
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

408 | P a g e

www.ijacsa.thesai.org

Enhancing Quality-of-Service in Software-Defined

Networks Through the Integration of Firefly-Fruit Fly

Optimization and Deep Reinforcement Learning

Mahmoud Aboughaly
1*

, Shaikh Abdul Hannan
2

Mathematics Department-Faculty of Science, Ain Shams University, Cairo, Egypt
1

Assistant Professor, Department of Computer Science and Information Technology,
Al-Baha University, Al-Baha, Kingdom of Saudi Arabia

2

Abstract—The Software Defined Networking (SDN) paradigm

has emerged as a critical tool for meeting the dynamic demands

of network management with respect to efficiency and flexibility.

Quality of Service (QoS) optimization, which encompasses

essential features including bandwidth allocation, latency, and

packet loss, is a major problem in SDN systems due to its direct

influence on network application performance and user

experience. To deal with these important issues, this paper tackles

the critical problem of Software-Defined Networks (SDNs)

Quality-of-Service (QoS) optimization, which is a critical factor

affecting network application performance and user experience.

Within the Firefly-Fruit Fly Optimised Deep Reinforcement

Learning (DQ-FFO-DRL) framework, a novel combination of

optimization techniques derived from Fruit Fly and Firefly

behaviors with Deep Q-Learning is presented in this suggested

approach, which is called Deep Q-Learning. The framework

effectively investigates ideal network configurations by utilizing

the distinct advantages of the Fruit Fly and Firefly optimization

components, while the Deep Q-Learning component dynamically

adjusts to changing network circumstances by drawing

conclusions from prior experiences. Extensive testing and

modeling reveal that the DQ-FFO-DRL approach performs very

well in SDNs compared to conventional QoS management

solutions. When it comes to negotiating the always changing

world of resource allocation, network usage, and overall network

performance, this algorithm demonstrates exceptional

adaptability. The suggested system, which is implemented in

Python, offers an advanced and flexible method for enhancing

QoS in SDN systems.

Keywords—Software Defined Network (SDN); Quality of

Service (QoS); firefly-fruit fly optimization; Deep Reinforcement

Learning (DRL); adaptive QoS enhancement; network optimization

I. INTRODUCTION

Network administrators have been using traffic
engineering approaches to enhance resources management
efficiency in order to cope with the ever-increasing volume of
network traffic. In communications networks, traffic
engineering synchronises the packet forward pathways of
various streams within the network to enhance the total level
of service provided by network users. Routing optimisation
remains a long-term research topic along with one of the main
obstacles in network utilities optimisation through traffic
engineering [1]. Using conventional routing techniques, each
router decides how to forward packets on its own,

disregarding the judgments made by other routers. Even
though this dispersed routing technique is scalable as it can be
used on any size networks, it is challenging to handle network
management of resources in an effective and flexible manner
and optimise network routing as a whole. Software defined
networking (SDN) was initially proposed as an efficient way
to handle the whole network by dividing control and
information layers in the network [2], that separates
information transfer from control functions. These factors
make an improved network management models more
necessary [3]. SDN logically decouples the network's
operational plane and the information plane to give an overall
picture of the system and enhances network programming
capabilities for network administration and operation.
Networking policies can be deployed dynamically and with
efficiency using this SDN approach. SDN makes it possible to
control forwarding of packets centrally and see the entire
network, but creating the best routing scheme is not easy.
Limited shortest path issues are how the issue of routing is
formulated in many current publications, yet these issues
typically have an optimal solution that is NP-hard [4].
Furthermore, while the generic multi-commodity flow issue
has a conventional solution that takes the network's operation
as a constant model with fluctuating traffic, these models are
unable to effectively depict good network function under
complicated and variable traffic conditions [5].

In recent years, deep reinforcement learning (DRL), that
blends deep neural networks and reinforcement learning (RL),
has been used to create traffic engineering strategies [6]. The
development of the DRL method offers a fresh approach to
optimising extremely complex transportation issues. By
enhancing routing policy effectiveness in a model-free and
focused on experiences way, DRL-based route methods are
able to develop and adjust to complicated networks. Using the
DRL approach in an SDN-based networks has shown to
significantly improve routing optimisation performance,
according to recent studies. It should be highlighted that
networks performance loss can happen throughout the
learning procedure, especially in the beginning phases, owing
to the characteristics of reinforcement learning (RL), that
entails experimentation in the manner of identifying the most
effective approach [7]. When training an infrastructure, one
should not risk network efficiency deterioration when
improper routing policies immediately boost packet loss and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

409 | P a g e

www.ijacsa.thesai.org

end-to-end delay throughout the network itself. This decreases
the system's dependability. Specifically, in the event of a
system's topology modification, the DRL agent that is running
ought to retrain how to optimise routing. Continuous network
performance deterioration is caused by the longer time it takes
for convergence to occur when the features of internet traffic
become more complicated. In addition, using DRL-based
route optimisation, which requires investigation, can have
severe effects in systems that carry QoS-sensitive information
[8].

The need for better Quality of Service (QoS) provisioning
in Software-Defined Networks (SDNs) is growing in
importance in the ever-changing world of today's networks. As
numerous applications develop and information traffic
increases, guaranteeing effective and adaptive QoS
administration has become a critical task. Conventional
methods of maximising quality of service frequently lack the
flexibility required to handle the intricate and shifting
dynamics of contemporary network settings [9]. The study
explores the incorporation of novel Firefly-FruitFly Optimised
Deep Q-learning approaches to provide adaptive QoS
improvements in SDNs in order to overcome these constraints.
By separating both data and control planes, Software-Defined
Networking (SDN) completely transformed the way networks
are managed and controlled. This has made it possible to have
centralised control over the network. Due to this division,
network assets can be used with never-before-seen flexibility
and control, allowing for dynamic setups and modifications in
response to changing needs [10]. But even with SDN's built-in
benefits, maintaining excellent QoS is still difficult because of
the complex interactions between different network variables
as well as the constantly changing nature of internet traffic.

Among the most important metrics for assessing the
efficiency of a network is quality of service, which includes a
number of factors such as latency, bandwidth, dependability,
and safety. Optimising these variables to match particular
service level commitments and guarantee the best possible
experience for users is necessary for successful QoS
management. Conventional QoS administration frequently
uses preset or static regulations, which may not be able to
adjust to shifting network circumstances. This could result in
less-than-ideal resource usage and possible performance
issues. Techniques inspired by environment have become
more popular in recent decades for resolving challenging
optimisation issues [11]. Based by the typical behaviours of
fruit flies and fireflies, accordingly, the Firefly and FruitFly
Optimisation algorithms have been found to be remarkably
effective in solving a wide range of optimisation problems.
These methods use the ideas of repellent and attraction to
identify the best answers in challenging optimisation
scenarios, imitating the typical actions of these bugs. By
incorporating such bio-inspired methods into social media,
there is a chance to improve the flexibility and effectiveness of
QoS control in SDNs. Moreover, the utilisation of RNN-
LSTM in the field of networks has demonstrated exceptional
capacity to tackle intricate and variable optimisation issues. In
DRL, robots are trained to communicate with the surroundings
and make successive choices in order to maximise aggregate
rewards. The network's controllers can be given the ability to

generate wise and flexible choices depending on the needs and
circumstances of the network's infrastructure in actual time by
utilising DRL in connection with SDN [12]. The study
attempts to establish a new architecture which not just
optimises QoS in SDNs but additionally responds to shifting
traffic trends and network behaviour by merging DRL into the
Firefly-FruitFly Optimisation methods.

