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Abstract—This paper presents a novel architecture for the 

segmentation of transmission lines in aerial images, utilizing a 

hybrid model that combines the strengths of Vision 

Transformers (ViTs) and Convolutional Neural Networks 

(CNNs). The proposed method first employs a Swin Transformer 

backbone (Swin-B) that processes the input image through a 

hierarchical structure, effectively capturing multi-scale 

contextual information. Following this, an upsampling strategy is 

employed, wherein the features extracted by the transformer are 

refined through convolutional layers, ensuring that the resolution 

is maintained, and spatial details are recovered. To integrate 

multi-level feature maps, a feature fusion module with a squeeze-

and-excitation (SE) layer is introduced, which consolidates the 

benefits of both high-level and low-level feature extractions. The 

SE layer plays a pivotal role in augmenting the feature channels, 

focusing the model's attention on the most informative features 

for transmission line detection. By leveraging the global receptive 

field of ViTs for comprehensive context and the local precision of 

CNNs for fine-grained detail, our method aims to set a new 

benchmark for transmission line segmentation in aerial imagery. 

The effectiveness of our approach is demonstrated through 

extensive experiments and comparisons with existing state-of-the-

art methods. 

Keywords—Vision transformers; convolutional neural 

networks; transmission lines segmentation; hybrid model; feature 

fusion 

I. INTRODUCTION 

Transmission line segmentation in aerial images is a critical 
task in the maintenance and monitoring of electrical power 
grids. It enables the automated inspection of power lines for 
fault detection, vegetation encroachment, and structural 
analysis, which are essential for ensuring the reliability and 
safety of electricity distribution. However, this task is fraught 
with challenges. Aerial images often have highly variable 
lighting conditions, weather effects, and diverse landscapes 
that can obscure the visibility of transmission lines. 
Additionally, the lines themselves can be difficult to 
distinguish due to their thin and linear nature against complex 
backgrounds. Another significant challenge is the presence of 
other linear structures, such as roads and railways, that can be 
easily confused with power lines by automated systems. The 
movement of the aerial platform, whether it's a drone or a 
manned aircraft, introduces motion blur and varying angles of 
capture, further complicating the segmentation process. 
Addressing these challenges requires robust algorithms capable 
of high precision and adaptability to a range of environmental 
conditions and image qualities. Traditional methods for vision-
based transmission line detection and segmentation have 

revolved around the utilization of edge and line segment 
detection techniques as foundational steps. These methods 
generate a multitude of potential cable segment candidates by 
applying algorithms such as the Hough transform, Radon 
transform, and various other heuristic and search-based line 
detection strategies, such as the circle-based search, heuristic 
line detection, Line Segment Detector (LSD), and Edge 
Drawing for line segment detection (EDLines). Once edges and 
line segments are detected, a set of specialized rules, informed 
by the structural characteristics of cables and the context of 
their surroundings, are applied to discern correct cable 
segments and eliminate false positives. One of the main 
drawbacks of these approaches is their dependency on 
numerous parameters and complex rules that need to be 
meticulously set by hand, which hinders their adaptability to 
different environments. As a result, the precision and 
robustness of traditional methods can be significantly 
compromised due to environmental variations, making it 
challenging to maintain consistent performance across diverse 
scenarios. The advent of deep learning has catalyzed 
significant advancements in the domain of vision-based 
transmission line detection and segmentation. CNN-based 
methods have eclipsed traditional techniques, demonstrating 
substantial improvements in detection accuracy and 
computational efficiency. These deep neural networks facilitate 
end-to-end learning and inference, simplifying the complex 
parameter tuning process inherent in multistage approaches and 
enhancing generalizability across varied scenarios. For 
instance, CNNs have been trained to identify image patches 
containing cables, which are then further processed using 
traditional methods like the Hough transform for line 
segmentation. Moreover, some approaches have integrated 
fully convolutional networks with line segment regressors for 
direct line segment detection, particularly effective in scenarios 
where aerial images capture transmission lines at close range. 
However, when dealing with long-range and wide-angle 
captures that result in indistinct or slightly curved cable 
representations, these methods pivot towards a pixel-wise 
segmentation framework, employing semantic and instance 
segmentation techniques to provide a more nuanced cable 
detection and enable individual cable instance identification, 
which is pivotal for autonomous UAV applications. 

