum occupancy category 
B

*
k of the most likely estimated value B

*
 of the occupancy 

obtained by categorization of π1 Pire pixel (B
*
K = 1, occupancy 

of other elements is 0), P(π1) is obtained from Eq. (4) and Eq. 
(5), then π2 is Mixel, and B* is used (4). ), (5) to find P (π2), 
and Eq. (7) and Eq. (8) to find χ

2
. Here, from the constraint 

condition of Eq. (6), the number of independent parameters of 
PURE PIXEL is 0, and the number of independent parameters 
of Mixel is N-1 (N: number of categories), so n=N-1. Therefore, 
the significance level α (right side test) of the test is determined, 
χ

2
 (N-1,α) is calculated, compared with χ

2
, and the unclassified 

pixels are χ
2
 (N-1),α) ≤ χ

2
: Unclassified χ

2
 (N-1,α)> χ

2
: 

Determined to be classified in the maximum occupancy 
category. Since χ

2
 becomes larger as the likelihood ratio β is 

smaller (the likelihood is smaller when it is a pure pixel), the 
number of unclassified pixels increases as the significance 
level is increased (χ

2
 (N-1, α) becomes smaller). 

D. Goodness of Fit Test by AIC [10],[11] 

Similar to the goodness-of-fit test based on the χ
2
 

distribution, there are two models, π1 and π, and π1 is a special 
case of π2. If P(π) is the likelihood of the model π, then AIC 
(Akaike's Information Criterion) is defined by Eq. (9). 

                       (9) 

where n is the number of independent parameters of the 
model, and the superscript * is the maximum likelihood 
estimator of the model. Here, the model that minimizes the 
AIC in Eq. (9) is selected. Similar to the goodness-of-fit test 
based on the χ

2
 distribution, π2 is Mixel (number of 

independent parameters: N-1), π1 is Pure pixel (number of 
independent parameters: 0) containing only the maximum 
occupancy category, and AIC is Eq. (4), (5), (9), if the AIC 
obtained from the case of Pure pixel is smaller than the AIC 
obtained from the case of Mixel, it is judged that it can be 
classified and classified into the maximum occupancy category. 
If not, it is regarded as an unclassified pixel. 

IV. EXPERIMENTS 

A. Simulation of Pure Pixel Data 

The validity of the above theory will be confirmed by the 
following data and simulation according to the procedure. 

Using TM data around Lake Ashino-ko in Japan, which 
was acquired by LANDSAT 5 on June 6, 1987, residential 
areas, bare land, grasslands, coniferous forests, and broad-
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leaved forests, which are typical categories of this area, were 
ed as the grand truth area. It is extracted using vegetation maps 
and aerial photographs [12]. Then, in order to make each band 
independent, all bands except the thermal band (band 6) were 
analyzed for principal components, and the first and second 
principal components were quantized into eight bits and used 
for categorization. Table I shows the eigenvalues, eigenvectors, 
and contribution ratio of each principal component. Table II 
shows the average and variance of the pixel values of each 
category Pure pixel. 