Software-Defined Networks (SDNs) are a revolutionary
paradigm in computer networking that have arisen to address
the increasing needs of dependable and effective network
services. The optimisation of Quality of Service (QoS)
attributes, which include jitter, latency, throughput and packet
loss and have a direct impact on network application
performance and user experience, is a key challenge in SDNs.
This paper presents a novel framework that combines Deep Q
Learning with Firefly-Fruit Fly Optimisation to transform QoS
enhancement in SDNs. The bio-inspired optimisation
algorithms of Firefly-Fruit Fly Optimisation efficiently
explore and identify optimal network configurations, drawing
inspiration from the natural behaviours of both fruit flies and
fireflies. At the same time, Deep Q-Learning's adaptive
learning mechanism keeps learning from previous experiences
and network interactions. This allows the framework to make
wise decisions in real time and adeptly adjust to the changing
network conditions. The combination of these cutting-edge
methods offers an SDN environment that is more responsive,
effective, and optimised, constituting a major breakthrough in
the field of software-defined networking. The study would
then go into experimental validation, performance metrics,
and comparisons with traditional QoS management strategies
in order to show how this new framework performs
exceptionally well and how it ultimately improves user
experience and network efficiency. The following lists the
main findings of the suggested investigation:

 The main contribution of the paper is to advance the
field of SDNs by offering a fresh, flexible, and clever
framework for enhancing QoS. The combination of
deep reinforcement learning and optimisation inspired
by nature offers a novel strategy for tackling the
problems related to quality of service (QoS) in
contemporary network settings.

 The article presents a novel framework that
incorporates the nature-inspired optimisation technique
known as Firefly-Fruit Fly Optimization. Quality of
Service (QoS) management in Software-Defined
Networks (SDNs) presents intrinsic issues that could
be properly explored and identified through the
implementation of this optimization technique.

 The QoS management method gains a dynamic and
self-learning mechanism with the integration of Deep
Reinforcement Learning (DRL) into the framework.
Based on prior interactions and experiences, DRL
continuously adjusts to shifting network conditions,
offering a clever and flexible method of improving
QoS.

 The management of crucial QoS factors, including as
packet loss, throughput, jitter, and delay, is the study's

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

410 | P a g e

www.ijacsa.thesai.org

primary objective. The framework combines DRL and
Firefly-Fruit Fly Optimisation to dynamically optimise
these parameters in order to improve network
performance as a whole.

The subsequent sections of the paper are organized to
provide a comprehensive exploration and validation of the
proposed framework. The research unfolds in a structured
manner, with the following key segments: A summary of
relevant routing of networks work is given in Section I. The
paper's uniqueness and the issues with related works are
discussed in Section II, Problem statement in Section III. The
SDN QoS improvement mechanism is described in Section IV.
Explain the suggested method's effectiveness rating in Section
V, and the overall research's conclusions and future work is
given in Section VI and Section VII respectively.

II. RELATED WORKS

A relatively new development in networking for computers
is the software-defined network (SDN), which separates
forwarding of information from centralised control to provide
a very adaptable and controllable networks architecture. A
great deal of study has been conducted to provide effective
routes and allocate resources for SDNs. To guarantee
application-driven QoS regardless of the face of computer
hacking, situation-aware networks administration continues to
encounter significant obstacles. To deal with this matter,
Hossain and Wei [13] Utilise technology related to
reinforcement learning (RL) to provide smart networks
administration and scenario knowledge from the standpoint of
routing control. In the modelling parts, the effectiveness of the
suggested RL-enabled route management approach is assessed
by taking into account various situations. Despite the efforts to
enhance the recommended routing method, one possible
limitation is the substantial resource commitment needed to
fully evaluate the approach's effectiveness in a sizable testbed.
The extent and velocity of the experimental and assessment
process may be constrained by the monetary and time
commitment.

Conventional networks for routing use limited data to
determine routing, that can cause a delay in adapting to
network traffic fluctuation and a lack of assistance for apps'
QoS needs. Casas-Velasco et al. [14] presents reinforced
learning and Software-Defined Networking's Intelligent
Routing (RSIR), a revolutionary method for navigating in
SDN. In order to generate routing choices, RSIR incorporates
an Understanding Planes into SDN and specifies a
Reinforcement Learning (RL)-based routing algorithms that
considers link-state data. The method computes and installs
the best routes previously in the forwarded devices by utilising
the artificial intelligence offered by RL, the worldwide view
and management of the network that is given by SDN, and its
relationship with the surrounding environment. Utilising
actual traffic matrix for imitation, RSIR was thoroughly
assessed. The findings indicate that when bandwidth available,
postpone, and damage are taken into account separately or
together for the estimation of optimum pathways, RSIR works
better than Dijkstra's method in terms of exertion, link
productivity, loss of packets, and time. The outcomes indicate
that RSIR is a desirable option for SDN smart routing. The

need for substantial computing power for implementing Deep
Reinforcement Learning (DRL) to enhance RSIR choices
constitutes a potential limitation for future studies, especially
for bigger networks. Additionally, integrating traffic forecasts
for selecting a path may add to the method's complexities.

The concept of Software Defined Networking (SDN),
which centralises intellect in software-driven controllers in
order to increase network adaptability and address various
network difficulties, continues to gain traction in both research
and the IT sector. SDN is considered one of the driving forces
behind 5G networks. The efficiency and utilisation of the
network may be improved and optimised with the help of
machine learning (ML) technologies. Network administration
and operation tricky issues have shown to be a huge
cooperative challenge for Neural Networks (NN) and
Reinforcement Learning (RL) in specific. Bouzidi et al.[15],
an SDN-based principles insertion method that uses Deep Q-
Network (DQN) agents to acquire the best routes and redirect
congestion in order to increase networks utilisation. The
method primarily uses NN to proactively forecast traffic
bottlenecks. To achieve this, authors initially outline the
connection problem that considers Quality-of-Service (QoS)
as a Linear Programme (LP), with the goal of minimising both
link utilisation and from beginning to end (E2E) time.
Following that, author suggests a effective heuristic approach
to resolve it. Emulation-based mathematical results utilising
Mininet and ONOS controllers show that the suggested
method can greatly enhance network capabilities by reducing
lost packets, E2E postponement, and connection utilisation.
One possible limitation for further study is the sophisticated
optimisation procedure needed to set up a Distributed Deep Q-
Network (DQN) agent, which adds complication to the
installation process and allows for efficient management of the
quantity and location of SDN routers and related information
plane switching.

