
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

315 | P a g e

www.ijacsa.thesai.org

Costless Expert Systems Development and Re-

engineering

Manal Alsharidi, Abdelgaffar Hamed Ali

The Department of Information System, College of Computer Sciences and Information Technology,

King Faisal University, Hofuf, Saudi Arabia

Abstract—Symbolic AI is indispensable for the current LLM

agents that are used for example to reason the context of the

questions. An expert system is a symbolic AI that can explain the

reasoning it reached to, which typically is a rule-based system

has been attractive for different domains such as medicine,

agriculture, and operations. On average, these systems involve

hundreds of rules that are instable; moreover, they are coded at

low levels of abstraction. Therefore, designing and reengineering

an expert system is still costly and needs technical knowledge

because of the manual process and maintaining of a low-level

abstraction. On the other hand, model-driven architecture

(MDA) has proven to be a successful technology that raised the

abstraction level and formalized it to automate software

development. It specifies business aspects in the platform-

independent model (PIM) and implementation aspects in a

platform-specific model (PSM). It then automates mapping

between them using a standard mapping language called Query-

View- Transform QVT. This paper argues that utilizing MDA

principles such as the automation and abstractions represented

by the descriptor PIM and PSM and mappings metamodels will

not only overcome the instability of rules of expert systems, but

also provides new insights for its usage. Therefore, this work

proposes an MDA-compliant methodology that adopts a UML

sequence diagram, a class diagram for the PIM descriptor, and a

generic PSM) based on production rules. Moreover, a UML

profile to support lacking features in the sequence model has

been developed. However, the paper argues for a new kind of

process-oriented expert system. Therefore, it not only allows

domain experts to develop or participate in expert systems but

also reduces the cost of developing new systems and re-

engineering or maintenance of the critical and large-scale legacy

expert systems.

Keywords—Model-Driven-Architecture(MDA);Unified

Modelling Language (UML); Platform-Independent Model (PIM);

Platform-Specific Model (PSM); Query- View- Transform (QVT)

I. INTRODUCTION

Expert systems (ESs) are historically the most successful
product of artificial intelligence (AI) [1]. It is widely used and
designed to solve complicated problems that require reasoning
about knowledge using mathematical logic. In fact, ―based on
Chatbot Agent—Google Bard‖ makes use of some reasoning
based on logic to appear consistent and accurate. In AI,
symbolic knowledge is represented as symbols that model
concepts and relationships in the form of rules. It turns out that
a variety of ESs that have been developed successfully and
served stakeholders over a long period of time have become
assets for many organizations. For example, an expert system
was developed to provide clinical interpretations from thyroid

hormone pathology tests decades ago. It had like 700 rules
representing the knowledge-based approach, which provided
6,000 interpretations per year [2]. Also currently, the MD
Anderson Cancer Center Expert System [3] helps oncologists
make more informed treatment decisions. This system has a
large knowledge base for oncology; it is expected to have
thousands of rules.

However, the commonality among these systems and many
others is the rapid change in the knowledge base because of the
progress in the landscape of the field; for instance, new
treatments, diagnostic techniques, and clinical guidelines that
support the domain, as well as a technological change.
Moreover, there is an essential business requirement for
integrating these systems with others, such as electronic health
records (HER), enterprise resource planning (ERP), and others,
to increase their capabilities.

Although ES is an old field of study and there are many
competing disciplines contributing to decision support
problems, such as data mining, deep learning, and large
language models (LLM), which are data-oriented approaches
[4], ES conserves its unique properties of supporting problems
that are rule-based and the capability of explaining reasoning.
On the other hand, a hybrid model is typically used [5],
whereby a weakness (i.e., learning capability from unstructured
data) of one can be improved with the strength of the other
(i.e., machine learning). In fact, rules are an intrinsic element
of organizations, so decisions are driven by rules that support
the production of services or products. Moreover, ES has
attracted to some extent new domains, such as environmental
data management analysis [6] and policy automation [7].

Given this situation and the fact that adopting code-based
approaches such as Pyke, CLIPS, Prolog, Lisp, and other
platforms for building ESs remains critical and costly,
improvement is essential [8]. For instance, one reason for the
interruption of some big systems (i.e., Garvan and IBM) is the
high cost of maintenance and reengineering [9]. For example,
frequent rule changes, driven by tech or business needs (i.e.,
adding some quality), require tedious hard coding, raising
maintenance and re-engineering costs. On the other hand, there
is a need to find new ways to make it easier for domain experts
to develop or participate in ES. However, utilizing new
engineering methodologies can provide a remedy for these
problems.

However, the Object Management Group (OMG) has
developed Model-Driven Architecture (MDA) as a
methodology for automating software development, which is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

316 | P a g e

www.ijacsa.thesai.org

standardized by OMG and supported by many tools, such as
the Meta-Object Facility (MOF) design language [10], Object
Constraint Language (OCL) [11], and XML Metadata
Interchange (XMI) [11]. MDA encourages investment in
metamodels using MOFs that are platform-independent,
thereby paying back the low cost of development. A
metamodel, or model of model, is a conceptual model of some
design language that could have different implementations. In
fact, having for different languages formally an equivalent
representation (a phenomenon frequently referred to as
syntactic sugar) is common (i.e., for language designers), such
as Structured Query Language (SQL), relational algebra, tuple
relational calculus, and query by example (QBE), which have
the same underlying structure—the same metamodel [12]. In
this case, this metamodel is known as abstract syntax, and its
representation is called concrete syntax [13]. The strength of
decoupling abstract syntax from concrete syntax allows much
freedom in having different concrete syntaxes that re-use the
same formal abstract syntax. Consequently, concrete syntax
changes do not necessarily require abstract syntax to change.
This flexibility allows you to re-use the same supporting
software for a metamodel. For example, if we have the abstract
syntax of SQL (a metamodel) itself and it is modeled in BNF
(meta metamodel), it would be possible to send it a tool to
render it into OCL, relational algebra, and probably first-order
predictive calculus (i.e., specification of some constraints or
assertions over a schema is needed). More importantly, MDA
realizes the automation of mappings between these different
metamodels using a standard mapping language called Query-
View-Transform (QVT). Therefore, this separation of
concerns, for instance, allows us to adopt a change without
much cost incurred because of the high degree of
sustainability. We argue that this trend is most suited to the
instability of rule phenomena or the frequent changes in
business requirements and technology in the context of ES.

A. Expert System

An ES is a computer program that manipulates facts and
rules that constitutes a knowledge of some domain to solve
complicated reasoning problems efficiently and effectively
[14]. These problems require domain experts‘intervention to
capture the knowledge [15] which is limited by human
capability of handling hundreds of factors at the same time.

Many applications in health, industry, or education fields
are using ES [16], [17], [18]. In these cases, the utilization of
ES is geared toward delivering exemplary performance in
addressing intricate challenges within a particular domain. ESs
are instrumental in offering explanation and incorporating
symbolic reasoning methodologies during problem-solving
processes. Consequently, diagnostic ESs continue to hold
prominence as the most frequently employed applications in
this regard [19]. More important, ES can serve different class
of problems such as acting as a classifier, predictor, and
estimator to serve different sort of application domains that
require automation support for decisions.

Moreover, ES has two core components: a knowledge base
(KB) and reasoning engine [20]. The propositional ES has a
KB formalized using propositions logic; it models the real
world in the form of predicates and rules that can be evaluated
to check its truthiness with initiations of variables. The KB is

like a warehouse that contains knowledge about a specific
domain captured by human experts in a form of production
rules. Typically, it is a result of an expensive process called in
literature a knowledge-Acquisition that involves strong
communications between domain experts in one knowledge
area and ES developers. It is the critical part in engineering ESs
because of the requirement for developers to transfer this
rigorous nature of rules of a domain knowledge into symbolic
abstraction using logic-based structure. The classical
engineering methods in this context follow an informal
approach where engineers build informal models to capture the
requirements of the system [21]. While the reasoning engine is
an interpreter that draws a conclusion from premises that are
represented using like first order predicate calculus (FOPC).
The well-established theory behind that is the mathematical
logic and theorem proving [22]. An example of the theories
behind reasoning are Mode‘s pones [23] that allows to draw a
conclusion from premises; It says if P proposition is known
and has the fact that P implies Q then we also know Q as a
conclusion. Traditionally may software tools that are aczt as
inference engine are used to support the execution of ESs:
Shells like Drools [24], G2 [25], JADE [26] which is based on
the theory of agents and the standard FIPA [27], and Oracle
Intelligent Decision Management (OIDM) [28]. These
inference engines or Shells are classified based on forward
changing (goes from known premises to reach goals by
applying rules) or backward changing (works from goal to find
the necessary premises) types of reasoning. Because users and
domain experts need to understand how these tools reach to
some conclusion, Shells have typically adopted a third essential
component the explanation facility that could be in different
forms: sequence of rules, conditions under which a rule fires
and the conclusion it draws, and high-level detailed
specification for the reasoning step [29]. In addition, the user
interface component is for inserting quires, inputs and
converting the rule from the internal representation to be user-
understandable form.

