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Abstract—The Software Defined Networking (SDN) paradigm 

has emerged as a critical tool for meeting the dynamic demands 

of network management with respect to efficiency and flexibility. 

Quality of Service (QoS) optimization, which encompasses 

essential features including bandwidth allocation, latency, and 

packet loss, is a major problem in SDN systems due to its direct 

influence on network application performance and user 

experience. To deal with these important issues, this paper tackles 

the critical problem of Software-Defined Networks (SDNs) 

Quality-of-Service (QoS) optimization, which is a critical factor 

affecting network application performance and user experience. 

Within the Firefly-Fruit Fly Optimised Deep Reinforcement 

Learning (DQ-FFO-DRL) framework, a novel combination of 

optimization techniques derived from Fruit Fly and Firefly 

behaviors with Deep Q-Learning is presented in this suggested 

approach, which is called Deep Q-Learning. The framework 

effectively investigates ideal network configurations by utilizing 

the distinct advantages of the Fruit Fly and Firefly optimization 

components, while the Deep Q-Learning component dynamically 

adjusts to changing network circumstances by drawing 

conclusions from prior experiences. Extensive testing and 

modeling reveal that the DQ-FFO-DRL approach performs very 

well in SDNs compared to conventional QoS management 

solutions. When it comes to negotiating the always changing 

world of resource allocation, network usage, and overall network 

performance, this algorithm demonstrates exceptional 

adaptability. The suggested system, which is implemented in 

Python, offers an advanced and flexible method for enhancing 

QoS in SDN systems.  

Keywords—Software Defined Network (SDN); Quality of 

Service (QoS); firefly-fruit fly optimization; Deep Reinforcement 

Learning (DRL); adaptive QoS enhancement; network optimization 

I. INTRODUCTION 

Network administrators have been using traffic 
engineering approaches to enhance resources management 
efficiency in order to cope with the ever-increasing volume of 
network traffic. In communications networks, traffic 
engineering synchronises the packet forward pathways of 
various streams within the network to enhance the total level 
of service provided by network users. Routing optimisation 
remains a long-term research topic along with one of the main 
obstacles in network utilities optimisation through traffic 
engineering [1]. Using conventional routing techniques, each 
router decides how to forward packets on its own, 

disregarding the judgments made by other routers. Even 
though this dispersed routing technique is scalable as it can be 
used on any size networks, it is challenging to handle network 
management of resources in an effective and flexible manner 
and optimise network routing as a whole. Software defined 
networking (SDN) was initially proposed as an efficient way 
to handle the whole network by dividing control and 
information layers in the network [2], that separates 
information transfer from control functions. These factors 
make an improved network management models more 
necessary [3]. SDN logically decouples the network's 
operational plane and the information plane to give an overall 
picture of the system and enhances network programming 
capabilities for network administration and operation. 
Networking policies can be deployed dynamically and with 
efficiency using this SDN approach. SDN makes it possible to 
control forwarding of packets centrally and see the entire 
network, but creating the best routing scheme is not easy. 
Limited shortest path issues are how the issue of routing is 
formulated in many current publications, yet these issues 
typically have an optimal solution that is NP-hard [4]. 
Furthermore, while the generic multi-commodity flow issue 
has a conventional solution that takes the network's operation 
as a constant model with fluctuating traffic, these models are 
unable to effectively depict good network function under 
complicated and variable traffic conditions [5]. 

In recent years, deep reinforcement learning (DRL), that 
blends deep neural networks and reinforcement learning (RL), 
has been used to create traffic engineering strategies [6]. The 
development of the DRL method offers a fresh approach to 
optimising extremely complex transportation issues. By 
enhancing routing policy effectiveness in a model-free and 
focused on experiences way, DRL-based route methods are 
able to develop and adjust to complicated networks. Using the 
DRL approach in an SDN-based networks has shown to 
significantly improve routing optimisation performance, 
according to recent studies. It should be highlighted that 
networks performance loss can happen throughout the 
learning procedure, especially in the beginning phases, owing 
to the characteristics of reinforcement learning (RL), that 
entails experimentation in the manner of identifying the most 
effective approach [7]. When training an infrastructure, one 
should not risk network efficiency deterioration when 
improper routing policies immediately boost packet loss and 
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end-to-end delay throughout the network itself. This decreases 
the system's dependability. Specifically, in the event of a 
system's topology modification, the DRL agent that is running 
ought to retrain how to optimise routing. Continuous network 
performance deterioration is caused by the longer time it takes 
for convergence to occur when the features of internet traffic 
become more complicated. In addition, using DRL-based 
route optimisation, which requires investigation, can have 
severe effects in systems that carry QoS-sensitive information 
[8]. 

The need for better Quality of Service (QoS) provisioning 
in Software-Defined Networks (SDNs) is growing in 
importance in the ever-changing world of today's networks. As 
numerous applications develop and information traffic 
increases, guaranteeing effective and adaptive QoS 
administration has become a critical task. Conventional 
methods of maximising quality of service frequently lack the 
flexibility required to handle the intricate and shifting 
dynamics of contemporary network settings [9]. The study 
explores the incorporation of novel Firefly-FruitFly Optimised 
Deep Q-learning approaches to provide adaptive QoS 
improvements in SDNs in order to overcome these constraints. 
By separating both data and control planes, Software-Defined 
Networking (SDN) completely transformed the way networks 
are managed and controlled. This has made it possible to have 
centralised control over the network. Due to this division, 
network assets can be used with never-before-seen flexibility 
and control, allowing for dynamic setups and modifications in 
response to changing needs [10]. But even with SDN's built-in 
benefits, maintaining excellent QoS is still difficult because of 
the complex interactions between different network variables 
as well as the constantly changing nature of internet traffic. 

Among the most important metrics for assessing the 
efficiency of a network is quality of service, which includes a 
number of factors such as latency, bandwidth, dependability, 
and safety. Optimising these variables to match particular 
service level commitments and guarantee the best possible 
experience for users is necessary for successful QoS 
management. Conventional QoS administration frequently 
uses preset or static regulations, which may not be able to 
adjust to shifting network circumstances. This could result in 
less-than-ideal resource usage and possible performance 
issues. Techniques inspired by environment have become 
more popular in recent decades for resolving challenging 
optimisation issues [11]. Based by the typical behaviours of 
fruit flies and fireflies, accordingly, the Firefly and FruitFly 
Optimisation algorithms have been found to be remarkably 
effective in solving a wide range of optimisation problems. 
These methods use the ideas of repellent and attraction to 
identify the best answers in challenging optimisation 
scenarios, imitating the typical actions of these bugs. By 
incorporating such bio-inspired methods into social media, 
there is a chance to improve the flexibility and effectiveness of 
QoS control in SDNs. Moreover, the utilisation of RNN-
LSTM in the field of networks has demonstrated exceptional 
capacity to tackle intricate and variable optimisation issues. In 
DRL, robots are trained to communicate with the surroundings 
and make successive choices in order to maximise aggregate 
rewards. The network's controllers can be given the ability to 

generate wise and flexible choices depending on the needs and 
circumstances of the network's infrastructure in actual time by 
utilising DRL in connection with SDN [12]. The study 
attempts to establish a new architecture which not just 
optimises QoS in SDNs but additionally responds to shifting 
traffic trends and network behaviour by merging DRL into the 
Firefly-FruitFly Optimisation methods. 