Conventional routing algorithms use only a small amount
of data to determine routing, that results in a delayed response
to traffic fluctuation and a constrained capacity to fulfil apps'
quality of service needs. In order to overcome these
drawbacks, researchers presented, a Reinforcement Learning
(RL)-based router approach for SDN. Yet, when confronting
vast actions and state areas, RL-based systems typically see a
rise of training time. Casas-Velasco et al.[16] Presents Deep
Reinforcement Learning and Software Defined Networking
Intelligent Routing (DRSIR), an alternative routing method. In
SDN, DRSIR specifies an algorithm for routing that gets
beyond the drawbacks of RL-based systems by utilising Deep
RL (DRL). In order to generate innovative, efficient, and
smart routing that adjusts to continuous congestion changes,
DRSIR takes path-state indicators into account. Emulation
was used to assess DRSIR utilising both artificial and actual
traffic patterns. According to the outcomes, this method
operates better in terms of flex, loss of packets, and latency
than the routes that utilise Dijkstra's algorithm and RSIR.
Furthermore, the outcomes show that DRSIR offers a
workable and realistic approach for networking in SDN. The
intricacy and mathematical requirements of expanding DRSIR
to accommodate multiple paths routing, multiple levels DRL
plans, and the integration of travel type data could be a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

411 | P a g e

www.ijacsa.thesai.org

hindrance for subsequent research, making it difficult to
control the method's learning settings and assess effectiveness
across a variety of traffic conditions.

The requirement for quality of services resulting from an
exponential rise in network traffic makes routing optimisation
increasingly vital. With the latest advancement of software-
defined networking (SDN) technologies, networking
equipment like switches can now be flexible configuration via
programming interfaces, allowing for centralised
administration and operation. Kim et al. [17] Provide a routing
optimisation on an SDN using deep reinforcement learning
(DRL). Under the suggested approach, the agent that handles
DRL determines an ideal set of connection weights to strike a
compromise for the networking's lost packets and total latency
by learning how the overall traffic load of network routers and
network efficiency are related. Installing the flow-rules onto
the SDN-enabled shifts, an SDN controller uses an array of
link strengths to decide how to distribute pathways. They
create an M/M/1/K queue-based network framework and use it
to execute the DRL training procedure offsite unless it
converges in order to circumvent the extremely lengthy
learning procedure for DRL in the event of a topologies
modification. The outcomes of the experiment show that in a
number of network structures, the suggested routing technique
works better than both a network demand-based RL
algorithms and a traditional hop-count forwarding technique.
To guarantee the efficacy and usability of the suggested
routing approach in multiple network settings, additional
assessment and verification of the approach over a larger
range of configurations is necessary. This represents a single
negative.

Numerous applications that operate in real time utilise
reinforcement learning (RL), a way of learning without
supervision. A challenge involving making choices is at the
heart of RL. In reinforcement learning, the participant engages
with its surroundings continuously and decides what to do
future based on past input regarding rewards. Younus et al.[18]
RL Software-Defined Wireless Sensor Networks (SDWSNs)
optimise their routing pathways through training. They merge
SDN and RL, when routing lists are generated by applying RL
to the SDN controller. In addition, they suggest four distinct
incentive mechanisms to optimise the efficiency of networks.
When contrasted with RL-based forwarding algorithms, RL-
based SDWSN enhances the network's efficiency by 23% to
30% as a matter of lifetime. Since it's able to effectively learn
the network path at the level of the controller, RL-based
SDWSN operates well. Furthermore, compared to RL-based
WSN, it offers a faster network integration rate. One possible
disadvantage of SDWSN is that its centralised control can
give rise to problems with scalability and higher
communication above you, which could restrict its use in
larger and intricate network systems.

The literature reviewed here emphasises how software-
defined networking (SDN) and reinforcement learning (RL)
are becoming increasingly important in routing optimisation to
fulfil the demands of effective resource allocation, quality of
service (QoS), and network adaptability. Scholars like Hossain
and Wei, Casas-Velasco, Bouzidi et al., and Kim et al.
investigate several RL-based methods for smart routing in

SDN, taking traffic patterns, link-state data, and deep
reinforcement learning (DRL) into account. When compared
to conventional routing methods, these studies show increases
in network efficiency, less packet loss, and decreased latency.
On the other hand, difficulties like the need for more computer
power, the difficulty of optimisation, and issues with
scalability for larger networks are recognised. Furthermore,
Younus et al. investigate the incorporation of RL in SDN
within the framework of wireless sensor networks (SDWSNs),
demonstrating improved network performance using RL-
based routing choices. Scalability concerns are brought up by
the centralised control of SDWSNs, despite their benefits.
Overall, the literature highlights the promise for intelligent
and adaptive network management through the integration of
SDN and RL, while also highlighting the need for more study
to overcome obstacles and optimise these strategies for a
range of network situations.

III. PROBLEM STATEMENT

In the context of larger and more complicated network
systems, the research recognises a number of noteworthy
issues related to the recommended methodologies. One
notable drawback is the high resource consumption, which
includes processing power, time, and monetary inputs needed
to evaluate the efficacy and flexibility of the suggested
methods. These resource limitations could prevent the
technologies from being widely used, which would limit their
scalability. Potential challenges arise from the complexity of
implementation and management processes brought about by
the integration of Deep Reinforcement Learning (DRL) into
routing methods. Moreover, it has been observed that the
centralised administration of Software-Defined Networking
(SDN) [16] systems leads to increased inefficiencies and
scalability problems, which restricts the adaptability of
solutions in complex network environments. The study
underscores the need for additional evaluation and verification
of the suggested techniques in various network contexts to
guarantee their efficacy and pragmatic suitability. In spite of
these obstacles, the study presents a novel and cutting-edge
approach to addressing Quality of Service (QoS) in SDNs by
combining Fruit Fly Optimised Q-Learning with Firefly.
Using the intelligence of deep reinforcement learning and the
flexible abilities of nature-inspired optimisation, this method
actively maximises network efficiency based on current traffic
requirements. With its ability to adapt to changing traffic
patterns and network conditions, the combination that has
been developed provides a stable and efficient network
architecture that shows promise in addressing the issues raised
in the issue's formulation.

IV. OUTLINE OF THE PROPOSED MECHANISM

The suggested hybrid method improves Quality of Service
(QoS) in Software Defined Networks (SDN) by combining
Deep Reinforcement Learning (DRL) with Firefly-Fruit Fly
Optimisation. The strengths of both optimisation strategies are
used in this integrated methodology. The optimisation of
network parameters through the combined intelligence of fruit
flies and firefly is known as Firefly-Fruit Fly Optimisation.
The quality of a potential solution is represented by the
brightness of each firefly in a model of firefly interaction

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

412 | P a g e

www.ijacsa.thesai.org

called Firefly Optimisation. This brightness-based method
aids in fine-tuning network setups, with enhanced packet loss,
throughput, latency, jitter, and brightness directing increases in
certain parameters. Thorough Reinforcement Network
configuration adaptation is heavily reliant on learning. It
makes use of neural networks' capacity to learn and make
judgments in a sequential manner that is consistent with QoS
objectives. DRL improves performance by allowing the
network to dynamically adjust to changing circumstances. It
regularly evaluates the network's condition, pinpoints areas in
need of modification, and puts new policies into effect as
necessary. The combination of DRL and Firefly-Fruit Fly
Optimisation is a synergistic method for improving QoS.
Firefly Optimisation is excellent at finding viable solutions,
and DRL gives you the tools to put those answers into practise
and modify them quickly. When combined, they maximise
throughput while reducing latency, jitter, and packet loss in
order to optimise network parameters. With this integration,
network efficiency and flexibility will be maintained, which
will ultimately result in a more dependable and seamless user
experience and a considerable improvement in QoS in SDN.
The suggested technique's workflow is depicted in Fig. 1.

Fig. 1. Workflow of the proposed system.