TABLE I.  EIGENVALUE, EIGENVECTOR AND CONTRIBUTION OF THE TEST 

DATA. PC, E-VALUE, E-VEC. AND CONT. MEAN PRINCIPAL COMPONENT, 
EIGENVALUE, EIGENVECTOR AND CONTRIBUTION, RESPECTIVELY 

 PC1 PC2 PC3 PC4 PC5 PC6 

E-value 5.47 0.49 0.03 0.01 0.00 0.00 

Band 1 0.41 -0.33 0.00 -0.83 0.13 -0.08 

Band 2 0.42 -0.26 -0.27 0.32 -0.35 -0.68 

Band 3 0.42 -0.29 -0.12 0.19 -0.42 0.72 

Band 4 0.36 0.75 -0.53 -0.12 0.07 0.06 

Band 5 0.41 0.39 0.79 0.02 -0.23 -0.09 

Band 7 0.42 -0.16 0.09 0.39 0.79 0.06 

Cont. 0.91 0.08 0.01 0.00 0.00 0.00 

TABLE II.  AVERAGE AND VARIANCE OF THE PURE PIXEL DATA. AV AND 

VR MEANS AVERAGE AND VARIANCE, RESPECTIVELY. THE NUMBERS 1 TO 5 

SHOW THAT THE CATEGORIES OF RESIDENTIAL AREA, BARE SOIL, GRASS 

LAND, NEEDLE LEAF TREE AND BROAD LEAF TREE, RESPECTIVELY 

  1 2 3 4 5 

A PC1 97.8 162.4 127.3 60.9 107.8 

V PC2 62.2 135.1 162.0 100.9 187.7 

V PC1 160.4 841.1 185.7 94.0 178.2 

R PC2 309.9 681.3 430.4 329.3 586.2 

B. Simulation of Mixel Data 

Mixel data of 36 types (six types of variances by six types 
of observation error) were created by the procedure shown 
below, 

1) Category occupancy rate: Using the uniform random 

numbers of [0,1), 100 points of category occupancy are 

created based on the constraint condition of Eq. (6). 

 
(a)    (b) 

Fig. 1. Characteristics of the truth data. (a) Histogram of the maximum 

proportion category. The categories number 1 to 5 correspond to the 

categories of Residential area, Bare soil, Grass land, Needle leaf tree and 
Broad leaf tree, respectively. (b) Histogram of the maximum proportion. 

Fig. 1(a) and Fig. 1(b) show the distribution of the 
maximum occupancy category and the distribution of the 
maximum occupancy, respectively. 

2) Pure pixel value (training data): Pure pixel values 

according to the mean and variance of each category are 

created for each band using normal random numbers. At this 

time, in order to confirm the influence of the variance of the 

Pure pixel value, the Pure pixel value is created by 

multiplying the variance of each category and each band by 

2.0, 1.0, 0.8, 0.6, 0, 4, 0.2, respectively. 

3) Observation error: The standard deviation σei of the 

observation error in each band is 0,2,4,6,8,10 [Count]. The 

observation error is created using normal random numbers. 

4) Mixel dataset: From the data of (1)-(3), 100 points of 

Mixel spectroscopic vectors are created under each condition 

according to Eq. (1). 

C. Verification Details 

The 30 types of Mixe1 data sets created by the above 
method were categorized using the grid search method [13] 
with a side length of 1/64. This solution creates a mesh with a 
side length of 1/64 in the solution space (N-1 dimensional 
hyperplane) given by Eq. (6) and uses the training data given at 
each point of the mesh and the observed spectral vector. The 
likelihood given by Eq. (5) is calculated, and the point that 
gives the maximum likelihood is the solution. 

As for the solution of the nonlinear optimization problem, 
all high-speed calculation methods such as Newton's method 
are methods for finding extreme values, not methods for 
finding maximum / minimum values. In this study, in order to 
avoid a decrease in the accuracy of categorization due to 
algorithm restrictions, categorization was performed by the 
lattice search method without using high-speed calculation. In 
actual applications, it is necessary to develop accurate and 
high-speed algorithms, which will be an issue for the future. 

From the estimated value of the category occupancy and 
the estimated maximum occupancy category obtained here, the 
following items are verified together with the truth data of the 
category occupancy in Eq. (1) Category occupancy rate. 

D. Comparison of Goodness-of-Fit Test by χ
2
 Distribution 

and Goodness-of-Fit Test by AIC 

In order to compare the two unclassified pixel 
determination methods and confirm the effect of the goodness-
of-fit test based on the χ

2
 distribution on the classification 

accuracy of water a, the goodness-of-fit test by AIC and the 
significance level α were set to 1, 5, 10%. Classification was 
performed using MPC to which the method for determining 
unclassified pixels by the goodness-of-fit test was applied. In 
this case, the same method for determining unclassified pixels 
is applied to the truth data of the occupancy rate of Eq. (1) 
Category occupancy rate, and only the classifiable pixels are 
extracted, and the classifiable pixels obtained here, and their 
maximum occupancy category are classified and was used as 
the truth data of the category to be classified. 
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E. Comparison with Maximum Likelihood Method 

The 36 types of Mixel datasets created in steps 3 and 2 
were classified by the maximum likelihood classifier (MLC) 
and compared with the classification results by MPC. In this 
case, the following two types of unclassified pixel 
determination methods were used. We used to extract 
classifiable pixels. 