Software-Defined Networks (SDNs) are a revolutionary 
paradigm in computer networking that have arisen to address 
the increasing needs of dependable and effective network 
services. The optimisation of Quality of Service (QoS) 
attributes, which include jitter, latency, throughput and packet 
loss and have a direct impact on network application 
performance and user experience, is a key challenge in SDNs. 
This paper presents a novel framework that combines Deep Q 
Learning with Firefly-Fruit Fly Optimisation to transform QoS 
enhancement in SDNs. The bio-inspired optimisation 
algorithms of Firefly-Fruit Fly Optimisation efficiently 
explore and identify optimal network configurations, drawing 
inspiration from the natural behaviours of both fruit flies and 
fireflies. At the same time, Deep Q-Learning's adaptive 
learning mechanism keeps learning from previous experiences 
and network interactions. This allows the framework to make 
wise decisions in real time and adeptly adjust to the changing 
network conditions. The combination of these cutting-edge 
methods offers an SDN environment that is more responsive, 
effective, and optimised, constituting a major breakthrough in 
the field of software-defined networking. The study would 
then go into experimental validation, performance metrics, 
and comparisons with traditional QoS management strategies 
in order to show how this new framework performs 
exceptionally well and how it ultimately improves user 
experience and network efficiency. The following lists the 
main findings of the suggested investigation: 

 The main contribution of the paper is to advance the 
field of SDNs by offering a fresh, flexible, and clever 
framework for enhancing QoS. The combination of 
deep reinforcement learning and optimisation inspired 
by nature offers a novel strategy for tackling the 
problems related to quality of service (QoS) in 
contemporary network settings. 

 The article presents a novel framework that 
incorporates the nature-inspired optimisation technique 
known as Firefly-Fruit Fly Optimization. Quality of 
Service (QoS) management in Software-Defined 
Networks (SDNs) presents intrinsic issues that could 
be properly explored and identified through the 
implementation of this optimization technique. 

 The QoS management method gains a dynamic and 
self-learning mechanism with the integration of Deep 
Reinforcement Learning (DRL) into the framework. 
Based on prior interactions and experiences, DRL 
continuously adjusts to shifting network conditions, 
offering a clever and flexible method of improving 
QoS. 

 The management of crucial QoS factors, including as 
packet loss, throughput, jitter, and delay, is the study's 
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primary objective. The framework combines DRL and 
Firefly-Fruit Fly Optimisation to dynamically optimise 
these parameters in order to improve network 
performance as a whole. 

The subsequent sections of the paper are organized to 
provide a comprehensive exploration and validation of the 
proposed framework. The research unfolds in a structured 
manner, with the following key segments: A summary of 
relevant routing of networks work is given in Section I. The 
paper's uniqueness and the issues with related works are 
discussed in Section II, Problem statement in Section III. The 
SDN QoS improvement mechanism is described in Section IV. 
Explain the suggested method's effectiveness rating in Section 
V, and the overall research's conclusions and future work is 
given in Section VI and Section VII respectively. 

II. RELATED WORKS 

A relatively new development in networking for computers 
is the software-defined network (SDN), which separates 
forwarding of information from centralised control to provide 
a very adaptable and controllable networks architecture. A 
great deal of study has been conducted to provide effective 
routes and allocate resources for SDNs. To guarantee 
application-driven QoS regardless of the face of computer 
hacking, situation-aware networks administration continues to 
encounter significant obstacles. To deal with this matter, 
Hossain and Wei [13] Utilise technology related to 
reinforcement learning (RL) to provide smart networks 
administration and scenario knowledge from the standpoint of 
routing control. In the modelling parts, the effectiveness of the 
suggested RL-enabled route management approach is assessed 
by taking into account various situations. Despite the efforts to 
enhance the recommended routing method, one possible 
limitation is the substantial resource commitment needed to 
fully evaluate the approach's effectiveness in a sizable testbed. 
The extent and velocity of the experimental and assessment 
process may be constrained by the monetary and time 
commitment. 

Conventional networks for routing use limited data to 
determine routing, that can cause a delay in adapting to 
network traffic fluctuation and a lack of assistance for apps' 
QoS needs. Casas-Velasco et al. [14] presents reinforced 
learning and Software-Defined Networking's Intelligent 
Routing (RSIR), a revolutionary method for navigating in 
SDN. In order to generate routing choices, RSIR incorporates 
an Understanding Planes into SDN and specifies a 
Reinforcement Learning (RL)-based routing algorithms that 
considers link-state data. The method computes and installs 
the best routes previously in the forwarded devices by utilising 
the artificial intelligence offered by RL, the worldwide view 
and management of the network that is given by SDN, and its 
relationship with the surrounding environment. Utilising 
actual traffic matrix for imitation, RSIR was thoroughly 
assessed. The findings indicate that when bandwidth available, 
postpone, and damage are taken into account separately or 
together for the estimation of optimum pathways, RSIR works 
better than Dijkstra's method in terms of exertion, link 
productivity, loss of packets, and time. The outcomes indicate 
that RSIR is a desirable option for SDN smart routing. The 

need for substantial computing power for implementing Deep 
Reinforcement Learning (DRL) to enhance RSIR choices 
constitutes a potential limitation for future studies, especially 
for bigger networks. Additionally, integrating traffic forecasts 
for selecting a path may add to the method's complexities. 