Recent years have witnessed the rapid development of ViTs 
[1, 2]. ViTs leverages the transformer architecture, originally 
designed for natural language processing, to handle sequences 
of image patches as input. ViTs model relationships between 
these patches through self-attention mechanisms, making them 
capable of capturing global dependencies within an image. The 
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combination of CNNs and ViT into a hybrid architecture aims 
to harness the local feature extraction proficiency of CNNs 
with the global context understanding of ViTs. CNNs are adept 
at recognizing patterns and textures within small regions of an 
image, making them excellent for tasks that require detailed 
local information, such as edge detection. ViTs, with their 
attention-based approach, can consider the entire image at 
once, which allows for a more holistic understanding of the 
scene. By integrating both, the hybrid model can effectively 
process and integrate both local and global information, 
leading to improved performance on complex tasks like 
transmission line segmentation. This synergy can provide a 
more nuanced understanding of images, enabling the model to 
be both precise in detail and comprehensive in scope, 
potentially overcoming limitations found in models that rely on 
a single approach. 

This study introduces an innovative hybrid architecture for 
the precise segmentation of transmission lines in aerial images, 
leveraging the synergistic potentials of ViTs and CNNs. The 
core of our proposed method is a Swin Transformer backbone, 
adept at hierarchically processing the input image to 
encapsulate multi-scale contextual information. This is 
complemented by an upsampling mechanism that meticulously 
refines the transformer-extracted features via convolutional 
layers, crucial for preserving resolution and restoring spatial 
details. A feature fusion module, equipped with an SE layer, is 
integrated to merge feature maps from multiple levels, 
harnessing both the high-level and low-level extraction 
strengths. The SE layer is instrumental in enhancing feature 
channels, directing the model's focus towards the most salient 
features for detecting transmission lines. Our approach is 
designed to exploit the expansive receptive field of ViTs for 
global context awareness, while utilizing the CNNs' local 
precision for capturing intricate details, thereby establishing a 
new standard for transmission line segmentation in aerial 
photography. The method's superiority is validated through 
comprehensive experimental benchmarks, showcasing its 
advancement over current leading methodologies. 

The rest of the paper is organized as follows: Section II 
presents related studies; Section III details our proposed model; 
Section IV describes the experiments and results; Section V 
provides the conclusions. 

II. RELATED WORK 

A. Transmission Line Detection and Segmentation 

Traditional approaches to vision-based detection and 
segmentation of transmission lines have primarily focused on 
employing edge and line segment detection techniques as their 
fundamental processes. In study [3], a real-time algorithm was 
developed for detecting power lines in UAV video images, 
where the process begins with converting video images into 
binary images using adaptive thresholding. Subsequently, 
Hough Transform identifies line candidates in these binary 
images, and a fuzzy C-means clustering algorithm 
discriminates actual power lines from these candidates. Mu et 
al. [4] proposed a method for automatically extracting power 
lines from cluttered natural backgrounds in aerial images. The 
approach involves using a Gabor filter to eliminate background 
noise, followed by the application of the Hough transform to 