A. Data Collection

In this research, an evaluation is conducted to compare the
performance of SDN (Software-Defined Networking) and
traditional non-SDN network configurations. The examination
takes place within the network infrastructure of the
engineering faculty at Universitas Muhammadiyah Malang
(UMM). The primary goal is to assess the capabilities of both
SDN and non-SDN networks when subjected to the same
network topology. To facilitate this assessment, the study
employs simulation techniques, specifically using the SDN
network emulator and the MiniNet Floodlight controller. A

range of Quality of Service (QoS) parameters, including
latency delay, jitter, throughput, and packet loss, is employed
to gauge the QoS metrics of the latter network [19].

B. Feature Extraction Based on Hybrid Firefly-Fruit Fly

Optimization

A nature-inspired optimization technique called Fruit
Fly Optimization (FFO) is based on the
swarming behaviours of fruit flies. It is intended to resolve
intricate optimization issues by mimicking the motion and
communication of fruit flies as they seek for the optimal
solution [20].

Step 1: Establish the primary FOA settings and randomly
assign the fruit fly swarm's starting position L.

𝑢 − 𝑎𝑥𝑖𝑠, 𝑣 − 𝑎𝑥𝑖𝑠

Step 2: Give your own fruit fly the ability to go in any
direction in search of nourishment by employing Eq. (1) and
Eq. (2):

𝑢𝑝 = 𝑈 − 𝑎𝑥𝑖𝑠 + 𝑅𝑉 (1)

𝑣𝑝 = 𝑉 − 𝑎𝑥𝑖𝑠 + 𝑅𝑉 (2)

𝑃 = 1,2, … , 𝑕

where, 𝑕 is the magnitude of the fruit fly swarm.

Step 3: Given the inherent uncertainty in determining the
exact location of food, we can calculate the distance
(represented as 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝) of the fruit fly from its starting
point. This calculation allows us to establish a judgment value
for the concentration of the smell (denoted as 𝐹𝑝). Let's

assume that Si is the reciprocal of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝, as follows in
Eq. (3) and Eq. (4):

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝 = √𝑢𝑝
2 + 𝑣𝑝

2 (3)

𝐹𝑝 =
1

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝 (4)

Step 4: By entering the smell concentration judgment
value (𝐹𝑝) into the scent concentration judgment function (also

known as the Fitness function), one may obtain the scent
intensity (𝑆𝐿𝑝) of each unique fruit fly site in Eq. (5).

𝑆𝐿𝑝 = 𝐹𝑛 (𝐹𝑝) (5)

Step 5: Determine which fruit fly in the swarm has the
strongest scent concentration on an individual basis in Eq. (6):

[𝐵𝑒𝑠𝑡𝑆𝐿 𝐵𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥] = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (𝑆𝐿𝑝) (6)

Step 6: Preserve the optimal fruit fly's position (u, v) and
highest scent intensity level. The swarm then takes off for that
destination in Eq. (7):

𝑆𝐿(𝑆𝑚𝑒𝑙𝑙)𝐵𝑒𝑠𝑡 = 𝐵𝑒𝑠𝑡𝑆𝐿 (7)

𝑢 − 𝑎𝑥𝑖𝑠 = 𝑢(𝐵𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥)

𝑣 − 𝑎𝑥𝑖𝑠 = 𝑣(𝐵𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥)

To reiterate the execution of steps 2 to 6, initiate iterative
optimization. The loop concludes when either the number of
iterations reaches the maximum allowed limit or when the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

413 | P a g e

www.ijacsa.thesai.org

current concentration of scent no longer surpasses the
concentration obtained in the previous iteration.

1) Firefly Algorithm (FA): The Firefly algorithm, created

by Xin-She [21], is predicated on the idealised behaviour of

firefly flashing qualities. These flashing traits could be

summed up as follows, for ease of understanding:

 In the firefly world, gender is not a factor; every firefly
is universally drawn to others. This means that a firefly
will be attracted to any other firefly, regardless of its
gender.

 Attractiveness in this context is directly tied to the
luminosity of fireflies. When two fireflies flash, the
one with less brightness will be naturally inclined to
move closer to the brighter one. This attractiveness
factor is directly proportional to their respective
brightness levels, and it diminishes as the distance
between them increases. In the absence of a firefly
brighter than itself, a firefly will resort to random
movement.

 The brightness of a firefly is intricately linked to the
landscape of the objective function they aim to
optimize. In other words, the features of the terrain,
such as peaks and valleys, will determine the
brightness of a firefly.

To simplify the understanding, it could assume that a
firefly's appeal is determined by its brightness or the intensity
of its light, which, in turn, relates to the encoded objective
function. In the most straightforward scenario for
optimization, we can express the brightness (R) of a firefly at
a specific position (u) as 𝑅(𝑢) ∝ 1/𝑓(𝑢). However, it's
important to note that attractiveness is a relative concept, and
it should be contingent on the distance (𝑒𝑥𝑦) between two

fireflies, 𝑥 𝑎𝑛𝑑 𝑦. Similar to how light intensity diminishes as
you move away from its source and is affected by the medium
it travels through; it should also consider the degree of
absorption when determining the attractiveness between
fireflies.

C. Hybrid FOA-FA Algorithm

This section provides a comprehensive overview of the
proposed algorithm, FOA-FA. The primary objective behind
the development of FOA-FA is to address the limitations of
the original FOA. The original FOA faces challenges in
handling the negative domain, as it cannot generate candidate
solutions uniformly across the problem domain. Moreover, it
tends to prematurely converge due to the random term in Eq.
(3), which typically produces small values within a radius of
one around the best location. The methodology of the FOA-FA
algorithm involves two distinct phases. The first phase makes
use of FOA [22], where a group of fruit flies navigates in
multiple directions using the ARM (Artificial Fruitfly
Recognition Module). Consequently, these movements follow
a uniform distribution across the problem space. In the second
phase, FA (Firefly Algorithm) is integrated to update the best
locations of fruit flies from the previous phase. This
integration is essential to prevent FOA from getting stuck in
premature convergence by combining its exploitation and

exploration capabilities. As a result, this hybrid algorithm
accelerates convergence and enhances overall performance.
The primary steps of the proposed algorithm are outlined as
follows:

Step 1: Initialization

 Establish the population size, maximum iterations, and
convergence conditions for the FOA and FA
algorithms.

 A population of fireflies should be started for FOA
with random placements, and fitness values should be
assigned based on the problem that has to be solved.

 Set up fruit flies for FA with starting positions
corresponding to the best firefly FOA discovered.

 Decide on 0 iterations.

Step 2: Main Loop

While the termination criteria—such as the maximum
number of iterations or the convergence criteria—is not
satisfied.

Step 3: FOA Phase

 Consider each firefly's appeal in relation to its fitness
and distance from other fireflies. Attractiveness
increases with fitness level and distance travelled.

 Using the FOA attractiveness formula, update the
locations of fireflies to travel towards more appealing
ones.

 Reassess the changed roles' suitability.

 Based on fitness, choose the best firefly.

Step 4: FA Phase

 Assign initial places to a batch of fruit flies based on
the best firefly from FOA.

 Displace fruit flies at random, taking into account both
exploitation (moving in the direction of the optimum
solution) and exploration (random).

 For every fruit fly, determine the fitness of the
perturbed positions.

 Based on fitness, choose the finest fruit fly.

Step 5: Integration

 Compare the best fitness determined by FA and FOA.

 Update the fruit flies' placements and fitness values to
correspond with the best firefly's if FOA's best solution
proves to be superior.