The concept of Software Defined Networking (SDN), 
which centralises intellect in software-driven controllers in 
order to increase network adaptability and address various 
network difficulties, continues to gain traction in both research 
and the IT sector. SDN is considered one of the driving forces 
behind 5G networks. The efficiency and utilisation of the 
network may be improved and optimised with the help of 
machine learning (ML) technologies. Network administration 
and operation tricky issues have shown to be a huge 
cooperative challenge for Neural Networks (NN) and 
Reinforcement Learning (RL) in specific. Bouzidi et al.[15], 
an SDN-based principles insertion method that uses Deep Q-
Network (DQN) agents to acquire the best routes and redirect 
congestion in order to increase networks utilisation. The 
method primarily uses NN to proactively forecast traffic 
bottlenecks. To achieve this, authors initially outline the 
connection problem that considers Quality-of-Service (QoS) 
as a Linear Programme (LP), with the goal of minimising both 
link utilisation and from beginning to end (E2E) time. 
Following that, author suggests a effective heuristic approach 
to resolve it. Emulation-based mathematical results utilising 
Mininet and ONOS controllers show that the suggested 
method can greatly enhance network capabilities by reducing 
lost packets, E2E postponement, and connection utilisation. 
One possible limitation for further study is the sophisticated 
optimisation procedure needed to set up a Distributed Deep Q-
Network (DQN) agent, which adds complication to the 
installation process and allows for efficient management of the 
quantity and location of SDN routers and related information 
plane switching. 

Conventional routing algorithms use only a small amount 
of data to determine routing, that results in a delayed response 
to traffic fluctuation and a constrained capacity to fulfil apps' 
quality of service needs. In order to overcome these 
drawbacks, researchers presented, a Reinforcement Learning 
(RL)-based router approach for SDN. Yet, when confronting 
vast actions and state areas, RL-based systems typically see a 
rise of training time. Casas-Velasco et al.[16] Presents Deep 
Reinforcement Learning and Software Defined Networking 
Intelligent Routing (DRSIR), an alternative routing method. In 
SDN, DRSIR specifies an algorithm for routing that gets 
beyond the drawbacks of RL-based systems by utilising Deep 
RL (DRL). In order to generate innovative, efficient, and 
smart routing that adjusts to continuous congestion changes, 
DRSIR takes path-state indicators into account. Emulation 
was used to assess DRSIR utilising both artificial and actual 
traffic patterns. According to the outcomes, this method 
operates better in terms of flex, loss of packets, and latency 
than the routes that utilise Dijkstra's algorithm and RSIR. 
Furthermore, the outcomes show that DRSIR offers a 
workable and realistic approach for networking in SDN. The 
intricacy and mathematical requirements of expanding DRSIR 
to accommodate multiple paths routing, multiple levels DRL 
plans, and the integration of travel type data could be a 
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hindrance for subsequent research, making it difficult to 
control the method's learning settings and assess effectiveness 
across a variety of traffic conditions. 

The requirement for quality of services resulting from an 
exponential rise in network traffic makes routing optimisation 
increasingly vital. With the latest advancement of software-
defined networking (SDN) technologies, networking 
equipment like switches can now be flexible configuration via 
programming interfaces, allowing for centralised 
administration and operation. Kim et al. [17] Provide a routing 
optimisation on an SDN using deep reinforcement learning 
(DRL). Under the suggested approach, the agent that handles 
DRL determines an ideal set of connection weights to strike a 
compromise for the networking's lost packets and total latency 
by learning how the overall traffic load of network routers and 
network efficiency are related. Installing the flow-rules onto 
the SDN-enabled shifts, an SDN controller uses an array of 
link strengths to decide how to distribute pathways. They 
create an M/M/1/K queue-based network framework and use it 
to execute the DRL training procedure offsite unless it 
converges in order to circumvent the extremely lengthy 
learning procedure for DRL in the event of a topologies 
modification. The outcomes of the experiment show that in a 
number of network structures, the suggested routing technique 
works better than both a network demand-based RL 
algorithms and a traditional hop-count forwarding technique. 
To guarantee the efficacy and usability of the suggested 
routing approach in multiple network settings, additional 
assessment and verification of the approach over a larger 
range of configurations is necessary. This represents a single 
negative. 

Numerous applications that operate in real time utilise 
reinforcement learning (RL), a way of learning without 
supervision. A challenge involving making choices is at the 
heart of RL. In reinforcement learning, the participant engages 
with its surroundings continuously and decides what to do 
future based on past input regarding rewards. Younus et al.[18] 
RL Software-Defined Wireless Sensor Networks (SDWSNs) 
optimise their routing pathways through training. They merge 
SDN and RL, when routing lists are generated by applying RL 
to the SDN controller. In addition, they suggest four distinct 
incentive mechanisms to optimise the efficiency of networks. 
When contrasted with RL-based forwarding algorithms, RL-
based SDWSN enhances the network's efficiency by 23% to 
30% as a matter of lifetime. Since it's able to effectively learn 
the network path at the level of the controller, RL-based 
SDWSN operates well. Furthermore, compared to RL-based 
WSN, it offers a faster network integration rate. One possible 
disadvantage of SDWSN is that its centralised control can 
give rise to problems with scalability and higher 
communication above you, which could restrict its use in 
larger and intricate network systems. 

The literature reviewed here emphasises how software-
defined networking (SDN) and reinforcement learning (RL) 
are becoming increasingly important in routing optimisation to 
fulfil the demands of effective resource allocation, quality of 
service (QoS), and network adaptability. Scholars like Hossain 
and Wei, Casas-Velasco, Bouzidi et al., and Kim et al. 
investigate several RL-based methods for smart routing in 

SDN, taking traffic patterns, link-state data, and deep 
reinforcement learning (DRL) into account. When compared 
to conventional routing methods, these studies show increases 
in network efficiency, less packet loss, and decreased latency. 
On the other hand, difficulties like the need for more computer 
power, the difficulty of optimisation, and issues with 
scalability for larger networks are recognised. Furthermore, 
Younus et al. investigate the incorporation of RL in SDN 
within the framework of wireless sensor networks (SDWSNs), 
demonstrating improved network performance using RL-
based routing choices. Scalability concerns are brought up by 
the centralised control of SDWSNs, despite their benefits. 
Overall, the literature highlights the promise for intelligent 
and adaptive network management through the integration of 
SDN and RL, while also highlighting the need for more study 
to overcome obstacles and optimise these strategies for a 
range of network situations. 

III. PROBLEM STATEMENT 

In the context of larger and more complicated network 
systems, the research recognises a number of noteworthy 
issues related to the recommended methodologies. One 
notable drawback is the high resource consumption, which 
includes processing power, time, and monetary inputs needed 
to evaluate the efficacy and flexibility of the suggested 
methods. These resource limitations could prevent the 
technologies from being widely used, which would limit their 
scalability. Potential challenges arise from the complexity of 
implementation and management processes brought about by 
the integration of Deep Reinforcement Learning (DRL) into 
routing methods. Moreover, it has been observed that the 
centralised administration of Software-Defined Networking 
(SDN) [16] systems leads to increased inefficiencies and 
scalability problems, which restricts the adaptability of 
solutions in complex network environments. The study 
underscores the need for additional evaluation and verification 
of the suggested techniques in various network contexts to 
guarantee their efficacy and pragmatic suitability. In spite of 
these obstacles, the study presents a novel and cutting-edge 
approach to addressing Quality of Service (QoS) in SDNs by 
combining Fruit Fly Optimised Q-Learning with Firefly. 
Using the intelligence of deep reinforcement learning and the 
flexible abilities of nature-inspired optimisation, this method 
actively maximises network efficiency based on current traffic 
requirements. With its ability to adapt to changing traffic 
patterns and network conditions, the combination that has 
been developed provides a stable and efficient network 
architecture that shows promise in addressing the issues raised 
in the issue's formulation. 