detect straight lines in the images. Zhang et al. [5] introduced a 
new method for detecting and tracking power lines, starting 
with the use of the Hough transform to extract line segments. 
The method then employs K-means clustering in the Hough 
space to filter and identify power lines and utilizes a Kalman 
filter for tracking these lines within the continuity of a video 
sequence. In study [6], the authors presented an algorithm that 
capitalizes on the geometric relationships inherent to circle 
symmetry for line segment detection. It employs Canny and 
Steerable Filters to detect line segments, which are then linked 
in a subsequent stage for effective analysis. Sharma et al. [7] 
introduced a novel morphological operator and robust image 
space heuristics for the accurate location and complete 
extraction of power lines. Santos et al. [8] introduced PLineD, 
a new vision-based power line detection algorithm designed to 
robustly detect power lines, even in noisy image backgrounds. 
Although traditional approaches to vision-based detection and 
segmentation of transmission lines have achieved some 
success, they still have many limitations. A significant 
limitation of these methods is their reliance on a multitude of 
parameters and intricate rules that require careful manual 
adjustment, impeding their flexibility across various 
environments. Consequently, the accuracy and reliability of 
traditional approaches are often adversely affected by 
environmental changes, posing challenges in achieving 
uniform performance in different settings. With the outstanding 
advantages of CNNs, many methods using CNNs for 
transmission line segmentation have been proposed [9]. In 
[10], the authors introduced a pyramidal patch classification 
framework that effectively eliminates clutter without relying on 
additional auxiliary tools. This is achieved through a 
hierarchical patch partition and selection strategy, 
complemented by a new spatial grid pooling layer in the CNN-
based classifier. Nguyen et al. [11] presented LS-Net, a rapid, 
single-shot line-segment detector tailored for power line 
detection, which is fully convolutional by design and 
comprises three modules: a fully convolutional feature 
extractor, a classifier, and a line segment regressor. Lee et al. 
[12] presented a weakly supervised learning algorithm for 
identifying power lines. The algorithm classifies sub-regions 
within images using a sliding window approach and a CNN. In 
[13], a Transmission Line Detection (TLD) algorithm, 
CableNet, is proposed, drawing inspiration from instance 
segmentation and incorporating enhancements to Fully 
Convolutional Networks (FCNs) [14] with overlaying dilated 
and spatial convolutional layers for better representation of 
transmission lines, and dual output branches for generating 
multidimensional feature maps for instance segmentation. 

B. Vision Transformer-CNN Hybrid Models 

In recent years, the rapid development of ViTs has 
significantly advanced the field of computer vision, leading to 
their widespread application in tasks ranging from image 
classification to complex scene understanding [15, 16]. Instead 
of simplifying ViTs, another prominent research direction 
involves merging components of ViTs and CNNs to create 
novel backbone architectures. These hybrid models combine 
the local feature extraction prowess of CNNs with the global 
contextual understanding afforded by ViTs, thus offering a 
comprehensive approach to image analysis. Follow this 
approach, [17] highlighted the adaptation of principles from the 
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extensive literature on CNNs, particularly the use of activation 
maps with decreasing resolutions, to enhance the design of 
transformers. The study in [18] investigated the optimization 
challenges of ViT models, attributing the issues to their 
'patchify stem' design, and proposes a solution by replacing it 
with stacked stride-two 3x3 convolutions. This modification 
significantly enhances optimization stability and model 
accuracy, leading to the recommendation of using a standard, 
lightweight convolutional stem in ViT models for improved 
performance and robustness. In study [19], the authors 
introduced BoTNet, a versatile and efficient backbone 
architecture for various computer vision tasks, which enhances 
performance by integrating self-attention mechanisms. This is 
achieved by replacing spatial convolutions with global self-
attention in the last three bottleneck blocks of a ResNet, 
leading to notable improvements in instance segmentation and 
object detection, while simultaneously reducing the number of 
parameters and maintaining minimal latency overhead. 
ConViT [20] presented the concept of gated positional self-
attention (GPSA), a novel form of positional self-attention 
designed with a flexible, 'soft' convolutional inductive bias. 
GPSA layers are initially configured to emulate the locality 
characteristic of convolutional layers but are also equipped 
with a gating parameter that allows each attention head to 
dynamically balance the focus between positional and content 
information. Guo et al. [21] proposed a novel hybrid network 
that synergizes the long-range dependency capturing 
capabilities of transformers with the local information 
extraction prowess of CNNs. Recently, PVTv1 [22], PVTv2 
[23], LITv1 [24], and LITv2 [25] incorporate convolutional 

operations at each stage of ViT models to diminish the token 
count and construct hybrid, multi-stage structures. 

III. METHOD 

A. Model Architecture 

Fig. 1 illustrates the overall pipeline of our method, which 
integrates a vision transformer encoder with a convolutional 
neural network decoder to create a hybrid model for the 
segmentation of transmission lines in aerial images. Input 
images undergo a hierarchical processing through multiple 
layers of the Swin Transformer [26], each reducing the spatial 
dimensions while increasing the depth of feature 
representation. These layers (Layer 1 to Layer 4) progressively 
transform the input, capturing intricate details and contextual 
information at various scales. The transformed features are 
then upsampled and passed through convolutional layers to 
refine the feature maps, ensuring that spatial information is 
preserved and enhanced. The upsampling process gradually 
restores the resolution of the feature maps, which are then 
combined through feature fusion steps. These fusion steps are 
essential as it aggregates multi-scale information, enabling the 
model to capture both high-level semantic information and 
low-resolution spatial details. A squeeze-and-excitation (SE) 
layer is subsequently employed to recalibrate the feature 
channels, emphasizing informative features while suppressing 
less useful ones. Finally, a segmentation head, comprising a 
series of convolutional layers, is responsible for generating the 
output segmentation map that delineates the transmission lines 
within the aerial images. 