 Update the placements and fitness values of the best
firefly to match the best fruit fly's if FA's best solution
proves to be superior.

Step 6: Termination

 Increase the number of iterations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

414 | P a g e

www.ijacsa.thesai.org

 Examine the criteria for termination. If it is satisfied,
break out of the loop; if not, go back to step 2.

Step 7: Final Outcome

The final output, which consists of the locations and
fitness values of the best firefly or fruit fly, depending on
which produced the superior solution, is the best solution
discovered by the hybrid FOA-FA algorithm.

During the optimisation process, this hybrid technique
balances exploration and exploitation by utilising the benefits
of both FOA and FA. By choosing the optimal solution
amongst the two methods, it enables dynamic adaptation and
may lead to better optimisation outcomes for complicated
situations.

Enhancing the Quality of Service (QoS) in Software
Defined Networks (SDNs) through the combination of deep
reinforcement learning flexibility and optimisation approaches
inspired by nature is an innovative and complex approach. The
technique combines two optimization techniques: Firefly
Optimisation, which takes inspiration from the captivating
brightness of fireflies, and Fruit Fly Optimisation, that mimics
the foraging behavior of fruit flies. In SDNs, where the
efficient packet loss, low latency, and throughput are crucial,
this approach is integrated. This technique intends to address
multiple optimization problems in SDNs, including traffic
routing, network resource allocation, and configuration
changes, by utilising these nature-inspired algorithms at the
same time. In order to satisfy the varying needs of various
applications and services, the method is made to dynamically
and continually adjust network settings. Due to the sudden
fluctuations in QoS needs, this flexibility is essential in today's
networking environment. Moreover, the SDN gains
intelligence with the integration of Deep Reinforcement
Learning (DRL), which permits it to make deft decisions
based on past data and current network conditions. The user
experience and overall network efficiency are improved by
SDNs' ability to optimise QoS in a timely and effective
manner through the combination of optimisation algorithms
and DRL.

D. Deep Q-Learning Framework

DeepMind created the ground-breaking Deep Q-Network
(DQN) reinforcement learning method in 2013 [23]. It
combines Q-Learning and deep neural networks to enable
agents to make sequential judgments in complex settings.
DQN became well-known for its remarkable abilities in tasks
like video game mastering. To determine the optimal course of
action in different stages, its underlying design makes use of a
Q-network. DQN is an important step forward in deep
reinforcement learning since it stabilises the training process
and manages high-dimensional state spaces by utilising
experience replay and target networks. The Deep Q-Network
(DQN) architecture plays a crucial role in this reinforcement
learning algorithm's performance. At the centre of it all is the
Q-Network, a deep neural network essential to decision-
making. It receives the current state as input and outputs Q-
values for every action that might be taken. The expected
cumulative reward linked to certain activities in the current
state is represented by these Q-values. To implement the Q-

network, deep learning frameworks like as TensorFlow or
PyTorch are frequently utilised. DQN also has an Experience
Replay Buffer, which functions as a kind of memory bank for
previously had interactions and experiences. Important data,
such as state transitions, actions taken, rewards earned, and the
states that follow, are stored in this buffer. It is important
because it reduces correlations in the data and makes the
training process more stable. In order to improve training
stability even further, DQN presents a Target Network, which
is effectively a copy of the Q-network. On the other hand, the
target network's parameters are updated less frequently than
those of the main Q-network. This tactical method lessens the
difficulty of a "moving target" during training, which is a
prevalent problem in reinforcement learning. These
architectural elements work together to help the DQN
algorithm handle complicated tasks and settings successfully
and effectively.

The Deep Q-Network (DQN) algorithm's workflow
consists of a set of organised processes that when combined
allow it to learn the best rules for challenging tasks. Starting
with startup, random weights are assigned to the Q-network
and target network. Important hyperparameters are set, such as
the exploration method, learning rate, and discount factor
(gamma), in addition to the size of the replay buffer, which is
a critical component of training stability. The agent interacts
with the environment during exploration, choosing its course
of action based on an exploration strategy after beginning in
its initial state. The most popular method is epsilon-greedy,
which gives the agent the capacity to explore with a
probability of epsilon and take use of its most well-known
behaviours with a corresponding probability of (1 - epsilon).
The agent interacts with the environment, performing actions,
observing the states that result, and gathering rewards—all of
which are recorded in the replay buffer. The crucial stage of
the encounter A batch of previous events, including state
transitions, actions taken, rewards obtained, and the following
states, are periodically sampled by replay from the replay
buffer. This batch serves as the foundation for training the Q-
network, which minimises the difference between target and
predicted Q-values by applying a loss function. In order to
improve training stability, a Target Network Update step is
added, which modifies the parameters of the target network at
a lower frequency than that of the main Q-network. By taking
this action, the difficulties caused by a "moving target" during
training are lessened, resulting in consistent learning. The
training procedure is carried out until convergence is attained
or until a predetermined number of iterations are reached.
Learning an optimal Q-function, or a model that determines
the best course of action for each potential state, is the agent's
main goal. Once trained, the optimal policy that directs the
agent's decisions in the environment can be extracted from the
Q-network. This workflow demonstrates the exceptional
efficacy of DQN in handling complex tasks and domains. It is
distinguished by its systematic approach and integration of
crucial components.

1) Optimizing SDN QoS: Firefly-Fruit Fly and DQN

Fusion: The goal of improving Quality of Service (QoS) in

Software-Defined Networks (SDN) has led to the creation of

novel approaches, one of which combines Deep Q-Network

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

415 | P a g e

www.ijacsa.thesai.org

(DQN) with Firefly-Fruit Fly optimisation. This integration

combines the best features of state-of-the-art deep

reinforcement learning techniques with algorithms inspired by

nature to optimise QoS and network performance in a fresh

and promising way. Firefly-Vinegar Fly optimisation attempts

to emulate the swarm intelligence of these natural organisms

by taking cues from their collective behaviour. This allows the

strategy to efficiently explore and make utilisation of network

parameters, adapting and responding to shifting network

conditions and user requests. By using a collective approach,

the network may optimise routing and dynamically allocate

resources, improving the quality of service overall. Deep Q-

Network (DQN) is included to enhance the swarm intelligence

and provide a higher level of sophistication to the decision-

making process. Intelligent decision-making is made possible

by DQN, which uses deep neural networks to assess and

forecast the quality of potential actions in various network

states. When these two approaches are combined, the network

can quickly adjust to changing user demands, network

conditions, and traffic volumes. This hybrid approach's

potential to accelerate convergence and increase the network's

responsiveness to real-time difficulties is one of its main

advantages. By guaranteeing that resources are allocated

optimally and lowering latency, packet loss, and other QoS-

related problems, it also greatly increases the overall

efficiency of SDNs. Essentially, there is a lot of room for

improvement in QoS in SDNs because to the combination of

DQN and Firefly-Fruit Fly optimisation technology. This

approach, which makes use of deep learning and nature-

inspired swarm intelligence, offers a flexible and adaptable

way to deal with the difficulties and complexities of

contemporary software-defined networks. This novel method

opens the door to more effective and dependable

communication as network needs increase and diversify,

which makes it a potential direction for network optimisation

and QoS improvement in the future.