B. Model-driven Architecture

OMG has developed and standardized MDA with the aim
of developing software without writing code. Models are first-
class entities in MDA that enable the re-use of existing
software assets, thereby reducing the complexity and cost of
development. In MDA, a Platform-Independent Model (PIM)
is used to specify the application concepts, while a Platform-
Specific model (PSM) is used to specify the implementation
issues independent of a technology. Then a standard mapping
between PIM and PSM is specified using a Query- View-
Transform (QVT), a standard mapping language that performs
mappings between metamodels. MDA is an approach for
building models, making the transformation of a source model
into a target model [11]. To realize MDA, OMG has worked
in the set of tools and standards that have been defined and
standardized by OMG to support a good infrastructure. These
OMG standards include UML, Meta- Object Facility (MOF),
XML Metadata Interchange (XMI), Object-constraint language
(OCL) and QVT. However, MDA has three types of
abstraction: Computational Independent Models (CIM), PIM,
and PSM. Each type is an abstraction technique for focusing on
a particular part of concerns within a system and can be
represented via one or more models.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

317 | P a g e

www.ijacsa.thesai.org

A PIM is a conceptual model that is platform-independent
and focuses on modeling domain concepts. PIM has a higher
degree of independence from different platforms (e.g., .NET,
CORBA and J2EE). In order to implement a PIM concept there
should be a corresponding implementation abstraction involves
a concept which can map it, typically the PSM abstraction.
PSM is built from some technology‘s perspective but
independent of it because MOF-based language is used. For
example a developing database application requires to model
the relational model using MOF; the example used in QVT
standard document then by automating the transforming of the
PIM instances into PSM instances, the main part of writing
code is achieved. Thus, the PSM is considered a high-level
APIs specification for a well-established platform such as
database manager in. However, the main question here is how
it would be able to relate a PIM concept with PSM concepts
that will be automated. Also, what are the suitable models for
representing problem space and solution space?

C. Query / View / Transformation

The OMG has defined a standard for model transformations
in the MDA architecture which is QVT. It represents the
intrinsic activity in MDA engineering of applications whereby
it converts a source model to a target model. It is required that
the source model and the target model must both be compliant
with the MOF meta-model [30]. QVT defines three specific
languages named: (1) Relations, (2) Core (3)
Operational/Mapping. Relations and Core are declarative
languages with two different levels of abstraction. The QVT
Operational / Mapping is an imperative language, it provides
common constructions in imperative languages (i.e. loops,
conditions.).

Because the relation language allows a round trip mappings
between metamodels, this paper uses relational QVT language,
specifically MediniQVT [31] engine to test the developed rules
of the proposed mappings. Relational QVT has two main

clauses: (1) Check only and (2) Enforce.

The "check only" clause focuses on validating source and
target models against pre- defined rules and constraints without
modifying the target model and act as precondition. On the
other hand, the "enforce" clause carries out the actual
transformations on the target model based on predefined
relationships made between PIM and PSM metamodels. For
instance the following example is a part of a complete
transformation example that maps UML conceptual model
(PIM) for database application into a relational model (PSM)
[30] :

Top relation PackageToSchema {

checkonly domain uml p: Package {name=pn}

 enforce domain rdbms s: Schema {name=pn}}

The provided example shows a transformation rule or
relation named "PackageToSchema" that transforms objects
from the "uml", the source domain to "rdbms" target domain. It
says that if it is true that an instance of package exists in the
source, creates a corresponding instance of type schema in the
target. A domain is a typed variable that can be matched with a
model of specific type which consists of patterns (i.e. p:

package {name=cn}. A pattern can be grasped as a set of
variables and constraints that needs to be bound by elements
from a model to satisfy it with a valid binding. A domain
pattern is a blueprint for the objects and their properties that
must be found, changed, or made in a candidate model in order
to meet the relationship [30].

II. RELATED WORKS

The development of ESs using a model-based approach
within the MDA process mapping is still an ongoing area of
research, with limited studies focusing on this domain.
Chungoorae et al. [14] suggested an approach based on MDA
and ontology-driven system development to implement
Interoperable Manufacturing Knowledge Systems (IMKS) for
product lifecycle applications. It involves developing the PIM
level using manufacturing core ontology and transforming it
into a PSM in the XKS format. This approach lacks
generalization for PSM and is limited to specific platforms.
Moreover, it omits the mention of the mapping language used
from PIM to PSM. Additionally, it primarily focuses on data-
oriented ES type.

The BOM approach, within MDA, automates software
generation using PRISMA architectural models, as described
by Cabello et al. [15]. The approach utilized conceptual
models, PIM, and CIM without specialized languages,
resulting in generated program codes for C# .NET. This
approach lacks generalization for PSM and is limited to
specific platforms. Moreover, it omits the mention of the
mapping language used from PIM to PSM. Furthermore, it
does not specify the type of ES being utilized.

Yurin et al. [16] proposed using MDA to generate an ES
for analyzing construction material damage. The
implementation involves conceptual models, rule visual
modeling language (RVML) for mapping PIM to PSM, and
implemented in the form of a software prototype personal
knowledge base designer (PKBD). This approach lacks
generalization for PSM and is limited to specific platforms.
Moreover, it utilizes an operational language that does not take
maintenance into consideration. Additionally, it primarily
focuses on data-oriented ES type.

Another research by Maylawati et al. [17] focused on UML
diagrams (use case, class, and sequence) to describe ES
components, including actor interaction and object
relationships. Each use case requires a sequence diagram for
normal and alternative processes, while the class diagram
represents object interrelationships and adaptable
attributes/methods for problem-solving. This approach
involves the development of ES using UML diagrams in a
general sense, without specifying the principles of MDA.

In study [18], the authors proposed developing decision-
making modules for an intelligent system based on MDA
principles. They start with the CIM, transforming spreadsheet
data into a conceptual model using UML class diagrams. The
PIM is then created as a rule-based module, formalizing
decision tables with concepts from the CIM. RVML schemas
represent these concepts. The PSM is developed depending on
the knowledge representation language and converting decision
tables into an RVML module. Program codes are generated

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

318 | P a g e

www.ijacsa.thesai.org

using PKBD for the specific platform. This approach lacks
generalization for PSM and is limited to specific platforms.
Moreover, it utilizes an operational language that does not take
maintenance into consideration. Furthermore, it does not
specify the type of ES being utilized.

Overall, the existing literature lacks comprehensive
compliance with MDA principles. For instance, strong support
for re-usability and platform independence such as having
PSM that is special-case and PIM that is cluttered with PSM
aspects. Also, the lack of maintenance considerations because
of using operational mapping languages as well as in overall
there is no support for it. Our proposed approach aims to
generate a generalized PSM that can be adapted to different
platforms as well as support maintenance. This is enabled by
utilizing a relational QVT and developing reverse mapping
rules. Moreover, this work recognizes a new type of process-
oriented ES and enables both types of ES: process-oriented and
data-oriented.

III. RESEARCH METHODOLOGY

This paper aims to automate the creation of rule-based ES
through the utilization of MDA. MDA, as explained, intends to
automate software development without writing code by
raising the abstraction level, so the process is driven by high-
level models and mappings. The proposed approach argues for
process-oriented ES as well as data-oriented ES. However,
MDA principles compliance is a target for this work as well as
considering the maintenance support. Therefore, these reforms
the classic process of developing ESs that use a code-based
approach into a new methodology for the development that
uses models as first-class entities. The following subsections
deal with the following questions: What are the suitable models
to represent the PIM and PSM metamodels? Is there any gaps
(i.e. concepts) exist in the source or target design language?
How are PIM concepts related to PSM concepts? How to
abstract Shells (platforms) in a generic PSM? And finally how
low-cost maintenance is supported?

The answer to these questions can be organized around
main principles of the proposed approach: (1) Modeling Expert
Business Rules in PIM metamodel, (2) Building a UML
Profile, (3) Developing PSM of Production Rules (4) Building
the mapping between PIM and PSM.