 

Fig. 1. Model architecture. 
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Fig. 2. The structure of Swin Transformer encoder. 

TABLE I.  DETAILED ARCHITECTURE OF SWIN-B 

Layer Output Size Number of Blocks Attention Heads Attention Head Dimensions MLP Ratio 

Patch Partition w/4 × h/4 × 48 N/A N/A N/A N/A 

Layer 1 w/4 × h/4 × 96 2 3 32 4 

Layer 2 w/8 × h/8 × 192 2 6 32 4 

Layer 3 w/16 × h/16 × 384 6 12 32 4 

Layer 4 w/32 × h/32 × 768 2 24 32 4 
 

B. Swin-B-based Encoder 

Fig. 2 illustrates the structure of Swin Transformer encoder. 
The original input image is represented as w×h×3, where w 
and h are the width and height of the image, and 3 represents 
the RGB color channels. This image is then partitioned into 
patches. The size of these patches is 4×4 pixels, which are then 
flattened and linearly embedded into a higher-dimensional 
space (e.g., 48 features per patch). So, the input dimension to 
the first transformer layer is w/4×h/4×48. As the input passes 
through each Swin Transformer layer consisting consecutive Ni 
(i = 1, 2, 3, 4) Swin transformer blocks, the spatial resolution is 
further reduced, and the feature dimensionality is increased, 
thus enhancing the model's ability to capture more complex 
features at different scales. The Swin Transformer employs a 
self-attention mechanism within each block. The attention is 
computed using queries (Q), keys (K), and values (V), which 
are derived from the input feature maps. The formulation of 
self-attention within the Swin Transformer involves a sequence 
of operations beginning with the computation of Q, K, and V 
via linear transformations of the input feature map. The 
attention scores are then determined by calculating the dot 
product between Q and K. These scores are normalized using a 
softmax function to derive attention weights, which are 
subsequently used to obtain a weighted feature representation 
by multiplying them with V. To ensure stability in the gradients 
during training, a scaling factor, commonly the inverse square 
root of the keys' dimensionality, is optionally applied to the dot 
product of Q and K. Mathematically, the attention can be 
represented as: 

         (     )         (
   

√  
)   

where,    is the dimensionality of the key vectors. This 
allows the model to focus on different parts of the image 
depending on the learned importance of each feature. 

The Swin Transformer framework is offered in four distinct 
variants, namely Swin-T (Tiny), Swin-S (Small), Swin-B 
(Base), and Swin-L (Large), each differing in capacity and 
computational requirements. The choice of a particular Swin 
Transformer variant for a given task hinges on a balance 
between the model's empirical performance and the 
computational constraints of the available hardware. In the case 
of the segmentation of transmission lines in aerial images, 
Swin-B was selected due to its robust performance in capturing 
intricate details and providing a higher feature resolution 
necessary for the precise delineation of transmission lines, 
which are often slender and require fine-grained detection 
capabilities. Moreover, Swin-B strikes a balance between 
computational efficiency and model complexity, making it a 
pragmatic choice for tasks demanding high accuracy without 
exceedingly intensive computational demands. Table I 
provides detailed architecture of Swin-B backbone. 