1) Not classified if the log-likelihood is -20 or less. 

2) If the Mahalanobis distance to the target category is 

three times or more the maximum standard deviation of that 

category, it is unclassified. 

Here, as in Eq. (1) Category occupancy rate, the true data 
of the occupancy rate is classified by MPC using the 
unclassified pixel determination method by AIC, and the 
classifiable pixels and their maximum occupancy rate 
categories are extracted and classified and the truth data of the 
category to be used. 

V. EXPERIMENTAL RESULTS 

A. Comparison of Goodness-of-Fit Test by χ
2
 Distribution 

and Goodness-of-Fit Test by AIC 

The occupancy rate estimated by categorical decomposition 
and the likelihood used to determine unclassified pixels are 
affected by the variance term σ1 in Eq. (3). Since the variance 
term is determined by the category occupancy rate, the 
variance of the Pure pixel value, and the variance of the 
observation error, the average variance AVG [σ] of Eq. (10) is 
obtained for each of the 30 types of Mixel data (100 points 
each) and used. The characteristics of each Mixel dataset are 
shown. 

   [ ]  
 

   
∑     

   
 

 
∑    

  
           

       (10) 

First, in order to confirm the accuracy of categorization, the 
root mean square error RMSE between the occupancy rate B

*
 

and the true value B estimated from each Mixel data set is 
obtained from Eq. (11), and the mean variance AVG [σ] is used. 
The relationship is shown in Fig. 2. 

 
Fig. 2. The relationship between the mean variance and the root mean square 

error of the estimated category proportions from maximum likelihood 

estimation (MLE) and generalized inversion matrix (GIM). 

Here, the results when the general inverse matrix, which is 
a typical conventional categorical decomposition method, is 
used are also shown. 

     
 

   
∑     

   
 

 
   

     
    

     
   (11) 

In both methods, it was confirmed that as the mean 
variance increases (the variance of the Pure pixel value and the 
observation error variance increase), the RMSE increases and 
the accuracy of categorization decreases. In addition, the 
generalized inverse matrix does not take into account the 
variation in the Pure pixel values of each category [1], 
indicating that the estimation accuracy is lower than that of the 
maximum likelihood estimation method. 

Next, in order to clarify the relationship between the 
goodness-of-fit test method for determining unclassified pixels 
and the degree to which the Mixel data set created by the above 
method is judged to be classifiable, these unclassified truth data 
are included in the truth data of the occupancy rate. The 
relationship between the number of classable pixels obtained 
by applying the classification pixel determination method and 
the average variance was obtained. The results are shown in 
Fig. 3. 

 
Fig. 3. The relationship between the mean variance and the number of 

selected classifiable pixel from the truth data of the proportion from Chi 
square and AIC method. 

As the mean variance increases, the likelihood P 
represented by Eq. (4) and Eq. (5) becomes a gentle function, 
so the number of pixels judged to be classifiable by all 
goodness-of-fit test methods increases. In addition, it was 
confirmed that the number of pixels judged to be classable 
decreases as the significance level increases in the goodness-
of-fit test using the χ

2
 distribution, and the goodness-of-fit test 

using the AIC is a goodness-of-fit test using the χ
2
 distribution 

with the significance level set to 10%. 