IV. OUTLINE OF THE PROPOSED MECHANISM 

The suggested hybrid method improves Quality of Service 
(QoS) in Software Defined Networks (SDN) by combining 
Deep Reinforcement Learning (DRL) with Firefly-Fruit Fly 
Optimisation. The strengths of both optimisation strategies are 
used in this integrated methodology. The optimisation of 
network parameters through the combined intelligence of fruit 
flies and firefly is known as Firefly-Fruit Fly Optimisation. 
The quality of a potential solution is represented by the 
brightness of each firefly in a model of firefly interaction 
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called Firefly Optimisation. This brightness-based method 
aids in fine-tuning network setups, with enhanced packet loss, 
throughput, latency, jitter, and brightness directing increases in 
certain parameters. Thorough Reinforcement Network 
configuration adaptation is heavily reliant on learning. It 
makes use of neural networks' capacity to learn and make 
judgments in a sequential manner that is consistent with QoS 
objectives. DRL improves performance by allowing the 
network to dynamically adjust to changing circumstances. It 
regularly evaluates the network's condition, pinpoints areas in 
need of modification, and puts new policies into effect as 
necessary. The combination of DRL and Firefly-Fruit Fly 
Optimisation is a synergistic method for improving QoS. 
Firefly Optimisation is excellent at finding viable solutions, 
and DRL gives you the tools to put those answers into practise 
and modify them quickly. When combined, they maximise 
throughput while reducing latency, jitter, and packet loss in 
order to optimise network parameters. With this integration, 
network efficiency and flexibility will be maintained, which 
will ultimately result in a more dependable and seamless user 
experience and a considerable improvement in QoS in SDN. 
The suggested technique's workflow is depicted in Fig. 1. 

 

Fig. 1. Workflow of the proposed system. 

A. Data Collection  

In this research, an evaluation is conducted to compare the 
performance of SDN (Software-Defined Networking) and 
traditional non-SDN network configurations. The examination 
takes place within the network infrastructure of the 
engineering faculty at Universitas Muhammadiyah Malang 
(UMM). The primary goal is to assess the capabilities of both 
SDN and non-SDN networks when subjected to the same 
network topology. To facilitate this assessment, the study 
employs simulation techniques, specifically using the SDN 
network emulator and the MiniNet Floodlight controller. A 

range of Quality of Service (QoS) parameters, including 
latency delay, jitter, throughput, and packet loss, is employed 
to gauge the QoS metrics of the latter network [19]. 

B. Feature Extraction Based on Hybrid Firefly-Fruit Fly 

Optimization 

A nature-inspired optimization technique called Fruit 
Fly Optimization (FFO) is based on the 
swarming behaviours of fruit flies. It is intended to resolve 
intricate optimization issues by mimicking the motion and 
communication of fruit flies as they seek for the optimal 
solution [20]. 

Step 1: Establish the primary FOA settings and randomly 
assign the fruit fly swarm's starting position L. 

𝑢 − 𝑎𝑥𝑖𝑠, 𝑣 − 𝑎𝑥𝑖𝑠 

Step 2: Give your own fruit fly the ability to go in any 
direction in search of nourishment by employing Eq. (1) and 
Eq. (2): 

𝑢𝑝 = 𝑈 − 𝑎𝑥𝑖𝑠 + 𝑅𝑉  (1) 

𝑣𝑝 = 𝑉 − 𝑎𝑥𝑖𝑠 + 𝑅𝑉  (2) 

𝑃 =  1,2, … ,  

where,  is the magnitude of the fruit fly swarm. 

Step 3: Given the inherent uncertainty in determining the 
exact location of food, we can calculate the distance 
(represented as 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝) of the fruit fly from its starting 
point. This calculation allows us to establish a judgment value 
for the concentration of the smell (denoted as 𝐹𝑝). Let's 

assume that Si is the reciprocal of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝, as follows in 
Eq. (3) and Eq. (4): 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝 = √𝑢𝑝
2 +  𝑣𝑝

2  (3) 

𝐹𝑝 =
1

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝   (4) 

Step 4: By entering the smell concentration judgment 
value (𝐹𝑝) into the scent concentration judgment function (also 

known as the Fitness function), one may obtain the scent 
intensity (𝑆𝐿𝑝) of each unique fruit fly site in Eq. (5). 

𝑆𝐿𝑝 = 𝐹𝑛 (𝐹𝑝)   (5) 

Step 5: Determine which fruit fly in the swarm has the 
strongest scent concentration on an individual basis in Eq. (6): 

[ 𝐵𝑒𝑠𝑡𝑆𝐿  𝐵𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥] = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (𝑆𝐿𝑝)  (6) 

Step 6: Preserve the optimal fruit fly's position (u, v) and 
highest scent intensity level. The swarm then takes off for that 
destination in Eq. (7): 

𝑆𝐿( 𝑆𝑚𝑒𝑙𝑙)𝐵𝑒𝑠𝑡 =   𝐵𝑒𝑠𝑡𝑆𝐿  (7) 

𝑢 − 𝑎𝑥𝑖𝑠 = 𝑢(𝐵𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥) 

𝑣 − 𝑎𝑥𝑖𝑠 = 𝑣(𝐵𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥) 

To reiterate the execution of steps 2 to 6, initiate iterative 
optimization. The loop concludes when either the number of 
iterations reaches the maximum allowed limit or when the 
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current concentration of scent no longer surpasses the 
concentration obtained in the previous iteration. 

1) Firefly Algorithm (FA): The Firefly algorithm, created 

by Xin-She [21], is predicated on the idealised behaviour of 

firefly flashing qualities. These flashing traits could be 

summed up as follows, for ease of understanding: 

 In the firefly world, gender is not a factor; every firefly 
is universally drawn to others. This means that a firefly 
will be attracted to any other firefly, regardless of its 
gender. 

 Attractiveness in this context is directly tied to the 
luminosity of fireflies. When two fireflies flash, the 
one with less brightness will be naturally inclined to 
move closer to the brighter one. This attractiveness 
factor is directly proportional to their respective 
brightness levels, and it diminishes as the distance 
between them increases. In the absence of a firefly 
brighter than itself, a firefly will resort to random 
movement. 