A. Model Expert Business Rules in PIM Metamodel

The expert system usually stemmed from business rules
that represent the decision instrument which requires
automation support. These rules classically captured manually
in a form of conditional statements rendered as FOPL that
probably augmented with the syntax of platform. They are two
abstraction levels act as one level which makes it difficult for
domain experts as well as developers to deal with these
technical aspects. In contrast, the PIM is an alternative
abstraction decuples the technical aspects of ES from
application concepts therefore pertain to a conceptual model
for problems under consideration typically developed
independent of a platform so hides implementation details. Due
to its abstract nature, it can capture essential features and
requirements, which can help experts from different domains
communicate by enabling shared understanding. MDA

approach proposes MOF-based language such as any UML
models to act as PIM metamodel [10]. The PIM can be
metalevel 1 or metalevel 2. The concrete instances of a UML
model that represent specific case of ES (i.e. some diseases
diagnose system), while UML is at metalevel 2 because MOF
can model it which is a metalevel 3 [32]. This flexibility allows
different modeling representation capabilities that address the
diversity of system. The business rules for ES in code-based
approach are dependent on a clear understanding of the ES‘s
requirements. This understanding may be achieved through
close collaboration with domain experts, stakeholders, and end-
users. But usually there is no corresponding explicit formal
model such PIM metamodel that can capture these
requirements.

More importantly this work argues for process-oriented that
centers on the workflow or operational procedures of a given
expert system, such as production processes, scheduling
operations, and generally processes. In this type of systems, the
rules are injected within a process, not like the classic ES that
focuses on data so called data-oriented, process is dominating
element. For example, in an academic system; a student can
only register for 12 credit hours if his GPA is less than 2 and,
while in manufacturing system; IF machine temperature
reaches critical threshold, THEN stop the machine and call
maintenance procedure. The former rule is a constraint
augmented with an action – register, while the later expresses
object properties constraints, the temperature of the machine.
The distinction between them is useful for acquisition of
knowledge process as well as it has impact in the design
under the context of this work. Although, the model we have
introduced is capable of accommodating either of these types,
its emphasis is primarily on the latter (i.e., process-oriented).
However, business rules, are set of guidelines or policies that
dictate how an organization operates, are frequently embedded
within processes to ensure and enforce consistency and
integrity [33]. It is therefore a good candidate for PIM.

However, this paper proposes specifying business rules for
ES in PIM, using both class and sequence diagrams. In which
class diagram serves as a descriptor of facts or data with their
schemas that is needed by the ES, while the sequence diagram
is used for capturing the behavior of the system that usually is
augmented with rules. Although there are alternatives to this
design decision such as activity diagram, sequence diagram is
less elaborative so more compact and easier to learn and
communicate the problem of ES. Nevertheless, the relationship
between UML sequence diagram and UML class diagram is
that the sequence diagram involves objects and messages that
are eventually comes from classes that are supposed to be fully
specified by the UML class model. Therefore, the UML class
diagram supplies the sequence diagram with schemes of data
and their relationships.

1) PIM sequence diagram metamodel: A metamodel is a

model of the model that is required here to capture the

elements needed to support process-oriented ES instances; that

is a UML PIM metamodel. We need to investigate the big

enough and suitable UML sequence diagram metamodel to be

ready for representing the instances of PIM that will be

developed by domain experts and developers as well as guides

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

319 | P a g e

www.ijacsa.thesai.org

the mapping process later. A developer in this case typically

develops models for ES at metalevel 1 where it models objects

of specific ES such as a manufacturer production expert

system or car faults diagnoses system. The intention of a

sequence diagram in UML is to communicate the specific

behavior by sketching the sequence of messages communicated

between objects in a system so it‘s a dynamic view. Fig. 1

presents the necessary and big enough metamodel elements

needed to model any business rules for experts.

Fig. 1. PIM sequence diagram metamodel [34].

Fig. 1 is the abstract syntax of the sequence diagram that is
part of the UML metamodel which fits the problem addressed
by this work. The metamodel says a Message (with name and
kind properties) can have zero or more Arguments (with name,
direction, value properties). It can have a Return Type that
specifies the type of value that is returned. In addition, the
Message has the Message End indicates two ends of a message
exchanged between two Lifelines (usually named element)
where the first represents the source (base) and the second is
the destination. A Message End is either an Object or an Actor.
A lifeline can have more than one message. It indicates that a
message has been successfully transmitted from the sender to
the receiver, and that the receiver has finished processing the
message.

The CombinedFragment is an essential component in
diagrams that allows for the specification of complex control
structures such as loops, parallelism, and conditions. Its
behavior is determined by the chosen InteractionOperator,
which dictates how the fragment behaves. For example, when
using "alt" as the InteractionOperator, the CombinedFragment
represents a choice of behavior where only one option is
executed. Semantically an Operand selection within the "alt"
fragment is based on guard expressions, which determine the
conditions for executing each option. The use of the "else"
guard expression represents a negation of all other guards
within the CombinedFragment. If none of the options have
guards that evaluate to true, none of them are executed, and the
remaining part of the diagram continues. Note that an
enumeration class called InterationOperKind is used to supply
the kinds required for InteractionOperator. It is a useful feature
can be utilized in expert systems in exceptions as well as
normal conditional state.

2) PIM class diagram metamodel: The UML class model

utilizes class diagram notation [35] to describe the data and

their relationships using class, properties, inheritance

(generalization-specialization) and association concepts. For

example, in the journal system a Reviewer and Paper are

classes (objects of metalevel 1), and a Review class has the

association with Paper between them that represents the

relationship a reviewer provides a review for a certain paper

which also has an association with a Review class that

represents the feedback. In the following, Fig. 2 illustrates the

UML class diagram metamodel that is part from UML standard

specifications developed by OMG to act as a descriptor for

data and facts needed in ES with their integrity constraints.

Fig. 2. PIM class diagram metamodel [30].

Fig. 2 shows part of the abstract syntax of the UML class
diagram [20]. In which UMLModelElements are classes,
interfaces, packages, and relationships. For example, a class
diagram could include several UML model elements such as
Classes, Attributes, and Associations, to model classes of
objects with properties and the relationships between different
objects in a system. A metaclass class in Fig. 2 is a central
concept of the language and it is a kind of a classifier. A
classifier in UML means a class that can be instantiated or has
instances different from Abstract classes that do not have.
Classes are defined by a set of attributes and methods that
objects of that class will have. Because usually a class like
Reviewer has attributes: ID, name, and Area of interest there is
of metaclass Attribute to model this. Attributes are
characteristics or properties of a class, and they define the data
that objects of that class will have. In addition, Association,
which describes the relationships between two or more classes.
Associations define how objects of one class are related to
objects of another class. Moreover, a Package is a grouping
mechanism used to organize related elements, including
classes, interfaces, and other packages. A PackageElement is
an abstract class that is a kind of package.Therefore, a diagram
usually exists in a package. Another critical UML element is
the Classifier, which describes a set of objects that share
common characteristics and behavior. Lastly, UML includes
PrimitiveDataTypes, which are basic data types built into the
modeling language or programming language used to represent

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

320 | P a g e

www.ijacsa.thesai.org

data. Examples of UML primitive data types are Boolean,
integer, and string.

3) UML profile for PIM metamodel: A profile is a

powerful lightweight extension mechanism that adds concept,

syntax, and semantics to the metamodel [13]. It does not

require substantial change to the metamodel so less costed

approach because UML editors does not change because of

extensions. A profile consists of stereotypes, tags, and

metaclass classes of the elements that need to be extended,

which are classifiers. The stereotype represents a new concept

or syntax that is needed for extension while a tag adds some

properties if needed to the stereotype. However, it is necessary

to have an end of an extension that represents some metaclass

class; a solid line notation designates this extension usually

drawn between the two ends in UML standard. Profiling plays

a pivotal role in filling the gaps in the metamodel. Because in

this work there is a gap in the Sequence Diagram; it is not

defined by UML Sequence metamodel which are the modeling

elements: Not, OR, and Head that exist in the target (Shells).

Therefore, there is to design a profile in order to allow

developer/domain expert to use these concepts. Fig. 3 shows

the UML profile diagram for the proposed approach.

Fig. 3. PIM profile diagram metamodel.