V. RESULT AND DISCUSSION

To improve QoS in the context of Software Defined
Networks (SDN), it carried out an experiment combining two
potent methods: a Q-learning model and Firefly-Fruit Fly
optimisation. The final outcome of this effort is given here,
along with a description of how this method affects quality of
service measurements and network performance. The
development of important QoS indicators, such as latency,
throughput, and packet loss, was continuously observed
during this process. Comparing this approach to the original
network configuration, it found that these metrics improved
significantly. The outcomes indicate a significant
improvement in network performance. The emulator that was
selected for the present research was MiniNet. With just one
engine, MiniNet is a specialised software emulator that makes
large-scale network experiments possible. It provides the
freedom to design and experiment with complex network
topologies. Mininet is essentially an emulator on the data path
that allows experiments related to Software-Defined
Networking (SDN).

A. Latency in SDN Networks

Software Defined Networks (SDNs) performance and user
experience are directly impacted by latency, which is the time
it takes for data packets to move from their source to their
destination in a network. Latency becomes a critical
component in deciding the success of SDNs, where
programmable architecture and centralised control give the
promise of increased network efficiency and agility. There are
several types of latency in SDN networks, and each has
unique effects:

1) Propagation latency: The duration required for data

packets to physically move across the network media is

represented by this. Both the distance between the devices and

the speed of light in the transmission medium have an impact

on it.

2) Transmission latency: This is associated with the

duration required to force data packets onto the medium of

transmission. It is mostly reliant on the network devices'

hardware and data rate.

3) Processing latency: The amount of time required for

packet processing at the switches and controller greatly affects

total latency in SDN settings. This entails tasks including rule

matching, packet classification, and decision-making.

4) Queuing Latency: When packets build up in network

device buffers, queuing happens. Packets that must wait in

queue to be forwarded cause latency.

TABLE I. LATENCY IN SDN

Network

Load

Level

Propagation

Latency (ms)

Transmission

Latency (ms)

Processing

Latency

(ms)

Queueing

Latency

(ms)

2 1.2 0.5 0.1 0.2

4 1.5 1.0 0.3 0.4

6 2.0 2.5 0.5 1.2

8 2.5 3.2 0.8 1.8

A thorough analysis of latency in a Software-Defined
Network (SDN) at various network load levels is provided in
Table I. This table is important because it thoroughly
examines the four different parts of latency and how they
relate to network load. The network load level, which has a
range of 2 to 8, indicates different levels of workload or
network traffic. Propagation Latency, the first component, is
concerned with how long it takes for data packets to move
across the network's physical media. Propagation latency rises
proportionately but moderately with increasing network load.
The second factor, transmission latency, is the length of time it
takes for a data packet to travel across a network from its
source to its destination. As network demand increases, this
component also suffers an increase.

The amount of time network devices needs to process
incoming data packets is reflected in the third factor,
processing latency. Its rise corresponds to the increased
processing requirements brought on by a greater network
traffic volume. Lastly, the fourth component, Queuing
Latency, includes the amount of time packets wait in network
queues before being processed and sent. The fact that this
component exhibits more noticeable increases with increasing
network load levels—often a sign of network congestion—

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

416 | P a g e

www.ijacsa.thesai.org

makes it especially interesting. Overall, Fig. 2 illustrates a
refined understanding of the latency dynamics in SDNs. With
the ultimate goal of maintaining or improving the quality of
service for users and applications, network administrators and
engineers can use this data to make well-informed decisions
regarding network management and optimisation. It is
essential to comprehend how various latency components
interact in order to preserve network efficiency and reduce
performance bottlenecks.

Fig. 2. Latency in SDN networks.

B. Jitter in SDN

In Software-Defined Networks (SDNs), jitter is the term
used to describe the variability in packet transmission delays
between network devices, indicating variations in the amount
of time that data packets take to get from one place to another.
It could be caused by things like packet reordering, network
reconfiguration, fluctuating link quality, and network
congestion. It can be problematic, especially for real-time
applications. Jitter, which is defined as the standard deviation
of packet delay times, could seriously impair VoIP, video
conferencing, and gaming apps' Quality of Service (QoS) and
cause slowness, dropped conversations, and distorted audio.
Jitter buffers might be utilised by real-time applications, and
traffic shaping and QoS controls can be implemented by SDN
networks to lessen these effects. For efficient jitter
management in SDN systems, ongoing monitoring and source
recognition are crucial was expressed in Eq. (8).

𝐽𝑖𝑡𝑡𝑒𝑟 =
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐷𝑒𝑙𝑎𝑦

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑖𝑛𝑏𝑜𝑢𝑛𝑑−1
 (8)

TABLE II. LATENCY IN SDN

Network Load (Mb) Jitter (ms)

0.4 2.5

0.6 5.1

0.8 9.3

Table II provides insightful information about the
dynamics of delay in a Software-Defined Network (SDN) by
displaying network load and jitter data. Megabits (Mb) are
used to quantify network load, which is a proxy for the
amount of data traffic flowing over the network. Three
different network load levels—0.4 Mb, 0.6 Mb, and 0.8 Mb—
are shown in this table. Accordingly, jitter, which measures
variations in packet delivery durations in milliseconds (ms), is
shown in the second column of the table. Jitter is a crucial
networking indicator. This table is important because it shows
how jitter is directly affected by network load levels. Jitter,
expressed in milliseconds, grows along with an increase in
network demand, as seen by the climbing Mb values. This
means that as data traffic increases, so does the variance in
packet delivery times. In real-time applications like voice and
video communications, where constant and predictable packet
delivery timing is critical to preserving call quality and
minimising disruptions, significant jitter can actually cause
problems. Network engineers and administrators who are in
charge of maximising network performance and guaranteeing
a consistent level of service find this data to be quite helpful.
Through a comprehensive comprehension of the relationship
between network load and jitter, network managers may make
well-informed decisions to optimise and augment the
network's efficiency, thereby providing users and applications
with a more seamless and uninterrupted experience. The jitter
in SDN networks is graphically represented in Fig. 3.

Fig. 3. Jitter in SDN networks.

C. Throughput in SDN Network

Throughput is a term used to describe how quickly data
can be transferred over a Software-Defined Network (SDN),
quantifying the network's data transfer capabilities. Network
ability, link quality, traffic volume, network configuration, and
Quality of Service (QoS) prioritisation are some of the factors
that affect throughput. Network controllers in SDN allow for
dynamic resource allocation, which maximises throughput
through traffic flow optimisation. While effective SDN
management and scaling guarantee that applications and
services receive the required data transfer rates for optimal
performance, especially in bandwidth-intensive scenarios like
video streaming and cloud services, accurate throughput

0

0.5

1

1.5

2

2.5

3

3.5

2 4 6 8

La
te

n
cy

 in
 (

m
s)

Network Load (Mb)

Latency in SDN

Propagation Latency (ms)

Transmission Latency (ms)

Processing Latency (ms)

Queueing Latency (ms)

0

1

2

3

4

5

6

7

8

9

10

0.4 0.6 0.8

J
it

te
r
 i

n
 (

m
s)

Network Load (Mb)

Jitter in SDN

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

417 | P a g e

www.ijacsa.thesai.org

measurement is essential for assessing network performance
was expressed in Eq. (9).