 The brightness of a firefly is intricately linked to the 
landscape of the objective function they aim to 
optimize. In other words, the features of the terrain, 
such as peaks and valleys, will determine the 
brightness of a firefly. 

To simplify the understanding, it could assume that a 
firefly's appeal is determined by its brightness or the intensity 
of its light, which, in turn, relates to the encoded objective 
function. In the most straightforward scenario for 
optimization, we can express the brightness (R) of a firefly at 
a specific position (u) as 𝑅(𝑢)  ∝  1/𝑓(𝑢). However, it's 
important to note that attractiveness is a relative concept, and 
it should be contingent on the distance (𝑒𝑥𝑦) between two 

fireflies, 𝑥 𝑎𝑛𝑑 𝑦. Similar to how light intensity diminishes as 
you move away from its source and is affected by the medium 
it travels through; it should also consider the degree of 
absorption when determining the attractiveness between 
fireflies. 

C. Hybrid FOA-FA Algorithm 

This section provides a comprehensive overview of the 
proposed algorithm, FOA-FA. The primary objective behind 
the development of FOA-FA is to address the limitations of 
the original FOA. The original FOA faces challenges in 
handling the negative domain, as it cannot generate candidate 
solutions uniformly across the problem domain. Moreover, it 
tends to prematurely converge due to the random term in Eq. 
(3), which typically produces small values within a radius of 
one around the best location. The methodology of the FOA-FA 
algorithm involves two distinct phases. The first phase makes 
use of FOA [22], where a group of fruit flies navigates in 
multiple directions using the ARM (Artificial Fruitfly 
Recognition Module). Consequently, these movements follow 
a uniform distribution across the problem space. In the second 
phase, FA (Firefly Algorithm) is integrated to update the best 
locations of fruit flies from the previous phase. This 
integration is essential to prevent FOA from getting stuck in 
premature convergence by combining its exploitation and 

exploration capabilities. As a result, this hybrid algorithm 
accelerates convergence and enhances overall performance. 
The primary steps of the proposed algorithm are outlined as 
follows: 

Step 1: Initialization 

 Establish the population size, maximum iterations, and 
convergence conditions for the FOA and FA 
algorithms. 

 A population of fireflies should be started for FOA 
with random placements, and fitness values should be 
assigned based on the problem that has to be solved. 

 Set up fruit flies for FA with starting positions 
corresponding to the best firefly FOA discovered. 

 Decide on 0 iterations. 

Step 2: Main Loop 

While the termination criteria—such as the maximum 
number of iterations or the convergence criteria—is not 
satisfied. 

Step 3: FOA Phase 

 Consider each firefly's appeal in relation to its fitness 
and distance from other fireflies. Attractiveness 
increases with fitness level and distance travelled. 

 Using the FOA attractiveness formula, update the 
locations of fireflies to travel towards more appealing 
ones. 

 Reassess the changed roles' suitability. 

 Based on fitness, choose the best firefly. 

Step 4: FA Phase 

 Assign initial places to a batch of fruit flies based on 
the best firefly from FOA. 

 Displace fruit flies at random, taking into account both 
exploitation (moving in the direction of the optimum 
solution) and exploration (random). 

 For every fruit fly, determine the fitness of the 
perturbed positions. 

 Based on fitness, choose the finest fruit fly. 

Step 5: Integration 

 Compare the best fitness determined by FA and FOA. 

 Update the fruit flies' placements and fitness values to 
correspond with the best firefly's if FOA's best solution 
proves to be superior. 

 Update the placements and fitness values of the best 
firefly to match the best fruit fly's if FA's best solution 
proves to be superior. 

Step 6: Termination 

 Increase the number of iterations. 
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 Examine the criteria for termination. If it is satisfied, 
break out of the loop; if not, go back to step 2. 

Step 7: Final Outcome 

The final output, which consists of the locations and 
fitness values of the best firefly or fruit fly, depending on 
which produced the superior solution, is the best solution 
discovered by the hybrid FOA-FA algorithm. 

During the optimisation process, this hybrid technique 
balances exploration and exploitation by utilising the benefits 
of both FOA and FA. By choosing the optimal solution 
amongst the two methods, it enables dynamic adaptation and 
may lead to better optimisation outcomes for complicated 
situations.  

Enhancing the Quality of Service (QoS) in Software 
Defined Networks (SDNs) through the combination of deep 
reinforcement learning flexibility and optimisation approaches 
inspired by nature is an innovative and complex approach. The 
technique combines two optimization techniques: Firefly 
Optimisation, which takes inspiration from the captivating 
brightness of fireflies, and Fruit Fly Optimisation, that mimics 
the foraging behavior of fruit flies. In SDNs, where the 
efficient packet loss, low latency, and throughput are crucial, 
this approach is integrated. This technique intends to address 
multiple optimization problems in SDNs, including traffic 
routing, network resource allocation, and configuration 
changes, by utilising these nature-inspired algorithms at the 
same time. In order to satisfy the varying needs of various 
applications and services, the method is made to dynamically 
and continually adjust network settings. Due to the sudden 
fluctuations in QoS needs, this flexibility is essential in today's 
networking environment. Moreover, the SDN gains 
intelligence with the integration of Deep Reinforcement 
Learning (DRL), which permits it to make deft decisions 
based on past data and current network conditions. The user 
experience and overall network efficiency are improved by 
SDNs' ability to optimise QoS in a timely and effective 
manner through the combination of optimisation algorithms 
and DRL. 

D. Deep Q-Learning Framework 

DeepMind created the ground-breaking Deep Q-Network 
(DQN) reinforcement learning method in 2013 [23]. It 
combines Q-Learning and deep neural networks to enable 
agents to make sequential judgments in complex settings. 
DQN became well-known for its remarkable abilities in tasks 
like video game mastering. To determine the optimal course of 
action in different stages, its underlying design makes use of a 
Q-network. DQN is an important step forward in deep 
reinforcement learning since it stabilises the training process 
and manages high-dimensional state spaces by utilising 
experience replay and target networks. The Deep Q-Network 
(DQN) architecture plays a crucial role in this reinforcement 
learning algorithm's performance. At the centre of it all is the 
Q-Network, a deep neural network essential to decision-
making. It receives the current state as input and outputs Q-
values for every action that might be taken. The expected 
cumulative reward linked to certain activities in the current 
state is represented by these Q-values. To implement the Q-

network, deep learning frameworks like as TensorFlow or 
PyTorch are frequently utilised. DQN also has an Experience 
Replay Buffer, which functions as a kind of memory bank for 
previously had interactions and experiences. Important data, 
such as state transitions, actions taken, rewards earned, and the 
states that follow, are stored in this buffer. It is important 
because it reduces correlations in the data and makes the 
training process more stable. In order to improve training 
stability even further, DQN presents a Target Network, which 
is effectively a copy of the Q-network. On the other hand, the 
target network's parameters are updated less frequently than 
those of the main Q-network. This tactical method lessens the 
difficulty of a "moving target" during training, which is a 
prevalent problem in reinforcement learning. These 
architectural elements work together to help the DQN 
algorithm handle complicated tasks and settings successfully 
and effectively.  