It was confirmed that almost the same result as the above 
was obtained. Here, as classification accuracy verification, 
from the classification result using the estimated value of the 
category occupancy rate, it was judged that (a) the number of 
pixels judged to be categorizable and (b) the truth data of the 
occupancy rate could be classified. The number of pixels 
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determined to be unclassified by the estimated value (number 
of error pixels of the first type), (c) Pixels determined to be 
unclassified by the truth data of the occupancy rate but 
determined to be classifiable by the estimated value The 
number (the number of pixels of the type II error) and (d) the 
classification correctness: (the number of pixels correctly 
classified) / (the number of pixels judged to be classifiable) 
were calculated. The results are shown in Fig. 4(a) to Fig. 4(d). 

 
(a)                                                      (b) 

 
(c)    (d) 

Fig. 4. The classification results from Maximum proportion classifier from 

various unclassified limits. (a) The number of selected classifiable pixels. (b) 

The number of unselected classifiable pixels. (c) The number of mis-selected 

classifiable pixels. (d) The ratio of correctly classified pixels. 

It was confirmed that the number of pixels judged to be 
classable increased as the mean variance increased and 
decreased as the significance level increased, as in the case 
obtained from the truth data of the occupancy rate, and the 
goodness-of-fit test by AIC was significant. It was confirmed 
that almost the same result as the goodness-of-fit test based on 
the χ

2
 distribution when the level was set to 10% was obtained. 

It was confirmed that the number of pixels of the type I 
error increases with the increase of the average variance up to 
about 100, and then converges or decreases comparatively 
gently. In the goodness-of-fit test using the χ

2
 distribution, 

when the significance level was reduced, the number of pixels 
of type I errors tended to decrease rapidly when the mean 
variance increased. This can be explained by the fact that the 
number of pixels judged to be categorizable increases as the 
significance level increases. In this case as well, the goodness-
of-fit test by AIC gave almost the same results as the goodness-
of-fit test by χ

2
 distribution when the significance level was 

10%. 

It was confirmed that the number of pixels of the type II 
error increases as the average variance increases. It was also 

confirmed that when the significance level was reduced in the 
goodness-of-fit test using the χ

2
 distribution, the number of 

pixels of the type II error decreased when the mean variance 
increased. This is because if the significance level is reduced, it 
is judged that it can be almost classified even when applied to 
the truth data of the occupancy rate. In this case as well, the 
goodness-of-fit test by AIC gave almost the same results as the 
goodness-of-fit test by χ

2
 distribution when the significance 

level was 10%. 

The classification correctness tended to decrease as the 
mean variance increased, and it was confirmed that the 
difference in the correctness due to the difference in the 
goodness-of-fit test method also decreased as the mean 
variance increased. In this case, if the number of pixels 
determined to be classable is 0, the correctness rate is set to 0. 

B. Comparison with Maximum Likelihood Method 

The result of classifying the above 30 Mixel datasets by the 
maximum likelihood method (MLC) with two unclassified 
limits (log-likelihood and Mahalanobis distance) and the 
number of unclassified pixels using the AIC goodness-of-fit 
test. A comparison of the classification results by MPC to 
which the determination method is applied is shown. 

As classification accuracy verification, from the 
classification result using the estimated value of the category 
occupancy rate, (a) the number of pixels judged to be 
categorizable (b) the truth data of the occupancy rate was 
judged to be categorizable, but the estimated value is not yet. 

 
(a)                                                      (b) 

 
(c)    (d) 

Fig. 5. Comparison of classification result from Maximum proportion 

classifier with AIC based unclassified limit: MPC(AIC), Maximum likelihood 

classifier with likelihood based unclassified limit: MLS(L) and with distance 
based unclassified limit: MLC(D). (a) The number of selected classifiable 

pixels. (b) The number of unselected classifiable pixels. (c) The number of 

mis-selected classifiable pixels. (d) The ratio of correctly classified pixels. 
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The number of pixels determined to be classified (type I 
error pixels), (c) The number of pixels determined to be 
unclassified in the truth data of the occupancy rate but 
determined to be classified by the estimated value (second) 
(Number of pixels with type error), (d) Classification 
correctness: (Number of pixels correctly classified) / (Number 
of pixels judged to be classifiable) were calculated. The results 
are shown in Fig. 5(a) to Fig. 5(d). 