In Fig. 3 a profile is designed for the PIM sequence
diagram with three distinct stereotypes needed. These
stereotypes serve to provide concepts that the PIM sequence
model is lacking. It basically extends two metaclass classes:
Message and Actor because semantically OR and NOT are
related to messages in the level of abstraction and later to
predicate as we will see in the mapping. The first stereotype of
the ‗Actor‘ element is named a ‗head,‘ concept to allow
designers of ES to utilize the concept of specifying the focal
point which gets the benefit of the service provided by
sequence diagram. A tool cannot easily determine without cost,
so the profiling mechanism is a less costed solution. The
second stereotype pertains to messages and introduces an ‗OR‘
operator concept. This ‗OR‘ is an indicative of multiple
possible interactions that can exist between messages, a
common practice in ESs (multiple rules with same head). The

third stereotype extends the Message to introduce a ‗NOT‘
operator concept. In this context, the ‗NOT‘ signifies
conditions or interactions that are explicitly negated or
excluded (it is also common in ESs). Therefore, the utilization
of these stereotypes within the profile diagram serves the
purpose of specifying rules that involve disjunction, negation
and as well discriminating the Head of the rule. We are ready
now to look at how we design a generic PSM.

B. Develop PSM of Production Rules

A production rule traditionally used in different fields such
complier, natural processing languages and logic which
specifies how input stimuli are transformed into output
responses (produce a symbol output from a symbol input). It
consists of a set of rules, each consisting of a condition and an
action or LHS and RHS. A condition specifies a set of
constraints that must be satisfied by the input, whereas an
action specifies a set of operations to be performed on the input
[36]. To fire it means to replace the LHS with the RHS. To
model production rules using PSM, it is necessary to identify
the specific elements of FOPC [37] because it is what Shells of
ES are based. Fig. 4 illustrates the PSM metamodel for the
proposed ES.

Fig. 4. Rule-based expert system PSM metamodel.

In this context, a typical production rule might be expressed
in natural language, as in the example provided: "If the car
won't start and there is no clicking sound when the key is
turned, then the problem is likely a dead battery‖. To get the
metamodel of FOPC as in Fig. 4, since after investigation
instances of rules exist in this world, we need a metaclass
called Rule in the PSM metamodel. A Rule can be identified
by ID, so we need an attribute called ID of type integer. Since a
Rule has ascendant that act as a set of conditions must be met
for a rule to be applied or executed, we call it the right-hand
side and the consequent or action will call it left-hand side.
Therefore, it is necessary to define a metaclass classes called
RightHandSide(RHS) and LeftHandSide (LHS) because there
are many instances will be of this kinds for rule. Moreover, we
observe that each of them consists of a basic building block
known as predicates; so, we need to model a metaclass class
called Predicate because there are many instances of it in a
single rule. In addition, usually a Predicate involves parameters
that are variables that should be bound during execution; we
need a model it as a metaclass class called Parameter, which
provides parameter‘s name and type. Now we can turn into the
relationships between the PIM and PSM.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

321 | P a g e

www.ijacsa.thesai.org

C. Build the Mappings between PIM and PSM

The aim of MDA eventually is to map the source (PIM
metamodel) into a target (PSM metamodel) which acts as a
part of writing the code in the development process. This
model transformations should be done through the standard
language QVT which is independent of both ends. In the
context of rule-based ES, the expected output of this mapping
process is a PSM instances that can be used to represent
executable facts and rules for the target platform. It is typically
a UML model instances or objects of metalevel 1 [32]. The
PSM should be able to implement the PIM objects so translate
them into specific constructs or patterns that are suitable for the
target platform. The following subsections discuss the mapping
rules of the proposed approach: (1) PIM Sequence Metamodel
to PSM Metamodel, (2) PIM Class Metamodel to PSM
Metamodel.

1) PIM sequence metamodel to PSM metamodel:

Sequence diagram is utilized initially to facilitate the decision-

making process by depicting the business process aspects of

the ES in a high-level model that allows domain experts to

communicate the problem easily. However, the goal is to

convert business rules that act as the knowledge of expert in

some domain into implementation using PSM concepts. As

consequence of this, we need to find relationships between

sequence diagram concepts and the PSM concepts which are

production rules that are commonly represented using FOPC

[37]. Table I shows these relationships of both metamodel

concepts.

TABLE I. PIM SEQUENCE DIAGRAM TO PSM RULE-BASED ES MAPPING

RULES

Rule Transformation Rule Source Model Target Model

R1 MessageToLHS Message: kind= ‗goal‘ LeftHandSide

R2 MessageToPredicate
Message: kind=

‗normal‘

RightHandSid

e

R3 AltToHead

Combinedfregment:

interactionOperator='a
lt' and Message:kind=

‗goal‘

LeftHandSide

R4 AltBodyToRHS

Combinedfregment:
interactionOperator='a

lt' and Message:kind=

‗normal‘

RightHandSid

e

R5 ArgumentToParameter Argument Parameter

R6
MessageEndToRelation
ship

MessageEnd Relationship

R7 Negation Message (has NOT)
Negated

predicate

These transformation rules play a crucial role in converting
from PIM sequence model to PSM of rule – based ES. For
instance, the "MessageToLHS" rule maps a message with the
'goal' kind into the LeftHandSide format, while the
"MessageToPredicate" maps a message with the 'normal' kind
into the RightHandSide. The "AltToHead" rule transforms a
Combinedfregment with interactionOperator='alt' and message
with kind= ‗goal‘ into the LeftHandSide. The
"AltBodyToRHS" rule transforms a Combinedfregment with
interactionOperator='alt' and message with kind= ‗normal‘ into
the RightHandSide. Similarly, the "ArgumentToParameter"

rule converts an argument into a parameter, and the
"MessageEndToRelationship" rule transforms a message end
into a relationship. Lastly, the "Negation" rule is employed
when a message includes 'NOT' to create a negated predicate in
the target model. These rules are acting as separate artefacts so
preserve the separation of concerns principle.

To automate the mapping process, mapping rules must be
specified using QVT standard transformation language. The
QVT mapping rules has the following structure:

transformation map (source: sequence, target: psm)

This transformation specification is like a procedure map or
make a transformation from a source model represents as a
sequence diagram (source) to a target model represents a PSM
(target), it is telling the tool that the mapping direction.

The following formalizes the informal mapping rules
specified in Table I for the specific mapping between PIM and
PSM. Rules will be numbered (ascending order) for easier
reference (All these rules are tested using (MediniQVT tool).

R1:

top relation MessageToLHS {

k, cn: String;

checkonly domain source m: sequance::message{kind =
'goal', name =k};

enforce domain target p:psm::predicate{at= a:psm::LHS{},
name = k};

where {ArguementToparmeter(m,p);

In R1, the source domain, involves a pattern that checks for
messages in the sequence diagram with a specific kind =
"goal" and a name that will bound using variable "k‖ based on
instances of the source. If it‘s true, then in the target domain,
the rule enforces the creation of a predicate in the PSM; with a
repository, with the name as "k" and an attribute "at" assigned
to a parameter "a" of type "psm::LHS". Additionally, the rule
includes a constraint that the relation "ArgumentToParameter"
must be called after executing this rule which ensures
transformation from argument to parameter. Because mapping
to arguments is postcondition (executes after the first part
above) and a complement, where clause is added.

R2:

relation MessageToPredicate {

pn: String;

checkonly domain source m:
sequance::message{kind='normal', name=pn};

enforce domain target p : psm::predicate {at = a
:psm::RHS{}, name=pn};

where { ArguementToparmeter(m,p);}}

The rule R2 directs a transformation from the sequence
domain to the psm domain. It checks if there is a message with
a specific kind (normal) and name = pn (bound to the current
instances in the source) in the sequence diagram. if true, then in
the target domain, it creates a predicate with a matching

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

322 | P a g e

www.ijacsa.thesai.org

name(pn value) and assigns to the attribute ―at‖ a parameter
―a‖ of type "psm::RHS". The rule also includes a constraint,
postcondition that the rule R5 -"ArgumentToParameter" for
parameter transformation must be executed afterwards.

R3:

top relation AltToHead{

cn,n:String; o: Integer;

checkonly domain source f:sequance::combinedfregment{

interactionOperator='alt',ID=o,lifelinee=k:sequance::LifeLi
ne{name=n,

messages=m:sequance::message{name=cn,kind='goal'}}};

enforce domain target lt:psm::RHS{ID=o};

enforce domain target ltt:psm::LHS{ID=n};

enforce domain target
p:psm::predicate{name=cn,at=a:psm::LHS{iD=n}};}

R3 is a rule that checks if the sequence model has a
fragment with an interaction operator set to "alt" and an ID
matching "o" (bound with current instances).Also, it verifies a
lifeline with the name "n" and a message with the name "cn"
and kind "goal" within that fragment. If true, then in the PSM
model, the rule enforces creation for the right-hand side (RHS)
with an ID matching "o", a left-hand side (LHS) with an ID
matching "n", and a predicate with the name "cn" and an
attribute referring to the left-hand side with ID "n." This rule
does the initiation task where the rest of the rule will base.