𝑇𝑕𝑟𝑜𝑢𝑔𝑕𝑝𝑢𝑡 =
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑑

𝑇𝑖𝑚𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑒𝑛𝑑
 (9)

TABLE III. THROUGHPUT IN SDN

Network Load (Mb) Throughput (ms)

5000 100

10000 50

15000 20

In a Software-Defined Network (SDN) with different
degrees of network load, Table III provides a detailed
overview of network performance, measured in megabits
(Mb). Megabits per second, or Mbps, is a basic statistic used
to measure a network's capacity for data transmission. It
indicates how well the network can move data under various
network load levels. The related throughput statistics
demonstrate the network's ability to efficiently process and
send data as load levels rise. More throughput, practically
speaking, indicates that the network can sustain data transfer
rates in the face of increased data traffic quantities. Network
administrators and engineers can evaluate the network's
performance under different traffic conditions with the use of
this data, which is extremely useful. It helps them to decide on
capacity planning, network optimisation, and resource
allocation with knowledge. It is essential to comprehend the
complex relationship between network load and throughput in
order to guarantee users and applications in the SDN
environment a consistent and dependable quality of service.
The Throughput in SDN networks is graphically represented
in Fig. 4.

Fig. 4. Throughput in SDN networks.

D. Packet Loss in SDN Network

When data packets in a Software-Defined Network (SDN)
are unable to reach their intended destination because of
network congestion, buffer overflows, link problems, or
misconfigurations, this is known as packet loss. Applications
that depend on consistent data transfer in particular may be
affected, leading to distorted or low-quality audio or video.
SDN networks use traffic engineering and Quality of Service
(QoS) policies for path optimisation and prioritisation, and
efficient buffer management lowers the chance of buffer

overflows. Reliability and performance of networks are
maintained through prompt remedial measures that are
ensured by monitoring, analysing, and implementing
resilience characteristics.

TABLE IV. PACKET LOSS IN SDN

Network Load Level Packet Loss (%)

40 0.5

80 2.0

120 5.0

160 10.0

Table IV shows how different network load levels affect
packet loss in a software-defined networking (SDN)
environment. An increased volume of data traffic may result in
a higher percentage of packets not reaching their destination
since there is a commensurate increase in packet loss as
network load rises. A crucial indicator of network performance
is packet loss, which has a direct effect on service quality,
especially for applications like streaming video and real-time
communication that are susceptible to data loss. Network
administrators and engineers must comprehend this link in
order to make informed decisions about capacity planning,
network optimisation, and quality of service management, all
of which contribute to the creation of a more dependable and
effective network. The Packet Loss in SDN networks is
graphically represented in Fig. 5.

Fig. 5. Packet loss in SDN networks

E. Accuracy Comparison

Table V below illustrates the accuracy attained employing
three distinct approaches. Fig. 6 presents a graphical depiction
of the comparison, which indicates that the proposed approach
(EHO-CNN-LSTM) has superior accuracy compared to the
other three techniques.

TABLE V. ACCURACY COMPARISON

Technique Accuracy

Navie Bayes 88

Neural Network 81

SVM 78

Proposed (DQN- FOA-FA) 99.8

0

50

100

150

5000 10000 15000

T
h

ro
u

g
h

p
u

t
in

 (
m

s)

Network Load

Throughput in SDN

Network
0

5

10

15

40Mb 80Mb 120Mb 160Mb

P
a

ck
et

 L
o

ss
 i

n
 (

%
)

Network Load

Packet Loss in SDN

Networks

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

418 | P a g e

www.ijacsa.thesai.org

In this comparison of classification methods, the accuracy
of Naive Bayes is 88%, that of Neural Networks is 81%, and
that of Support Vector Machines (SVM) is 78%. With a
remarkable accuracy of 99.8%, the suggested hybrid technique
(DQN-FOA-FA) surpasses them all. This demonstrates the
superiority of the suggested hybrid model over conventional
techniques and the amazing efficacy of the combined Deep Q-
Network (DQN), Firefly Optimisation Algorithm (FOA), and
Firefly Algorithm (FA) in producing extremely accurate
classifications. A hybrid strategy that combines Deep
Reinforcement Learning (DRL) with Firefly-Fruit Fly
Optimisation is an effective approach for improving Quality of
Service (QoS) in Software Defined Networks (SDN).

F. Discussion

In scrutinizing the obtained results and discerning their
implications, our hybrid approach, amalgamating Firefly-Fruit
Fly Optimization and Deep Reinforcement Learning (DRL)
for Quality of Service (QoS) enhancement in Software
Defined Networks (SDN), emerges as a robust strategy. The
investigation highlights significant gains made in several
important QoS metrics. Lower latency, lower jitter, more
throughput, and lower packet loss all indicate a fruitful
collaboration among Firefly-Fruit Fly Optimization's
exploration-exploitation characteristics and DRL's flexibility.
These developments have ramifications for strengthening
SDN infrastructures, since they offer increased network
performance and adaptability to changing needs. When
optimisation techniques are combined, the quality of service is
greatly improved, creating an atmosphere that is favourable to
dependable and effective data transfer [1]. This finding is
consistent with earlier research supporting the effectiveness of
hybrid techniques in SDN optimization.

Fig. 6. Accuracy comparison of suggested approach.

Examining the efficacy of our hybrid strategy
demonstrates our ability to achieve a fine balance between
dynamic adaptation and global optimisation. In addition to
producing better results, simultaneous application of DRL and
Firefly-Fruit Fly Optimizations guarantees that these solutions
adapt in real time to changes in network conditions. When

compared to conventional optimisation methods, where the
flexibility to accommodate dynamic network changes could
be jeopardized, our approach's efficacy becomes evident [2].
Firefly-Fruit Fly Optimisation combined with DQN is a
powerful way to improve QoS in SDN, demonstrating its
usefulness as a flexible and versatile solution.

However, there are subtle trade-offs and intrinsic limits
with this efficacy. Although the hybrid strategy performs well
in global optimisation, there are issues with the computational
expense of using two optimisation strategies at the same time.
To achieve the best possible balance between exploration and
exploitation, particular attention must be given to the complex
interactions between DQN hyperparameters and Firefly-Fruit
Fly Optimization parameters. Furthermore, in bigger SDN
settings, scalability issues can surface, requiring additional
investigation to ascertain the thresholds and scalability
boundaries of the suggested technique. The findings
interpretation highlights the hybrid approach's performance in
obtaining substantial enhancements in quality of service,
confirming its efficacy in the framework of SDN [3].
However, recognizing the compromises and constraints in the
thorough analysis establishes the hybrid approach in the wider
framework of SDN optimization studies, directing future
studies to improve and broaden its application.

VI. CONCLUSION

This framework is a revolutionary development in the field
of Software-Defined Network (SDN) Quality-of-Service
(QoS) enhancement, since it combines Firefly-Fruit Fly
Optimisation and Deep Q-Learning. Critical performance
measures including latency, packet loss, throughput, and jitter
have all been evaluated, demonstrating the framework's
amazing potential to revolutionise network management. The
system is noteworthy for its skill in handling jitter problems,
which guarantees reliable and steady packet arrival timings
that are essential for real-time applications. Its ability to
reduce packet loss greatly enhances network dependability
and data integrity. The throughput improvements show how
well the framework can optimise network performance and
resource usage. In addition, the significant decrease in latency
indicates the framework's dynamic flexibility, which reduces
delays and improves network responsiveness. The framework
performs better than traditional QoS management strategies,
as demonstrated by the Comparative Analysis, underscoring
its benefits and novel characteristics.