C. CNNs-based Decoder 

The decoder leverages a U-Net-like structure known for its 
effectiveness in segmentation tasks due to its ability to 
combine low-level feature maps with high-level ones, thus 
capturing context and fine details. Each feature map output 
from the Swin-B backbone passes through a 3×3 convolution 
layer. This operation serves to refine the feature maps by 
applying filters that can capture spatial hierarchies within the 
data. After the convolution layers, the feature maps are 
upsampled. This process increases the spatial resolution of the 
feature maps to prepare them for feature fusion. The 
upsampling doubles the height and width of the feature maps, 
as is common in U-Net architectures [27] to match the 
dimensions of the feature maps from the encoder that will be 
fused. The upsampled feature maps are then fused with 
corresponding feature maps from earlier layers of the encoder. 
This step is crucial as it reintroduces higher resolution details 
that may have been lost during downsampling in the encoder. 
Feature fusion is done using element-wise addition operation. 
The last part of the decoder is the segmentation head, which 
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outputs the final segmentation map. This head takes the 
processed feature maps and applies a combination of 
convolutional layers, activation functions, and sigmoid layer to 
generate the pixel-wise classification of the transmission lines. 

Given the size of the input to the decoder is 
 

  
 

 

  
   , the 

size of the output should match the original height and width of 
the input image      . 

D. Squeeze-and-Excitation Layer 

Before the final output, we employ a Squeeze-and-
Excitation (SE) layer [28] to recalibrate the feature channels by 
explicitly modelling the interdependencies between them. The 
SE layer uses global average pooling to squeeze global spatial 
information into a channel descriptor, then uses two fully 
connected layers to capture channel-wise dependencies, and 
finally applies the channel weights back to the original feature 
maps to emphasize useful features and suppress less useful 
ones. Fig. 3 shows the architecture of the SE layer. Let the 
input to the SE layer be a feature map F with dimensions 
       , where    and    are the spatial dimensions 
after upsampling and   is the number of channels. The SE 
layer first performs a global average pooling operation on F, 
which squeezes the spatial dimensions    and    into a single 
channel descriptor z with dimensions      . 
Mathematically, this is represented as: 

   
 

     
∑ ∑       

  

   
  

    

 
Fig. 3. The architecture of the SE layer. 

where,    is the c-th element of z;        is the value at 

position (i, j) in channel c of the feature map F. 

The SE layer then passes z through two fully connected 
layers. The first layer reduces the channel dimensionality from 

  to 
 

 
 using a ReLU activation function, and the second layer 

increases it back to   using a sigmoid activation function, thus 
generating the channel-wise weights s with the same dimension 
     . Mathematically, this is represented as: 

   ( (   ))   (    (    )) (3)

where,   denotes the sigmoid activation,   denotes the 
ReLU activation,    and    are the weights of the fully 
connected layers, and   represents the excitation function. 

Finally, the SE layer applies these weights s back to the 
original feature map F through channel-wise multiplication, 
producing the output feature map    with the same spatial 
dimensions       but with recalibrated channels: 

      
              (4)

This operation scales each channel of the input feature map 
by the corresponding learned weight, emphasizing informative 
features and suppressing less relevant ones. The output of the 
SE layer is then ready to be passed to the subsequent layers in 
the decoder for further processing towards the final 
segmentation map. 

E. Loss Function 

Binary Cross-Entropy (BCE) loss is a commonly used loss 
function for binary classification tasks, such as the 
segmentation of transmission lines in aerial images, where each 
pixel is classified as either belonging to a transmission line 
(positive class) or background (negative class). The BCE loss 
function measures the distance between the predicted 
probabilities and the actual binary labels, penalizing 
predictions that diverge from the true labels. Formally, the 
BCE loss for a single pixel is calculated as: 

         ( )  (   )    (   )  (5)

where,   is the true label of the pixel, and   is the predicted 
probability that the pixel belongs to the transmission line class. 
The true label   is 1 if the pixel is part of a transmission line 
and 0 otherwise. The predicted probability   is obtained from 
the output of a sigmoid activation function in the last layer of 
the neural network, ensuring that   is in the range [0,1]. 

For the entire image, the total BCE loss is the average of 
the individual pixel losses: 

      
 

 
∑   

 
     

where,   is the total number of pixels in the image. 