It was confirmed that the number of pixels judged to be 
classable by the maximum likelihood method applying the 
unclassified pixel determination method using the likelihood 
increased with the increase of the average variance, but the 
average variance was about 150, and all of them. It is judged 
that it can be classified. 

Fig. 5(a) shows that when the maximum likelihood method 
is applied to Mixel, which targets categories with large 
variance, it is difficult to set the unclassified limit. The effect of 
the unclassified limit setting value appears in the error analysis 
of the above, especially in the number of pixels of the type I 
and type II errors. 

The number of error pixels of the first type (the number of 
pixels that are determined to be unclassified pixels even though 
they can be dispersed) is 0 because the number of pixels that 
are determined to be classifiable in the most probable method 
is large. The number of error pixels (the number of pixels 
judged to be classifiable even though they are unclassified 
pixels) tends to increase when the average variance is small 
(200 or less) compared to when MPC is used. This indicates 
that the maximum likelihood method increases 
misclassification when the mean variance is small (the variance 
of the Pure pixel value is large, and the variance of the 
observation error is large) when compared with the result of 
classification by MPC. 

The classification correctness rate when the maximum 
likelihood method is used is about 30%, which is not so 
affected by the mean variance. On the other hand, the results 
by MPC show that the correctness rate decreases as the mean 
variance increases, but the correctness rate is generally higher 
than that by the maximum likelihood method. These results 
represent the limits of the maximum likelihood method, which 
assumes that the pixel is a pure pixel, and show the usefulness 
of the proposed method. 

In addition, the unclassified limit in the maximum 
likelihood method does not mean that the likelihood, or the 
variance and classifiable of a particular category, is fully 
meaningful, and in addition, the parameters of unclassified 
pixel determination are for each category. Since it is sensitive 
to the dispersion of Pure pixel values, it is difficult to 
determine the optimum parameters. 

On the other hand, the method of determining unclassified 
pixels by the goodness-of-fit test corresponding to MPC 
proposed in this study is based on the hypothesis test that the 
Mixel can be regarded as a pure pixel, and in addition, the pure 
pixel of each category. It is effective and easy to use because it 
is insensitive to pixel values. Furthermore, since the goodness-
of-fit test by AIC is a method that excludes the arbitrariness of 

the significance level, it has the advantage that unclassified 
pixels can be uniquely determined. 

VI. CONCLUSION 

The following conclusions can be drawn from the above 
results. Considering that each pixel in remote sensing is a 
Mixel, we propose a maximum occupancy classification norm 
that classifies pixels into the maximum occupancy category, 
and in addition, a method for determining unclassified pixels 
based on the goodness of fit of the pixel as a pure pixel. It 
showed that from the simulation of artificially creating Mixel, 
the result that the proposed method has better classification 
accuracy than the maximum likelihood method was obtained, 
and the limit of the maximum likelihood method and the 
effectiveness of the proposed method were shown. 

We also proposed two methods for determining 
unclassified pixels by the goodness-of-fit test according to the 
proposed method, one based on the χ

2
 distribution and the other 

based on the AIC, and it was confirmed that there was not 
much difference between the two. From this, it was concluded 
that the χ

2
 distribution should be used when the number of 

classified pixels should be adjusted according to the user's 
situation, and the AIC should be used when the significance 
level should be excluded. 

Since this method takes a long time to calculate at present, 
it is used as a secondary application such as a remedy for pixels 
determined to be unclassified in the maximum likelihood 
classification, or classification of clouds and the sea in the sea 
area. It can be used as a classification method when the number 
of categories is small. 

VII. FUTURE RESEARCH WORKS 

In the future, we plan to develop a high-speed calculation 
method for maximum likelihood estimation of category 
occupancy so that it can be used as a general classification 
method. 
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