R4:

top relation AltBodyToRHS{

i:Integer;cn,n:String;

checkonly domain source f:sequance::combinedfregment{

{iD=i,interactionOperator='alt',lifelinee=k:sequance::LifLin
e{name=n,

mesages=m:sequance::message{name=cn,kind='normal'}};

enforce domain target
p:psm::predicate{name=cn,att=a:psm::RHS{iD=i}};

where { ArguementToparmeter (m,p);}}

R4 is a complement rule to R3 rule, asserts a combined
fragment in the source sequence model with an interaction
operator set to "alt" and an ID matching the given value of "i".
It also asserts a lifeline with the name "n" and a message with
the name "cn" and the kind "normal". If true, in the target
domain, creates a predicate with the name "cn" and the
attribute "att" assigned the right-hand side (RHS) object with
the ID value for "i".Also, R5 is postcondition so needs to be
executed afterwards as where clause exists.

R5:

relation ArguementToparmeter {

Cn ,n,q: String;

checkonly domain source m: sequence::message{kind =
q,name = Cn,

pars = w:sequance::argument{name = n}};

enforce domain target p:psm::predicate{name = Cn,

args = k:psm::parmeter{name = n}};}

R5 relation asserts for a message in a sequence diagram
with a specific kind and name, and pars attribute with argument
that has name= Cn, if turr in a target domain, will be the
creation of a predicate with the same name and parameter.

R6:

top relation MessageEndToRelationship{

checkonly domain source b:sequance::messageend{name
= cn,

sender = e:sequance::message{ kind = 'normal' }};

enforce domain target w :psm::relationship{name ='AND',

srcP = ps:psm::predicate{}};

where {MessageToPredicate(e,ps);}}

R6 asserts if a message end in the source sequence diagram
with a specific name and a sender that is a ―normal‖ message.
Accordingly, in the target domain, it enforces the creation of a
relationship with the name 'AND' and a source predicate. This
rule builds the relationship between predicates that usually is
‗And‘ if not specified ‗OR‘. R2 is required as postcondition.

R7:

top relation negatedTopredicate {

Cn ,n: String;

checkonly domain source a:sequance::message{kind=
'negated',name = Cn};

enforce domain target o:psm::predicate{name=Cn +'not'};}

R7 rule checks for a message in the source sequence
diagram with a specific kind "negated" and a name matching
the variable "Cn". If true,in the target domain, it enforces the
creation of a predicate with a name formed by appending "not"
to the original name.

2) PIM Class Metamodel to PSM Metamodel: The class
diagram is utilized initially to act as a descriptor for data and
facts needed in ES. However, the goal is to convert the facts of
experts in some domains into implementation using PSM
concepts. As a consequence of this, we need to find
relationships between class diagram concepts and the PSM
concepts. Table I shows these relationships after a close
investigation of both metamodel concepts. Table II shows
transformation rules representing the mapping between PIM
class diagram to PSM rule- based ES.

In Table II, the "ClassToFact" rule performs the
transformation of classes into a fact in the target model.
Similarly, the "AttributeToParameter" rule is employed to
convert an attribute into a parameter. These rules play a vital
role in the process of adapting and reshaping data within the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

323 | P a g e

www.ijacsa.thesai.org

modeling contextualizing the need for facts that represent the
essential part of knowledge.

TABLE II. PIM CLASS DIAGRAM TO PSM RULE -BASED EXPERT SYSTEM

MAPPING RULES

Rule Transformation Rule Source Model
Target

Model

R1 ClassToFact Class Fact

R2 AttributeToParameter Attribute Parameter

The QVT mapping rules starting with this statement:

transformation map (source: class, target:psm)

This transformation specifies the mapping between a
source model represented as a class diagram (source) and a
target model represented as a PSM (target).

The formal QVT mapping rules corresponds to Table II:

R1:

top relation ClasstoFact{

 Cn , n : String;

checkonly domain source a:cla::classs{name = Cn};

enforce domain target o:psm::Fact{name = Cn};

where {AttributeToParameter(a,o);}}

R1 relation transforms a source model (class) to a target
model(psm). It checks for a class in the source domain with a
specific name "Cn". In the target domain, it enforces the
creation of a Fact with the same name "Cn". Additionally, it
includes a constraint R5 executes afterwards that ensures the
mapping of attributes from the source class to parameters in
the target for Fact.

R2:

relation AttributeToParameter{

Cn , n , v: String;

checkonly domain source a:cla::classs{name = Cn ,
attribute = ar:cla::Attribute{

name = n, value= v}};

enforce domain target o:psm::Fact{name = Cn, parmeters
= w : psm::parmeter {

name = n, value= v}};

R2 relation is part of the "ClasstoFact" transformation. It
checks for an attribute within the source class that matches the
variable "n" and has a value matching the variable "v". In the
target domain, it enforces the creation of a parameter within the
Fact with the same name and value. This relation ensures the
mapping of attributes to parameters during the transformation
process.

D. Round- Trip Mapping

The extant issues encountered in the development of ES via
a code-based approach has strong resolution through the
contemporary application of MDA. This approach enables
developers to focus on the high-level concepts of system

design, reducing the complexity of development and
facilitating the reuse of code and knowledge [12]. For instance,
MDA offers cost-effective maintenance through the utilization
of automation and the implementation of a round-trip mapping
mechanism. This work argues for support of maintenance using
relational QVT language (QVT-r is supported by EMF). It
reflects the changes that happened to PSM such as having a
new version of the software of shells. More important the
changes in the PIM model (i.e., business rules change) will not
change the PSM or mapping assets so can be re-used. This
adds great value to the re-engineering effort required for ES.
By structuring mappings in this manner, developers gain
enhanced and ease mechanism to make change such as update
to the rules. This approach optimizes the maintainability of the
system, as it streamlines the process of rule manipulation and
adaptation within the MDA framework. More importantly,
there are legacy ESs serving organizations for a long time that
can benefit from this model whereas in extreme cases models
can be reverse engineered so can be changed and synchronized
automatically with required changes. For instance, a rule can
be developed for round- trip mapping for PSM – PIM
Sequence Diagram where each represents different sort of
changes:

RM1:

relation LHSToMessage{

k : String;

checkonly domain p :psm::predicate{ at = a:psm::LHS{},
name = k };

enforce domain target m: sequance::message{ kind = 'goal',
name = k};

where {parmeterTOArguement (p,m);}}

The purpose of this rule is to enable the redirection of
mapping from the left-hand side (LHS) back to the message,
facilitating any necessary changes.

RM2:

relation PredicateToMessage{

pn: String;

checkonly domain target p: psm::predicate {at = a
:psm::RHS{}, name = pn};

enforce domain target m: sequence:message
{kind='normal',name = pn };

where { parmeterTOArguement (p,m);;}}

The purpose of this rule is to enable the redirection of
mapping from the predicate back to the message. These rules
establish a mechanism for reverse mapping that is not only
applicable to the specific rules but also to other rules derived
from the PIM Sequence Diagram to the PSM.

The round- trip mapping for PSM- PIM Class Diagram:

RM3:

top relation FactToClass{

Cn, n : String;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

324 | P a g e

www.ijacsa.thesai.org

checkonly domain source o: psm::Fact{name = Cn};

enforce domain target a: cla::classs{name = Cn}

where {ParameterToParameter(o,a);}}

The purpose of this rule is to enable the redirection of
mapping from fact back to the class.

RM4:

relation ParameterToAttribute{

Cn , n , v: String;

checkonly domain source o: psm::Fact{name = Cn,
parmeters = w: psm::parmeter {name = n, value= v}};

enforce domain target a: cla::classs{name = Cn , attribute =
ar:cla::Attribute{name = n, value= v}};}}

The purpose of this rule is to enable the redirection of
mapping from parameter back to the attribute. Also, these rules
establish a mechanism for reverse mapping that is not only
applicable to the specific rules but also to other rules derived
from the PIM Class Diagram to the PSM.

IV. REENGINEERING AND NEW INSIGHTS

This section analyzes and discusses the feasibility, insights,
and opportunities of using MDA at different scales of change
in the scope of the ES. The reengineering of a system typically
involves a radical change for the entire system to achieve some
result, while maintenance tackles parts of a system to improve
it by making corrective action or minor modifications [39]. In
this work, we use the term reengineering in a broad context.
For instance, maintenance could be applicable to any part of
PIM, PSM, or mapping rules, while the process of making
radical changes (from a code-based approach to a model-based
approach) to the legacy ESs by using MDA is a re-engineering
process. However, the capability of interoperability is also one
of the main concerns of MDA, which is defined as the ability
to seamlessly integrate different systems or components to
exchange information and work together [11].