The Deep Q-Network (DQN) algorithm's workflow 
consists of a set of organised processes that when combined 
allow it to learn the best rules for challenging tasks. Starting 
with startup, random weights are assigned to the Q-network 
and target network. Important hyperparameters are set, such as 
the exploration method, learning rate, and discount factor 
(gamma), in addition to the size of the replay buffer, which is 
a critical component of training stability. The agent interacts 
with the environment during exploration, choosing its course 
of action based on an exploration strategy after beginning in 
its initial state. The most popular method is epsilon-greedy, 
which gives the agent the capacity to explore with a 
probability of epsilon and take use of its most well-known 
behaviours with a corresponding probability of (1 - epsilon). 
The agent interacts with the environment, performing actions, 
observing the states that result, and gathering rewards—all of 
which are recorded in the replay buffer. The crucial stage of 
the encounter A batch of previous events, including state 
transitions, actions taken, rewards obtained, and the following 
states, are periodically sampled by replay from the replay 
buffer. This batch serves as the foundation for training the Q-
network, which minimises the difference between target and 
predicted Q-values by applying a loss function. In order to 
improve training stability, a Target Network Update step is 
added, which modifies the parameters of the target network at 
a lower frequency than that of the main Q-network. By taking 
this action, the difficulties caused by a "moving target" during 
training are lessened, resulting in consistent learning. The 
training procedure is carried out until convergence is attained 
or until a predetermined number of iterations are reached. 
Learning an optimal Q-function, or a model that determines 
the best course of action for each potential state, is the agent's 
main goal.  Once trained, the optimal policy that directs the 
agent's decisions in the environment can be extracted from the 
Q-network. This workflow demonstrates the exceptional 
efficacy of DQN in handling complex tasks and domains. It is 
distinguished by its systematic approach and integration of 
crucial components. 

1) Optimizing SDN QoS: Firefly-Fruit Fly and DQN 

Fusion: The goal of improving Quality of Service (QoS) in 

Software-Defined Networks (SDN) has led to the creation of 

novel approaches, one of which combines Deep Q-Network 
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(DQN) with Firefly-Fruit Fly optimisation. This integration 

combines the best features of state-of-the-art deep 

reinforcement learning techniques with algorithms inspired by 

nature to optimise QoS and network performance in a fresh 

and promising way. Firefly-Vinegar Fly optimisation attempts 

to emulate the swarm intelligence of these natural organisms 

by taking cues from their collective behaviour. This allows the 

strategy to efficiently explore and make utilisation of network 

parameters, adapting and responding to shifting network 

conditions and user requests. By using a collective approach, 

the network may optimise routing and dynamically allocate 

resources, improving the quality of service overall. Deep Q-

Network (DQN) is included to enhance the swarm intelligence 

and provide a higher level of sophistication to the decision-

making process. Intelligent decision-making is made possible 

by DQN, which uses deep neural networks to assess and 

forecast the quality of potential actions in various network 

states. When these two approaches are combined, the network 

can quickly adjust to changing user demands, network 

conditions, and traffic volumes. This hybrid approach's 

potential to accelerate convergence and increase the network's 

responsiveness to real-time difficulties is one of its main 

advantages. By guaranteeing that resources are allocated 

optimally and lowering latency, packet loss, and other QoS-

related problems, it also greatly increases the overall 

efficiency of SDNs. Essentially, there is a lot of room for 

improvement in QoS in SDNs because to the combination of 

DQN and Firefly-Fruit Fly optimisation technology. This 

approach, which makes use of deep learning and nature-

inspired swarm intelligence, offers a flexible and adaptable 

way to deal with the difficulties and complexities of 

contemporary software-defined networks. This novel method 

opens the door to more effective and dependable 

communication as network needs increase and diversify, 

which makes it a potential direction for network optimisation 

and QoS improvement in the future. 

V. RESULT AND DISCUSSION 

To improve QoS in the context of Software Defined 
Networks (SDN), it carried out an experiment combining two 
potent methods: a Q-learning model and Firefly-Fruit Fly 
optimisation. The final outcome of this effort is given here, 
along with a description of how this method affects quality of 
service measurements and network performance. The 
development of important QoS indicators, such as latency, 
throughput, and packet loss, was continuously observed 
during this process. Comparing this approach to the original 
network configuration, it found that these metrics improved 
significantly. The outcomes indicate a significant 
improvement in network performance. The emulator that was 
selected for the present research was MiniNet. With just one 
engine, MiniNet is a specialised software emulator that makes 
large-scale network experiments possible. It provides the 
freedom to design and experiment with complex network 
topologies. Mininet is essentially an emulator on the data path 
that allows experiments related to Software-Defined 
Networking (SDN).  

A. Latency in SDN Networks 

Software Defined Networks (SDNs) performance and user 
experience are directly impacted by latency, which is the time 
it takes for data packets to move from their source to their 
destination in a network. Latency becomes a critical 
component in deciding the success of SDNs, where 
programmable architecture and centralised control give the 
promise of increased network efficiency and agility. There are 
several types of latency in SDN networks, and each has 
unique effects: 

1) Propagation latency: The duration required for data 

packets to physically move across the network media is 

represented by this. Both the distance between the devices and 

the speed of light in the transmission medium have an impact 

on it. 

2) Transmission latency: This is associated with the 

duration required to force data packets onto the medium of 

transmission. It is mostly reliant on the network devices' 

hardware and data rate. 

3) Processing latency: The amount of time required for 

packet processing at the switches and controller greatly affects 

total latency in SDN settings. This entails tasks including rule 

matching, packet classification, and decision-making. 

4) Queuing Latency: When packets build up in network 

device buffers, queuing happens. Packets that must wait in 

queue to be forwarded cause latency. 