VII. FUTURE WORK

Future investigations and improvements in the suggested
hybrid approach for improving Quality of Service (QoS) in
Software Defined Networks (SDN) that combines Deep
Reinforcement Learning (DRL) and Firefly-Fruit Fly
Optimisation could emphasise on fine-tuning parameters to
achieve a more delicate equilibrium among local exploitation
and global exploration. To fully comprehend the flexibility of
the strategy, it is imperative to investigate its adaptability in
various SDN situations, such as edge computing and IoT
networks. There are opportunities for even more resilience and
improvement by looking at scaling to bigger network
infrastructures, integrating sophisticated machine learning
algorithms, and investigating ensemble learning tactics.

0

20

40

60

80

100

120

Navie

Bayes

Neural

Network

SVM Proposed

(DQN-

FOA-FA)

P
er

fo
rm

a
n

ce
 R

a
ti

o
 (

%
)

Techniques

Performance Assessment

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

419 | P a g e

www.ijacsa.thesai.org

Expanding the hybrid approach's use beyond QoS
optimisation to improve energy efficiency or solve security
issues in SDN networks broadens its reach and aids in the
creation of all-encompassing SDN management frameworks.
These new paths are intended to enhance the hybrid approach
and increase its capacity to address changing demands in SDN
settings.

REFERENCES

[1] E. H. Bouzidi, A. Outtagarts, and R. Langar, ―Deep reinforcement
learning application for network latency management in software
defined networks,‖ in 2019 IEEE Global Communications Conference
(GLOBECOM), IEEE, 2019, pp. 1–6.

[2] ―Software Defined Networking: What is SDN?,‖ Nutanix. Accessed:
Nov. 17, 2023. [Online]. Available:
https://www.nutanix.com/info/software-defined-networking

[3] R. S. Alonso, I. Sittón-Candanedo, R. Casado-Vara, J. Prieto, and J. M.
Corchado, ―Deep reinforcement learning for the management of
software-defined networks and network function virtualization in an
edge-IoT architecture,‖ Sustainability, vol. 12, no. 14, p. 5706, 2020.

[4] M. Ye, J. Zhang, Z. Guo, and H. J. Chao, ―Date: Disturbance-aware
traffic engineering with reinforcement learning in software-defined
networks,‖ in 2021 IEEE/ACM 29th International Symposium on
Quality of Service (IWQOS), IEEE, 2021, pp. 1–10.

[5] ―Software Defined Networking (SDN): Benefits and Challenges of
Network Virtualization - javatpoint.‖ Accessed: Nov. 17, 2023. [Online].
Available: https://www.javatpoint.com/software-defined-networking-
sdn-benefits-and-challenges-of-network-virtualization

[6] C. Yu, J. Lan, Z. Guo, and Y. Hu, ―DROM: Optimizing the routing in
software-defined networks with deep reinforcement learning,‖ IEEE
Access, vol. 6, pp. 64533–64539, 2018.

[7] Y. Li and Y. Qin, ―Real-Time Cost Optimization Approach Based on
Deep Reinforcement Learning in Software-Defined Security Middle
Platform,‖ Information, vol. 14, no. 4, p. 209, 2023.

[8] T. Yang, J. Li, H. Feng, N. Cheng, and W. Guan, ―A novel transmission
scheduling based on deep reinforcement learning in software-defined
maritime communication networks,‖ IEEE Transactions on Cognitive
Communications and Networking, vol. 5, no. 4, pp. 1155–1166, 2019.

[9] A. Al-Jawad, I.-S. Comşa, P. Shah, O. Gemikonakli, and R. Trestian,
―An innovative reinforcement learning-based framework for quality of
service provisioning over multimedia-based sdn environments,‖ IEEE
Transactions on Broadcasting, vol. 67, no. 4, pp. 851–867, 2021.

[10] P. Sun, Z. Guo, J. Li, Y. Xu, J. Lan, and Y. Hu, ―Enabling scalable
routing in software-defined networks with deep reinforcement learning
on critical nodes,‖ IEEE/ACM Transactions on Networking, vol. 30, no.
2, pp. 629–640, 2021.

[11] P. Zhou et al., ―QoE-aware 3D video streaming via deep reinforcement
learning in software defined networking enabled mobile edge
computing,‖ IEEE Transactions on Network Science and Engineering,
vol. 8, no. 1, pp. 419–433, 2020.

[12] I. Sarkar, M. Adhikari, S. Kumar, and V. G. Menon, ―Deep
reinforcement learning for intelligent service provisioning in software-
defined industrial fog networks,‖ IEEE Internet of Things Journal, vol.
9, no. 18, pp. 16953–16961, 2022.

[13] M. B. Hossain and J. Wei, ―Reinforcement learning-driven QoS-aware
intelligent routing for software-defined networks,‖ in 2019 IEEE global
conference on signal and information processing (GlobalSIP), IEEE,
2019, pp. 1–5.

[14] D. M. Casas-Velasco, O. M. C. Rendon, and N. L. da Fonseca,
―Intelligent routing based on reinforcement learning for software-
defined networking,‖ IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 870–881, 2020.

[15] E. H. Bouzidi, A. Outtagarts, R. Langar, and R. Boutaba, ―Deep Q-
Network and traffic prediction based routing optimization in software
defined networks,‖ Journal of Network and Computer Applications, vol.
192, p. 103181, 2021.

[16] D. M. Casas-Velasco, O. M. C. Rendon, and N. L. da Fonseca, ―DRSIR:
A deep reinforcement learning approach for routing in software-defined
networking,‖ IEEE Transactions on Network and Service Management,
2021.

[17] G. Kim, Y. Kim, and H. Lim, ―Deep reinforcement learning-based
routing on software-defined networks,‖ IEEE Access, vol. 10, pp.
18121–18133, 2022.

[18] M. U. Younus, M. K. Khan, M. R. Anjum, S. Afridi, Z. A. Arain, and A.
A. Jamali, ―Optimizing the lifetime of software defined wireless sensor
network via reinforcement learning,‖ ieee access, vol. 9, pp. 259–272,
2020.

[19] H. P. Nugroho, M. Irfan, and A. Faruq, ―Software Defined Networks: a
Comparative Study and Quality of Services Evaluation,‖ SJI, vol. 6, no.
2, pp. 181–192, Dec. 2019, doi: 10.15294/sji.v6i2.20585.

[20] H. Huang et al., ―A new fruit fly optimization algorithm enhanced
support vector machine for diagnosis of breast cancer based on high-
level features,‖ BMC Bioinformatics, vol. 20, no. 8, p. 290, Jun. 2019,
doi: 10.1186/s12859-019-2771-z.

[21] ―Firefly algorithm,‖ Wikipedia. Aug. 08, 2023. Accessed: Oct. 24, 2023.
[Online]. Available:
https://en.wikipedia.org/w/index.php?title=Firefly_algorithm&oldid=11
69297057

[22] X.-S. Yang, ―Firefly Algorithms for Multimodal Optimization,‖ in
Stochastic Algorithms: Foundations and Applications, O. Watanabe and
T. Zeugmann, Eds., in Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2009, pp. 169–178. doi: 10.1007/978-3-642-
04944-6_14.

[23] J. Fan, Z. Wang, Y. Xie, and Z. Yang, ―A Theoretical Analysis of Deep
Q-Learning.‖ arXiv, Feb. 23, 2020. Accessed: Nov. 17, 2023. [Online].
Available: http://arxiv.org/abs/1901.00137