There are many reasons why current ESs need to change
under the umbrella of maintenance or reengineering, for
example, the need to interoperate or integrate with other
systems. The basic assumption of the data or facts underlying
ESs is to be provided in a static way for reasoning. Nowadays,
this is not the case where data should be updated by dynamic
systems such as in the medical field by EHR (i.e., supply
patient data) or general business ERP (i.e., provide production
information such as a master or detailed schedule). The data
involved in such systems is not only current but also
comprehensive. For instance, patients with new symptoms or a
production machine show new odd behavior in one
manufacture. Based on the application requirements, data
needs to be pulled or pushed from these systems to the relative
ES. It is obvious that manual pulling or pushing is not practical
in this sense. This visibility is a sort of strong business
requirement that must be achieved today. On the other hand,
rules as shown are subject to change due to different reasons,
such as progress or a shift in the landscape of the knowledge of
a field (i.e., medicine), but we argue that our approach enables
automated supplementation of rules because the transformation

process in MDA is a separate and dynamic process with stable
mapping rules. This will not only provide a dynamic way of
running the ES but also provide new insights. One can imagine
that GPT agents (like ChatGPT or Bard) or similar intelligent
systems can utilize this feature. Indeed, these GPT-based AI
tools use symbolic knowledge-based questions or queries to
find the relevant information or identify the context of the
question (using inferencing rules and knowledge). This view
suggests that an integration mechanism allows data to be
outsourced as well as rules, so ES can be provided as a
dynamic service.

In addition, interfaces of an old legacy systems became
obsolete and so there is tendency to be upgraded to new
standards such as Jetpack Compose [40] developed by google
for building native Android applications, SwiftUI [41] for IOs
and mac applications, CSS frameworks than enable web-access
for ESs, and many others taking into account in single system
such as mobile you find different of GUI standards.

We now turn to the question of how MDA can support this
strong demand for integration with these different systems. On
the one hand, MDA has the abstraction of a PSM that is based
on MOF to represent the technical aspects of a platform, one of
which is GUI platforms or others such as APIs for specific
platforms (i.e., EHR and ERP). So specifically, PSM for any of
this need to be developed and a couple of transformations
using like QVT [38]. More than a decade ago, typically the
integration between systems followed standards such as
service-based system technologies, web services, and WSDL
[42], JOSON and RESTFul [43] or SOAP [44]. They
contributed to interoperability between different tools and
encourage more integration to be practiced. Cloud systems are
basically complex, diverse systems that use these standards.
More importantly, the literature is rich with some of these
standards that exist as PSMs and can be re-used to reduce
development costs. On the other hand, PIM is a business-level
abstraction built independently of even PSM, so the portion of
PIM related to interoperability, such as GUI or others
discussed above, can be projected using the transformation
capability of MDA. In this case, mapping rules only need to be
changed if the PSM is already published (GUI, WSDL).
However, there might be intermediate steps (pre-processing
steps) needed, such as using the QVT view maintenance [30]
capability to map PIM into more refined PIM or PSM into
more refined PSM.

 To conclude, MDA has rich architecture support for
change, such as interoperability, that can allow even non-MDA
systems to integrate in a manner that reduces the re-
engineering cost. More importantly, this interoperability in this
context provides new insights into using traditional expert
systems, such as exposing expert systems as a service, and
gains the power to of dealing with dynamic changes in facts or
the instability of rules.

V. EVALUATION USING CASE STUDY

An academic advising ES has been introduced to bridge the
gap between students and advisors by shifting advising,
complaining, evaluating, and suggestions from traditional ways
to a more contemporary one [45]. The decisions need to be
made by students during their academic journey such as course

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

325 | P a g e

www.ijacsa.thesai.org

enrolment, course withdrawal, postponing study, etc. In this
paper, we take on a scenario of a rule-based ES for academic
advising in the university system. The need for ES for
academic advising is to take a decision for different actions
involves uncertainty and a couple of factors need to be tested.
For example, the decision to drop a course for low GPA
students has different consequences which is not
straightforward decision. Similar thing can be said for
postponed study, drop a semester and so on.

The ES will build the work plan by identifying the student
through some important points:

 Perquisite courses.

 Knowing the student's performance.

 The student’s weakness points.

 Domain skills.

 Skills that a student needs to improve.

 Student goals.

 Track the student pathway.

The ES works to facilitate the communication between
students and the advisors by raising the student's performance
giving some recommendations that help the low GPA student
to develop specific skills for different semester actions such as
course enrolment, course withdrawal, postpone study, etc.

A. Developing Process Model for ES

A student who is struggling with a low GPA might
approach their academic advisor for assistance in considering
the option of dropping a course for the current semester. The
ES is responsible for determining when the low GPA student is
eligible for dropping a course according to the following
conditions:

 Perquisites Course: Perquisites course must be ‗Not
Major‘ category.

 Skill Assessment: Students skill must be a ‗Weak Skill‘
in this course.

The advisory academic rules are:

 Rule:DropCourse(SID,CID)=IfGet_PreCourse(CList)
AN Check_PreCouese_Category(CID)AND
Check_Skill(Skill)

 In all other cases, the system does not allow the student
to drop the course.

These rules consider the relevance of the PreCourse
category and the strength of the student's skill set. If the
conditions are met, the system facilitates the selection of
appropriate PreCourse categories and skills, while disallowing
the student from dropping the selected course. Conversely, if
the conditions are not met, the system permits the student to
drop the course if desired. Fig. 5 illustrates the sequence
diagram outlining the process for dropping a course for a
student with a low GPA.

Fig. 5. Drop a course UML sequence diagram.

Fig. 5 presents the process involving the Advisor, System,
and PreCourse, Category, and SkillSet objects, illustrating how
t odecide on the drop of a course. The interaction commences
as the advisor engages with the system, focusing on the rules
associated with dropping a course. The first message, "If the
PreCourse category is classified as 'Not Major' or the student
possesses a 'Week' skill in a particular subject (skill='Weak'),
then the system proceeds with the selection of the PreCourse
category (CID) through the predicate
SelectPreCourseCategory(CID) and the selection of the skill
(CID) through the SelectSkill(CID).Following this, the system
responds with the message "DropCourse" for dropping the
course, provided the conditions specified in the previous
message are met. However, in all other cases, the system
responds with the message "NotAllowtoDropCourse".

As noted earlier, MDA develops rule-based ES by mapping
transformation from PIM to PSM. The mapping process is
performed using the MediniQVT tool, where the source file is
the Ecore file [46] representing the Sequence diagram PIM
metamodel, and the target file is the Ecore file representing the
Production rule PSM metamodel. Also, an XMI file acts as an
input containing instances of the sequence diagram metamodel
for this case for example is utilized. Subsequently, the
relational QVT mapping rules mentioned above are applied to
create the production rules of ES. Table III shows the mapping
rules used and Fig. 6 shows a sample of execution for final
result of mappings.

B. Developing Data Model for ES

As mentioned, the UML class diagram is used as a
descriptor to represent the data and facts of ES. Fig. 7 explains
the UML class model by the using example of a case study of
academic advising system in university.

As shown in the UML class diagram is that Student has a
relationship with Course. In addition, the Course has a specific
domain (such as Math, programming) consisting of skills
needed as outcomes for the course(s) in this domain. Further, a
course sometimes has Prerequisite course; the association
between Course and Prerequisite course, which models this
business rule. This will enable checking the integrity constraint
that that Student must take the Prerequisite course and pass it

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

326 | P a g e

www.ijacsa.thesai.org

before registering in a new course. According to the types of
courses, there are two types: 1- Taken Course, 2- Next Plan
Course. Taken course refers to the taken courses in the
semester, and next plan courses refers to the planned courses in
the next semester. Nevertheless, Student must have a study
plan to follow according to the program requirements. The
academic advisor wishes to help students complete this study
plan successfully with low risk by making the right decision at
the right time which is the source of the calling the experience
of the ES.

Fig. 6. PIM sequence diagram for drop a course target file.

Fig. 7. PIM Sequence Diagram to PSM Rule -based Expert System Mapping

Results

No. Predicate Parameter
Predicate

type
Justification

1
Drop

Course

Student

ID, Course

ID

Left

Hand

Side

This predicate represents the

LHS predicate of the drop a

course rule.