TABLE I. LATENCY IN SDN 

Network 

Load 

Level 

Propagation 

Latency (ms) 

Transmission 

Latency (ms) 

Processing 

Latency 

(ms) 

Queueing 

Latency 

(ms) 

2 1.2 0.5 0.1 0.2 

4 1.5 1.0 0.3 0.4 

6 2.0 2.5 0.5 1.2 

8 2.5 3.2 0.8 1.8 

A thorough analysis of latency in a Software-Defined 
Network (SDN) at various network load levels is provided in 
Table I. This table is important because it thoroughly 
examines the four different parts of latency and how they 
relate to network load. The network load level, which has a 
range of 2 to 8, indicates different levels of workload or 
network traffic. Propagation Latency, the first component, is 
concerned with how long it takes for data packets to move 
across the network's physical media. Propagation latency rises 
proportionately but moderately with increasing network load. 
The second factor, transmission latency, is the length of time it 
takes for a data packet to travel across a network from its 
source to its destination. As network demand increases, this 
component also suffers an increase. 

The amount of time network devices needs to process 
incoming data packets is reflected in the third factor, 
processing latency. Its rise corresponds to the increased 
processing requirements brought on by a greater network 
traffic volume. Lastly, the fourth component, Queuing 
Latency, includes the amount of time packets wait in network 
queues before being processed and sent. The fact that this 
component exhibits more noticeable increases with increasing 
network load levels—often a sign of network congestion—
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makes it especially interesting. Overall, Fig. 2 illustrates a 
refined understanding of the latency dynamics in SDNs. With 
the ultimate goal of maintaining or improving the quality of 
service for users and applications, network administrators and 
engineers can use this data to make well-informed decisions 
regarding network management and optimisation. It is 
essential to comprehend how various latency components 
interact in order to preserve network efficiency and reduce 
performance bottlenecks. 

 

Fig. 2. Latency in SDN networks. 

B. Jitter in SDN 

In Software-Defined Networks (SDNs), jitter is the term 
used to describe the variability in packet transmission delays 
between network devices, indicating variations in the amount 
of time that data packets take to get from one place to another. 
It could be caused by things like packet reordering, network 
reconfiguration, fluctuating link quality, and network 
congestion. It can be problematic, especially for real-time 
applications. Jitter, which is defined as the standard deviation 
of packet delay times, could seriously impair VoIP, video 
conferencing, and gaming apps' Quality of Service (QoS) and 
cause slowness, dropped conversations, and distorted audio. 
Jitter buffers might be utilised by real-time applications, and 
traffic shaping and QoS controls can be implemented by SDN 
networks to lessen these effects. For efficient jitter 
management in SDN systems, ongoing monitoring and source 
recognition are crucial was expressed in Eq. (8). 

𝐽𝑖𝑡𝑡𝑒𝑟 =
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐷𝑒𝑙𝑎𝑦

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑖𝑛𝑏𝑜𝑢𝑛𝑑−1
   (8) 

TABLE II. LATENCY IN SDN 

Network Load (Mb) Jitter (ms) 

0.4 2.5 

0.6 5.1 

0.8 9.3 

Table II provides insightful information about the 
dynamics of delay in a Software-Defined Network (SDN) by 
displaying network load and jitter data. Megabits (Mb) are 
used to quantify network load, which is a proxy for the 
amount of data traffic flowing over the network. Three 
different network load levels—0.4 Mb, 0.6 Mb, and 0.8 Mb—
are shown in this table. Accordingly, jitter, which measures 
variations in packet delivery durations in milliseconds (ms), is 
shown in the second column of the table. Jitter is a crucial 
networking indicator. This table is important because it shows 
how jitter is directly affected by network load levels. Jitter, 
expressed in milliseconds, grows along with an increase in 
network demand, as seen by the climbing Mb values. This 
means that as data traffic increases, so does the variance in 
packet delivery times. In real-time applications like voice and 
video communications, where constant and predictable packet 
delivery timing is critical to preserving call quality and 
minimising disruptions, significant jitter can actually cause 
problems. Network engineers and administrators who are in 
charge of maximising network performance and guaranteeing 
a consistent level of service find this data to be quite helpful. 
Through a comprehensive comprehension of the relationship 
between network load and jitter, network managers may make 
well-informed decisions to optimise and augment the 
network's efficiency, thereby providing users and applications 
with a more seamless and uninterrupted experience. The jitter 
in SDN networks is graphically represented in Fig. 3. 

 

Fig. 3. Jitter in SDN networks. 

C. Throughput in SDN Network 

Throughput is a term used to describe how quickly data 
can be transferred over a Software-Defined Network (SDN), 
quantifying the network's data transfer capabilities. Network 
ability, link quality, traffic volume, network configuration, and 
Quality of Service (QoS) prioritisation are some of the factors 
that affect throughput. Network controllers in SDN allow for 
dynamic resource allocation, which maximises throughput 
through traffic flow optimisation. While effective SDN 
management and scaling guarantee that applications and 
services receive the required data transfer rates for optimal 
performance, especially in bandwidth-intensive scenarios like 
video streaming and cloud services, accurate throughput 
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measurement is essential for assessing network performance 
was expressed in Eq. (9). 

𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 =
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑑

𝑇𝑖𝑚𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑒𝑛𝑑
   (9) 

TABLE III. THROUGHPUT IN SDN 

Network Load (Mb) Throughput (ms) 

5000 100 

10000 50 

15000 20 

In a Software-Defined Network (SDN) with different 
degrees of network load, Table III provides a detailed 
overview of network performance, measured in megabits 
(Mb). Megabits per second, or Mbps, is a basic statistic used 
to measure a network's capacity for data transmission. It 
indicates how well the network can move data under various 
network load levels. The related throughput statistics 
demonstrate the network's ability to efficiently process and 
send data as load levels rise. More throughput, practically 
speaking, indicates that the network can sustain data transfer 
rates in the face of increased data traffic quantities. Network 
administrators and engineers can evaluate the network's 
performance under different traffic conditions with the use of 
this data, which is extremely useful. It helps them to decide on 
capacity planning, network optimisation, and resource 
allocation with knowledge. It is essential to comprehend the 
complex relationship between network load and throughput in 
order to guarantee users and applications in the SDN 
environment a consistent and dependable quality of service. 
The Throughput in SDN networks is graphically represented 
in Fig. 4. 

 

Fig. 4. Throughput in SDN networks. 

D. Packet Loss in SDN Network 

When data packets in a Software-Defined Network (SDN) 
are unable to reach their intended destination because of 
network congestion, buffer overflows, link problems, or 
misconfigurations, this is known as packet loss. Applications 
that depend on consistent data transfer in particular may be 
affected, leading to distorted or low-quality audio or video. 
SDN networks use traffic engineering and Quality of Service 
(QoS) policies for path optimisation and prioritisation, and 
efficient buffer management lowers the chance of buffer 

overflows. Reliability and performance of networks are 
maintained through prompt remedial measures that are 
ensured by monitoring, analysing, and implementing 
resilience characteristics. 