IV. EXPERIMENTS 

A. Dataset and Metrics 

We use the TTPLA dataset [29] to evaluate the proposed 
method. The TTPLA dataset is a specialized collection of 
aerial images designed for the detection and segmentation of 
transmission towers and power lines. This dataset is significant 
for training and evaluating machine learning models, 
particularly in the domain of remote sensing and automated 
monitoring of electrical infrastructure. It includes high-
resolution images that capture the intricate details of 
transmission towers and power lines from various angles and 
under different lighting conditions. The diversity of the dataset 
aids in developing robust models capable of accurately 
identifying and segmenting these structures. The dataset 
consists of 1,100 images with a resolution of 3,840×2,160 
pixels and manually labeled 8,987 instances of transmission 
lines and transmission towers. For the purpose of evaluating 
the transmission line segmentation task, we only employ the 
labels of transmission lines for training and testing. 

Precision (P), recall (R), Intersection over Union (IoU), and 
F-score are critical metrics for evaluating the performance of 
models in the segmentation of transmission lines in aerial 
images. Precision measures the ratio of correctly predicted 
positive observations to the total predicted positives. It is 
formulated as: 
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where,    is true positives and    is false positives. 

Recall assesses the ratio of correctly predicted positive 
observations to all actual positives. It's given by: 

  
  

     
   

with    being false negatives. 

Intersection over Union (IoU), also known as the Jaccard 
index, is the area of overlap between the predicted 
segmentation and the ground truth divided by the area of union. 
The formula is: 

    
                

             
  

F-score is the harmonic mean of precision and recall, 
providing a balance between them. It's calculated by: 

          
   

   
  

These metrics are pivotal for tuning models to the specific 
challenges of aerial image segmentation, such as delineating 
thin and often indistinct transmission lines against complex 
backgrounds. High precision indicates a model that reliably 
identifies line pixels, while high recall shows it finds most of 
the actual line pixels. IoU gives an overall sense of the model's 
accuracy, and F-score offers a single measure to assess both 
precision and recall. 

B. Implementation Details 

We leverage the strengths of transformer models, 
specifically building upon the Swin Transformer for the 
encoder component. The Swin-B model is pretrained on 
ImageNet-22k with a resolution of 384×384, maintaining the 
window size (M) as in the pretrained models. To adapt to the 
higher resolution requirements of the semantic segmentation 
task, we fine-tune these models based on the dataset's 
resolution. Following methodologies in the literature, relative 
position bias is incorporated when calculating attention scores. 
The decoders are initialized with random weights from a 
normal distribution. For optimization, the AdamW optimizer 
[30] is employed. The input aerial images are resized to a 
standard resolution of 512×512 pixels, striking a balance 
between preserving detail and maintaining computational 
efficiency. The learning rate is set at 1e-4, paired with a cosine 

annealing scheduler to facilitate adaptive learning rate 
adjustments over approximately 100 training epochs. The 
model's training is executed on a high-end NVIDIA RTX 4080 
GPU. A batch size of 4 is used. Implementation is carried out 
using deep learning frameworks PyTorch. To further bolster 
the model's ability to generalize, data augmentation techniques 
including random rotations, flipping, scaling, and brightness 
adjustments are employed. 

C. Comparison with Existing Methods on TTPLA Dataset 

We compared the proposed model with six existing models 
on the TTPLA Dataset, as shown in Table II. It is evident that 
our model, which integrates a vision transformer encoder with 
a convolutional neural network decoder, outperforms most of 
the existing models in terms of precision, IoU (Intersection 
over Union), and F-score. These metrics are critical for 
assessing the effectiveness of segmentation models in aerial 
imagery. Notably, the proposed model achieves a precision of 
0.855 and an F-score of 0.671, surpassing the UNet, UNet++, 
and Focal-UNet models that also use the Resnet-18 
architecture. This superior performance can be attributed to the 
efficient feature representation and fusion enabled by the 
hybrid architecture of the proposed model. The Swin 
Transformer layers in the encoder capture intricate details and 
contextual information at various scales, which is crucial for 
accurately delineating transmission lines in complex aerial 
images. The use of the squeeze-and-excitation layer further 
enhances the model by emphasizing informative features, 
allowing for a more nuanced segmentation output. This is 
evident in the comparative improvement in precision and F-
score, where the model excels in correctly identifying relevant 
pixels while maintaining high overall segmentation accuracy. 
In contrast, models like LCNN and HAWP, based on the 
Hourglass architecture, show significantly lower precision and 
F-score values, indicating a lesser ability to accurately segment 
transmission lines in aerial images. Their lower performance 
might be due to less effective feature extraction and fusion 
compared to the proposed hybrid model. Overall, the proposed 
model's superior performance across multiple metrics, 
especially in precision and F-score, highlights its effectiveness 
in segmenting transmission lines in aerial images, 
demonstrating the advantages of its novel architecture 
combining vision transformer and convolutional layers. 