2
Get Pre-

Course
Course

List

Right
Hand

Side

This predicate represents the

RHS predicate of the drop a
course rule. It has an AND

relationship with next RHS

predicate

3

Select Pre-

Course
Category

Course ID
Right

Hand
Side

This predicate represents the

RHS predicate of the drop a

course rule. It has an AND
relationship with next RHS

predicate

4
Select

Course
Course ID

Right
Hand

Side

This predicate represents the
RHS predicate of the drop a

course rule.

As noted earlier, MDA develops rule-based ES by mapping
transformation from PIM to PSM. Where the source file is the
Ecore file representing the (Class diagram metamodel), and the
target file is the Ecore file representing the (PSM metamodel).
Additionally, an XMI file containing instances of the class
diagram metamodel is utilized. Subsequently, the relational
QVT mapping rules mentioned above are applied to create the
facts of ES. Table IV shows the results of the mapping process,
there are eight facts generated, each of which is associated with
a specific parameter. These results provide a comprehensive
description of the facts utilized by the domain experts in
leveraging the ES effectively and Fig. 8 shows a sample of
execution for final result of mappings.

Fig. 8. Academic advising system UML class diagram.

TABLE III. PIM CLASS DIAGRAM TO PSM RULE TO BASED EXPERT

SYSTEM MAPPING RESULTS

No. Fact Parameter

1 Performance Full Load

2 Student Student ID

3 Study Plan Credit Hours

4 Course Course Name

5 Perquisite Courses Skills

6 Low GPA Student Current GPA

7 Taken Course Date

8 Next Plan Course NA

Fig. 9. PIM class diagram for advising low GPA students in university target

file.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

327 | P a g e

www.ijacsa.thesai.org

VI. RESULTS AND DISCUSSION

The investment on the quality of software development
became evident that will pay back the cost. Having the case
that many legacy ESs contributing to different domains exist
over a long period, such as in medicine ,health, and education
[16],[17],[18], necessarily entails requirement changes such as
in platform or business rules. More importantly, the discovery
of the entrance of ESs into new domains (environmental
management and cybersecurity) requires flexibility and less
costly development methods. However, using MDA in this
work provides these qualities. The PSM metamodel from
production rules developed as a generic PSM and mapping
rules can act as assets so they can be re-used with the
development process of any kind of ES; therefore, the
principles of reusability, platform independence, are achieved
and hence reducing the cost. For instance, changing Prolog
with the Pyke platform for any reason such as utilizing a
forward chaining tool instead of backward changing tool, does
not cause a change in the PIM, PSM, and properly minor
change to mapping rules. Also, changing to a new version of a
platform such as upgrading to acquire new features, the
proposed approach does not require to change PIM or PSM and
mappings.

Similarly, in more extreme maintenance cases where rules
are updated or modified, only the PIM (model instances) needs
an update, the rest will be re-used therefore coping with the
rules instability. Moreover, the raising of abstraction afforded
by MDA, such as in the PIM descriptor, allows domain experts
to participate or write expert system, which bridges the gap
between domain experts and developers.

On the other hand, the integration of an ES with other
systems (i.e. HER) under reengineering process or
maintenance, is an inexpensive approach because of the re-
using utility provided by metamodeling and formalizations
(using MOF) of the descriptors: PIM, PSM, and mapping rules.
Thereby provides costless reengineering. Because different
Shells have different features, the PSM developed is standard
one and therefore comply with the principle of platform-
independence so like portability can be achieved. It can be
modified to incorporate additional features if is to put into
practice, but it should be the commonality among all shell
platforms. The XMI standard allows either PIM or PSM to be
migrated to another tool so can be edited or manipulated.

The sequence diagram, in reality, reflects the nature of
interactions involving the business rules of a desired ES.
However, this study argues for a type of ES that is process-
oriented, where a set of actions with a sequence that represents
constraints such as pre-conditions and post-conditions need to
be specified for the desired outcome. For example, the process
of checking ripe and unripe fruits, the process of optimization
such as in manufacturing (i.e., efficiency of steal production),
control process, real-time recommendations process, and
planning and scheduling processes.

VII. CONCLUSIONS

This work is about automating ESs from high-level models
using the principles of MDA. ES is a long-sounding successful
product of AI but lacks advanced methods of development and

re-engineering, which leads to an increase in the cost of
maintenance and development. Moreover, effective
communication between developers and domain experts is a
crucial yet challenging aspect of designing ESs. The inherent
differences in technical knowledge and domain expertise often
lead to communication gaps, hindering the accurate translation
of domain knowledge into functional system components.
However, MDA raises the abstraction level of the development
of an application as well as provides a structured approach for
automation so ES applications can leverage this feature. MDA
decouples application concepts or domain of the problem that
needs to be specified in the PIM metamodel from the technical
aspects of implementation, which will be specified in the PSM
metamodel; then mapping the first end (PIM) into the second
(PSM) using the standard mapping language, QVT.

The proposed approach addresses some limitations in the
literature, such as the lack of generic PSM and specific
compliance to the MDA principles, as well as recognizes and
supports a class of expert systems identified as process-
oriented ES. A UML sequence diagram is used to model
business aspects of this type of ES, and a class diagram is used
to model facts by representing entities and their attributes. It is,
therefore, establishing high-level specifications of business
rules and processes. The generic PSM is developed based on
pure production rules (FOPC), which makes it adaptable to
different rule-based engines or Shells that implement PIM
models of business aspects. Furthermore, we designed a UML
profile diagram that extends the PIM sequence diagram, to
support the lack of some features in the UML sequence model
(OR and Not). Finally, in this tackle, we developed the
necessary mapping rules (QVT) that act as a standard for the
transformation of PIM sequence diagram metamodel into a
rule-based PSM metamodel, generating the necessary rules and
generating ES facts from UML class models as well as the
developing round-trip mapping that supports the maintenance
of ES.

To evaluate our proposed approach, which is design
science research, a real case study of an academic advising
system for low GPA students, was used for evaluation. QVT
mapping rules that facilitate the transformation from the PIM
to the PSM have been developed. In this process, we establish
mapping rules that convert the PIM sequence diagram into a
rule-based ES, generating the necessary ES rules. Additionally,
we defined mapping rules that transform the PIM class diagram
into a PSM rule-based ES, resulting in the creation of the
required facts for ES. More importantly, utilizing the QVT
Relational language that enables round-trip mapping thereby
support potential changes (i.e. in rules, business requirement,
platform) of PIM, PSM, mapping rules itself. A less costly
maintenance therefore achieved because of the automation and
the standardizing of round-trip mapping rules being developed.
The results obtained from this case study provide practical
evidence of the applicability and utility of our proposed
approach in real-world scenarios.

Nevertheless, it is important to acknowledge the limitations
of the current work. The connection between PSM and a
platform is not tackled but since a generic PSM is developed
the process is straightforward. Also, the consequences of the
inclusion of OCL in UML models. In addition, although the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

328 | P a g e

www.ijacsa.thesai.org

introduced model is adaptable to both process-oriented and
data-oriented approaches, its primary focus lies in the process-
oriented aspect. Also, the models lack the capability of using a
relational or mathematical expression that can be needed in the
PIM metamodel.

In future endeavors, our objective is to further advance the
ES design approach by implementing and evaluating the
proposed design on different domains of ES, ensuring its
practical applicability and effectiveness, and supporting the
lacking features in PIM. Also, incorporating the UML profile
in the mapping process and resolving the limitation of tools
(mapping engine) to recognize profiles.

REFERENCES

[1] H. Tan, ―A brief history and technical review of the expert system
research,‖ IOP Conf. Ser. Mater. Sci. Eng., vol. 242, no. 1, 2017, doi:
10.1088/1757-899X/242/1/012111.

[2] R. Colomb, Deductive Databases and Their Applications. 1998.

[3] ―The Oncology Expert Advisor,‖ 2013.
https://www.mdanderson.org/publications/annual-report/annual-report-
2013/the-oncology-expert-advisor.html (accessed Dec. 08, 2023).

[4] B. T. Sayed, ―Application of Expert Systems or Decision-Making
Systems in the Field of Education,‖ Inf. Technol. Ind., vol. 9, no. 1, pp.
1396–1405, 2021, doi: 10.17762/itii.v9i1.283.

[5] F. Lareyre, C. Adam, M. Carrier, and J. Raffort, ―Automated
segmentation of the human abdominal vascular system using a hybrid
approach combining expert system and supervised deep learning,‖ J. Clin.
Med., vol. 10, no. 15, 2021, doi: 10.3390/jcm10153347.