TABLE IV. PACKET LOSS IN SDN 

Network Load Level Packet Loss (%) 

40 0.5 

80 2.0 

120 5.0 

160 10.0 

Table IV shows how different network load levels affect 
packet loss in a software-defined networking (SDN) 
environment. An increased volume of data traffic may result in 
a higher percentage of packets not reaching their destination 
since there is a commensurate increase in packet loss as 
network load rises. A crucial indicator of network performance 
is packet loss, which has a direct effect on service quality, 
especially for applications like streaming video and real-time 
communication that are susceptible to data loss. Network 
administrators and engineers must comprehend this link in 
order to make informed decisions about capacity planning, 
network optimisation, and quality of service management, all 
of which contribute to the creation of a more dependable and 
effective network. The Packet Loss in SDN networks is 
graphically represented in Fig. 5. 

 

Fig. 5. Packet loss in SDN networks 

E. Accuracy Comparison  

Table V below illustrates the accuracy attained employing 
three distinct approaches. Fig. 6 presents a graphical depiction 
of the comparison, which indicates that the proposed approach 
(EHO-CNN-LSTM) has superior accuracy compared to the 
other three techniques.  

TABLE V. ACCURACY COMPARISON 

Technique Accuracy 

Navie Bayes 88 

Neural Network 81 

SVM 78 

Proposed (DQN- FOA-FA) 99.8 
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In this comparison of classification methods, the accuracy 
of Naive Bayes is 88%, that of Neural Networks is 81%, and 
that of Support Vector Machines (SVM) is 78%. With a 
remarkable accuracy of 99.8%, the suggested hybrid technique 
(DQN-FOA-FA) surpasses them all. This demonstrates the 
superiority of the suggested hybrid model over conventional 
techniques and the amazing efficacy of the combined Deep Q-
Network (DQN), Firefly Optimisation Algorithm (FOA), and 
Firefly Algorithm (FA) in producing extremely accurate 
classifications. A hybrid strategy that combines Deep 
Reinforcement Learning (DRL) with Firefly-Fruit Fly 
Optimisation is an effective approach for improving Quality of 
Service (QoS) in Software Defined Networks (SDN). 

F. Discussion  

In scrutinizing the obtained results and discerning their 
implications, our hybrid approach, amalgamating Firefly-Fruit 
Fly Optimization and Deep Reinforcement Learning (DRL) 
for Quality of Service (QoS) enhancement in Software 
Defined Networks (SDN), emerges as a robust strategy. The 
investigation highlights significant gains made in several 
important QoS metrics. Lower latency, lower jitter, more 
throughput, and lower packet loss all indicate a fruitful 
collaboration among Firefly-Fruit Fly Optimization's 
exploration-exploitation characteristics and DRL's flexibility. 
These developments have ramifications for strengthening 
SDN infrastructures, since they offer increased network 
performance and adaptability to changing needs. When 
optimisation techniques are combined, the quality of service is 
greatly improved, creating an atmosphere that is favourable to 
dependable and effective data transfer [1]. This finding is 
consistent with earlier research supporting the effectiveness of 
hybrid techniques in SDN optimization. 

 

Fig. 6. Accuracy comparison of suggested approach. 

Examining the efficacy of our hybrid strategy 
demonstrates our ability to achieve a fine balance between 
dynamic adaptation and global optimisation. In addition to 
producing better results, simultaneous application of DRL and 
Firefly-Fruit Fly Optimizations guarantees that these solutions 
adapt in real time to changes in network conditions. When 

compared to conventional optimisation methods, where the 
flexibility to accommodate dynamic network changes could 
be jeopardized, our approach's efficacy becomes evident [2]. 
Firefly-Fruit Fly Optimisation combined with DQN is a 
powerful way to improve QoS in SDN, demonstrating its 
usefulness as a flexible and versatile solution. 

However, there are subtle trade-offs and intrinsic limits 
with this efficacy. Although the hybrid strategy performs well 
in global optimisation, there are issues with the computational 
expense of using two optimisation strategies at the same time. 
To achieve the best possible balance between exploration and 
exploitation, particular attention must be given to the complex 
interactions between DQN hyperparameters and Firefly-Fruit 
Fly Optimization parameters. Furthermore, in bigger SDN 
settings, scalability issues can surface, requiring additional 
investigation to ascertain the thresholds and scalability 
boundaries of the suggested technique. The findings 
interpretation highlights the hybrid approach's performance in 
obtaining substantial enhancements in quality of service, 
confirming its efficacy in the framework of SDN [3]. 
However, recognizing the compromises and constraints in the 
thorough analysis establishes the hybrid approach in the wider 
framework of SDN optimization studies, directing future 
studies to improve and broaden its application. 

VI. CONCLUSION  

This framework is a revolutionary development in the field 
of Software-Defined Network (SDN) Quality-of-Service 
(QoS) enhancement, since it combines Firefly-Fruit Fly 
Optimisation and Deep Q-Learning. Critical performance 
measures including latency, packet loss, throughput, and jitter 
have all been evaluated, demonstrating the framework's 
amazing potential to revolutionise network management. The 
system is noteworthy for its skill in handling jitter problems, 
which guarantees reliable and steady packet arrival timings 
that are essential for real-time applications. Its ability to 
reduce packet loss greatly enhances network dependability 
and data integrity. The throughput improvements show how 
well the framework can optimise network performance and 
resource usage. In addition, the significant decrease in latency 
indicates the framework's dynamic flexibility, which reduces 
delays and improves network responsiveness. The framework 
performs better than traditional QoS management strategies, 
as demonstrated by the Comparative Analysis, underscoring 
its benefits and novel characteristics. 

VII. FUTURE WORK 

Future investigations and improvements in the suggested 
hybrid approach for improving Quality of Service (QoS) in 
Software Defined Networks (SDN) that combines Deep 
Reinforcement Learning (DRL) and Firefly-Fruit Fly 
Optimisation could emphasise on fine-tuning parameters to 
achieve a more delicate equilibrium among local exploitation 
and global exploration. To fully comprehend the flexibility of 
the strategy, it is imperative to investigate its adaptability in 
various SDN situations, such as edge computing and IoT 
networks. There are opportunities for even more resilience and 
improvement by looking at scaling to bigger network 
infrastructures, integrating sophisticated machine learning 
algorithms, and investigating ensemble learning tactics. 
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Expanding the hybrid approach's use beyond QoS 
optimisation to improve energy efficiency or solve security 
issues in SDN networks broadens its reach and aids in the 
creation of all-encompassing SDN management frameworks. 
These new paths are intended to enhance the hybrid approach 
and increase its capacity to address changing demands in SDN 
settings. 
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