TABLE II.  SEGMENTATION PERFORMANCE OF THE PROPOSED METHOD AND THE COMPARISON METHODS ON THE TTPLA DATASET 

Models Backbone P R IoU F-score 

DeepLabv3+ [31] Resnet-18 0.784 0.510 0.424 0.573 

UNet [27] Resnet-18 0.846 0.583 0.515 0.662 

UNet++ [32] Resnet-18 0.843 0.591 0.522 0.668 

Focal-UNet [33] Resnet-18 0.784 0.577 0.504 0.662 

LCNN [34] Hourglass 0.541 0.315 0.498 0.519 

HAWP [35] Hourglass 0.581 0.421 0.485 0.532 

Our Model Swin-B 0.855 0.579 0.522 0.671 
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Fig. 4. Sample transmission line segmentation results of the proposed model. 

Fig. 4 displays a side-by-side comparison of original aerial 
images against the segmentation results produced by the 
proposed model for transmission line identification. Across 
various landscapes such as residential areas, road intersections, 
and open fields with transmission towers, the model delineates 
the transmission lines with a high degree of precision, as 
indicated by the blue lines overlaying the images. Specifically, 
the model accurately identifies transmission lines in residential 
areas without confusion from similar-colored backgrounds, 
showing its precision in challenging environments. At a road 
intersection, the model successfully differentiates transmission 
lines from road markings despite visual noise, indicating strong 
feature extraction capabilities. In open fields, the model 
effectively handles contrasts and textures, maintaining accurate 
segmentation over uniform backgrounds like grass. These 
results underline the model's robustness in varied settings and 
its applicability in real-world tasks such as infrastructure 
monitoring from aerial imagery. 

D. Comparison of Swin-B with Other State-of-the-Art 

Backbones 

We conducted experiments to evaluate the performance of 
Swin-B encoder. Fig. 5 shows the F-score performance of 
various backbone architectures employed in image 
segmentation models. Swin-B tops the chart with an F-score of 
0.671, indicating its superior ability in combining features 
effectively for precise segmentation tasks. Swin-T closely trails 
with a marginally lower F-score of 0.668, suggesting that while 
it is slightly less effective than Swin-B, it remains a highly 
competitive architecture. ResNeSt-101 and ResNet-101, both 
advanced iterations of the ResNet family, score 0.642 and 
0.630 respectively, pointing to a proficient but noticeably lesser 
segmentation capability compared to the Swin architectures. 
VGG-16, the oldest architecture among those compared, shows 
its limitations with an F-score of 0.585, underscoring the 
advancements in backbone architectures for segmentation tasks 
and the importance of choosing the right one for optimal 
performance. 
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Fig. 5. F-score comparison of different backbone architectures. 

V. CONCLUSION 

This paper presents a novel hypbid architecture for the 
segmentation of transmission lines in aerial images. The 
presented hybrid segmentation model, which leverages the 
synergy of a vision transformer encoder and a convolutional 
neural network decoder, has proven highly effective in the 
segmentation of transmission lines from aerial images. The 
model's performance, as demonstrated on the TTPLA Dataset, 
is superior to existing models, achieving remarkable precision 
and F-score metrics. Its ability to handle complex backgrounds 
and maintain high accuracy in diverse environments showcases 
its robustness and adaptability. The successful application of 
this model paves the way for its integration into aerial survey 
systems, offering significant improvements in the monitoring 
and maintenance of power line infrastructures, potentially 
reducing costs and increasing operational efficiency. The 
research outcomes not only contribute to the advancement of 
segmentation techniques but also underline the transformative 
impact of integrating transformer architectures within 
computer vision tasks. For future work, we will incorporate 
advanced object detection algorithms to identify not just 
transmission lines but also associated structures such as towers 
and insulators. This would provide a more comprehensive 
analysis of the aerial imagery, facilitating detailed inspections 
and maintenance planning. 
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