[6] K. Fedra and L. Winkelbauer, ―A hybrid expert system, GIS, and
simulation modeling for environmental and technological risk
management,‖ Comput. Civ. Infrastruct. Eng., vol. 17, no. 2, pp. 131–
146, 2002, doi: 10.1111/1467-8667.00261.

[7] A. M. Elsawi, S. Sahibuddin, and R. Ibrahim, ―Model driven architecture
a review of current literature,‖ J. Theor. Appl. Inf. Technol., vol. 79, no.
1, pp. 122–127, 2015.

[8] S. Y. Choi and S. H. Kim, ―Knowledge acquisition and representation for
high-performance building design: A review for defining requirements for
developing a design expert system,‖ Sustain., vol. 13, no. 9, 2021, doi:
10.3390/su13094640.

[9] Y. Ran, X. Zhou, P. Lin, Y. Wen, and R. Deng, ―A Survey of Predictive
Maintenance: Systems, Purposes and Approaches,‖ vol. XX, no. Xx, pp.
1–36, 2019, [Online]. Available: http://arxiv.org/abs/1912.07383.

[10] ―OMG,‖ 2014. https://www.omg.org/mda/ (accessed Feb. 02, 2022).

[11] ―MDA,‖ 2001. https://www.omg.org/mda/ (accessed Feb. 02, 2022).

[12] ―ODM,‖ Model Driven Eng. Ontol. Dev., no. September, pp. 215–233,
2009, doi: 10.1007/978-3-642-00282-3_8.

[13] ―MOF,‖ no. August, 2019, [Online]. Available:
https://www.omg.org/spec/MOF/2.5.1/PDF.

[14] B. G. Buchanan and R. Q. Smith, ―Fundamentals of expert system,‖
Springer Ser. Mater. Sci., vol. 206, pp. 31–39, 1988, doi: 10.1007/978-3-
662-44497-9_3.

[15] I. H. Sarker, A. I. Khan, Y. B. Abushark, and F. Alsolami, ―Mobile expert
system: Exploring context-aware machine learning rules for personalized
decision-making in mobile applications,‖ Symmetry (Basel)., vol. 13, no.
10, pp. 1–10, 2021, doi: 10.3390/sym13101975.

[16] N. Mayadevi, S. S. Vinodchandra, and S. Ushakumari, ―A review on
expert system applications in power plants,‖ Int. J. Electr. Comput. Eng.,
vol. 4, no. 1, pp. 116–126, 2014, doi: 10.11591/ijece.v4i1.5025.

[17] S. S. A. Naser and M. H. Al-bayed, ―Detecting Health Problems Related
to Addiction of Video Game Playing Using an Expert System,‖ J.
Multidiscip. Res. Dev., vol. 2, no. 9, pp. 7–12, 2016.

[18] S. Khanna, A. Kaushik, and M. Barnela, ―Expert Systems Advances in
Education,‖ Ncci, no. March, pp. 19–20, 2010, [Online]. Available:
https://www.researchgate.net/profile/Akhil-
Kaushik/publication/267862155.

[19] W. P. Wagner, ―Trends in expert system development: A longitudinal
content analysis of over thirty years of expert system case studies,‖
Expert Syst. Appl., vol. 76, pp. 85–96, 2017, doi:
10.1016/j.eswa.2017.01.028.

[20] K. P. Tripathi, ―A Review on Knowledge-based Expert System : Concept
and Architecture,‖ Artif. Intell. Tech. - Nov. Approaches Pract. Appl.,
vol. 4, no. 4, pp. 19–23, 2011.

[21] A. A. Mohammed, K. Ambak, A. M. Mosa, and D. Syamsunur, ―Expert
system in engineering transportation: A review,‖ J. Eng. Sci. Technol.,
vol. 14, no. 1, pp. 229–252, 2019.

[22] C.-L. Chang and R. C. Tung lee, Symbolic Logic and Mechanical
Theorem Proving. Academic Press, 1973.

[23] R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J. Lederberg,
―DENDRAL: A case study of the first expert system for scientific
hypothesis formation,‖ Artif. Intell., vol. 61, no. 2, pp. 209–261, 1993,
doi: 10.1016/0004-3702(93)90068-M.

[24] ―Drools.‖ https://docs.drools.org/8.44.0.Final/drools-
docs/drools/introduction/index.html (accessed Dec. 08, 2023).

[25] gensym, ―G2.‖ http://dev.gensym.com/platforms/g2-standard/# (accessed
Dec. 10, 2023).

[26] F. Bellifemine, A. Poggi, and G. Rimassa, ―JADE a FIPA2000 compliant
agent development environment,‖ Proc. Int. Conf. Auton. Agents, pp.
216–217, 2001.

[27] P. Charlton, R. Cattoni, A. Potrich, and E. Mamdani, ―Evaluating the
FIPA standards and their role in achieving cooperation in multi-agent
systems,‖ 2002, doi: 10.1109/HICSS.2000.926996.

[28] ―OIDM,‖ 2023.
https://documentation.custhelp.com/euf/assets/devdocs/unversioned/Intell
igentAdvisor/en/Content/Guides/Overview/Overview.htm (accessed Dec.
12, 2023).

[29] J. Giarratano and G. Riley, Expert Systems: Principles and Programming,
Fourth Edition. Course Technology, 2004.

[30] ―QVT,‖ Transformation, no. January, pp. 1–230, 2008, [Online].
Available: http://www.omg.org/spec/QVT/1.0/PDF/.

[31] V. Nikulsins, ―Transformations of software process models to adopt
model-driven architecture,‖ Proc. 2nd Int. Work. Model. Archit. Model.
Theory-Driven Dev. MDA MTDD 2010, Conjunction with ENASE 2010,
pp. 70–79, 2010, doi: 10.5220/0003044500700079.

[32] David S. Frankel, Model Driven Architecture ： Applying MDA to
Enterprise Computing, vol. 308. 2003.

[33] R. S. Aguilar-Savén, ―Business process modelling: Review and
framework,‖ Int. J. Prod. Econ., vol. 90, no. 2, pp. 129–149, 2004, doi:
10.1016/S0925-5273(03)00102-6.

[34] ―UML,‖ Proc. - 2005 IEEE Symp. Vis. Lang. Human-Centric Comput.,
vol. 2005, no. December, p. 9, 2005, doi: 10.1109/VLHCC.2005.65.

[35] ―UML,‖ pp. 443–506, 2017, [Online]. Available:
https://www.omg.org/spec/UML/2.5.1/PDF.

[36] K. Jetlund, E. Onstein, and L. Huang, ―Adapted rules for UML modelling
of geospatial information for model-driven implementation as OWL
ontologies,‖ ISPRS Int. J. Geo-Information, vol. 8, no. 9, 2019, doi:
10.3390/ijgi8090365.

[37] ―PRR,‖ OMG Specif., vol. 1.0, no. December, p. 74, 2009, [Online].
Available: http://www.omg.org/spec/PRR/1.0/.

[38] I. Essebaa and S. Chantit, ―Toward an automatic approach to get PIM
level from CIM level using QVT rules,‖ SITA 2016 - 11th Int. Conf.
Intell. Syst. Theor. Appl., no. PMarch, 2016, doi:
10.1109/SITA.2016.7772271.

[39] R. S. Pressman and B. Maxim, Software Engineering: A Practitioner‘s
Approach. McGraw Hill, 2010.

[40] ―Jetpack Compose basics,‖ 2023.
https://developer.android.com/codelabs/jetpack-compose-basics#0
(accessed Aug. 05, 2023).

[41] ―SwiftUI,‖ 2023. https://developer.apple.com/documentation/swiftui/
(accessed Jul. 09, 2023).

[42] ―WSDL,‖ 2007. https://www.w3.org/TR/wsdl/ (accessed Jul. 05, 2023).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

329 | P a g e

www.ijacsa.thesai.org

[43] ―RESTful,‖ 2018.
https://wiki.onap.org/display/DW/RESTful+API+Design+Specification
(accessed Dec. 12, 2023).

[44] ―SOAP,‖ 2007. https://www.w3.org/TR/2007/REC-soap12-part0-
20070427/ (accessed Dec. 12, 2023).

[45] R. M. Tawafak, G. Alfarsi, A. Romli, J. Jabbar, S. I. Malik, and A.
Alsideiri, ―A Review Paper on Student-Graduate Advisory Expert

system,‖ 2020 Int. Conf. Comput. Inf. Technol. ICCIT 2020, pp. 187–
191, 2020, doi: 10.1109/ICCIT-144147971.2020.9213794.

[46] ―EMF Tutorial - EclipseSource.‖
https://eclipsesource.com/blogs/tutorials/emf-tutorial/ (accessed Oct. 18,
2022).

