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Abstract—Images in low-light conditions typically exhibit 

significant degradation such as low contrast, color shift, noise 

and artifacts, which diminish the accuracy of the recognition task 

in computer vision. To address these challenges, this paper 

proposes a low-light image enhancement method based on 

Retinex. Specifically, a decomposition network is designed to 

acquire high-quality light illumination and reflection maps, 

complemented by the incorporation of a comprehensive loss 

function. A denoising network was proposed to mitigate the noise 

in low-light images with the assistance of images’ spatial 

information. Notably, the extended convolution layer has been 

employed to replace the maximum pooling layer and the Basic-

Residual-Modules (BRM) module from the decomposition 

network has integrates into the denoising network. To address 

challenges related to shadow blocks and halo artifacts, an 

enhancement module was proposed to be integration into the 

jump connections of U-Net. This enhancement module leverages 

the Feature-Extraction- Module (FEM) attention module, a 

sophisticated mechanism that improves the network’s capacity to 

learn meaningful features by integrating the image features in 

both channel dimensions and spatial attention mechanism to 

receive more detailed illumination information about the object 

and suppress other useless information. Based on the 

experiments conducted on public datasets LOL-V1 and LOL-V2, 

our method demonstrates noteworthy performance 

improvements. The enhanced results by our method achieve an 

average of 23.15, 0.88, 0.419 and 0.0040 on four evaluation 

metrics - PSNR, SSIM, NIQE and GMSD. Those results superior 

to the mainstream methods. 

Keywords—Low-light image enhancement; decomposition 

network; FEM attention mechanism; denoising network; detail 
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I. INTRODUCTION  

In the field of computer vision, low-light image 
enhancement has perennially been a focal point of research. 
Images acquired under low light conditions are often affected 
by problems like light weakening, increased noise and loss of 
detail, resulting in degraded image quality and blurred image 
content. The identified limitations exert a detrimental impact 
on the efficacy of computer vision applications, presenting 
challenges across various scenarios, including object detection 
[1], driverless driving [2], medical imaging. Moreover, these 
deficiencies introduce inconvenience in routine image capture 
and sharing within everyday life. 

Traditional image enhancement methods often rely on 
manually adjusting parameters such as brightness and contrast 
[3], which may not adapt well to changes in different scenes. 

However, due to the inability to effectively and accurately 
capture the features of the image, as well as its complex 
textures, these methods can lead to over-enhancement or the 
presence of shadow blocks and halo artifacts in the enhanced 
image. In contrast, methods based on deep learning improve 
adaptability and generalization by automatically learning 
image features, making them particularly suitable for complex 
environments. Specifically, deep learning methods based on 
Retinex theory, which separate an image's illuminance and 
reflectance through a decomposition network, allow for 
detailed adjustments through reflectance recovery and 
illuminance adjustment networks. These methods then merge 
the enhanced reflectance and illuminance images to improve 
brightness, contrast, and maintain natural colors, making them 
especially suitable for image enhancement in low-light 
environments. However, the decomposition network in Retinex 
can be affected by uneven lighting, potentially leading to loss 
of image detail, especially in dark and highlight areas of the 
image, thereby affecting the naturalness and realism of the final 
enhancement effect. 

Although there are currently various enhancement methods 
for low-light images, mainly focusing on improving image 
contrast, it is important to note that low-light images often 
contain a significant amount of noise, which can greatly affect 
the quality and clarity of the image. Many of the current 
denoising techniques are applied in the pre-processing and 
post-processing stages of the image. Denoising in the pre-
processing stage can cause the image to become blurred, while 
applying denoising in the post-processing stage can lead to the 
amplification of noise. Therefore, in the process of enhancing 
low-light images, how to appropriately balance the suppression 
of noise with the preservation of image details becomes a key 
challenge. 

To address the aforementioned issues, this paper presents 
three main contributions, as follows: 

1) In this paper, a decomposition network is proposed to 

obtain illumination and reflection maps through the 

decomposition of the RM and IM modules, as well as a 

comprehensive loss function is advanced to maintain the 

overall structure and consistency of the decomposed images. 

2) A denoising network was proposed to remove noise in 

low-light images, with the assistance of images’ spatial 

information, noise can be efficiently diminished, preserving 

map details, and consequently elevating the overall quality of 

enhanced images. 
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3) To effectively mitigate shadow blocks and halo 

artifacts in low-light images, this paper introduces an 

enhancement network featuring the FEM attention 

mechanism, which can significantly improve the restoration of 

image details and textures, yielding clear and natural image 

results. 

The rest of this article is organized as follows: Section II 
discusses the related work. The proposed approach is detailed 
in Section III. Section IV provides quantitative and qualitative 
evaluation the method’s performance. In Section V, ablation 
experiments were carried out on the FEM module and the de-
noising module, respectively. 

II. RELATED WORK 

Over the past few decades, various conventional methods 
have been proposed to address the challenges of low-light 
image enhancement. Noteworthy among these are traditional 
image enhancement methods, specifically histogram 
equalization [4] and methods based on Retinex theory [5]. 
Among these methods, histogram equalization method is one 
of the earliest and most extensively utilized methods. It aims to 
enhance image contrast and brightness by redistributing the 
gray level of image pixel values. This approach exists the 
disadvantages such as the limitations of global processing and 
the sensitivity to noise, which can lead to unnatural effects and 
information loss. 

To enhance the visual alignment of images with human 
perception, Land et al. [6] proposed Retinex theory. At the core 
of the theory lies the concept that an object's color is 
determined not only by the intensity of the reflected light but 
also by its ability to reflect light waves. However, this method 
exhibits limitations when applied to images with complex 
lighting conditions and strong contrasts. To address these 
issues, researchers introduced the Multiscale Retinex (MSR) 
algorithm [7], incorporating multi-scale Gaussian filters to 
more accurately estimate the illumination components at 
various scales, and suppressed the halo effect through weighted 
summation. Furthermore, in pursuit of preserving the natural 
and authentic visual characteristics of images, Gao et al. [8] 
proposed an improved Retinex algorithm based on the 
traditional Retinex algorithm, which introduced color 
correction and multiscale processing technology to improve 
image details at different scales more precisely, thereby 
improving the visual effect and quality of images.  However, 
most RetineX-based methods can cause severe color distortion 
and struggle to effectively enhance images with relatively high 
dynamic range. 

In recent years, the remarkable adaptive capabilities of deep 
learning in low-light image enhancement have established it as 
an effective method, contributing to the improvement of image 
quality and finding widespread application in various computer 
vision tasks. Numerous scholars have extended their efforts to 
constructing learning-based models based on Retinex theory. 
For instance, RetinexNet [9] integrates Retinex theory with 
deep convolutional neural networks, enhancing image contrast 
through brightness maps estimation and adjustment, with 
subsequent post-processing using Block-Matching and 3D 
Filtering (BM3D) for denoising. Zhang et al. [10] designed an 

efficient network based on Retinex theory to enhance low-light 
images. Lim et al. [11] introduced the Deep-Stacked Laplacian 
Restorer (DSLR), capable of recovering global brightness and 
local detail from the original input, achieving notable success 
in contrast improvement and noise reduction. Moreover, 
several non-Retinex-based methods have been proposed. Li et 
al. [12] developed LightenNet, a convolutional neural network 
employing a stacked sparse denoising autoencoder structure to 
learn the nonlinear transformation function for adaptive 
brightness and contrast enhancement in low light images. 
However, this method faces challenges in effectively 
addressing noise in low-light images conditions. Ma et al. [13] 
proposed a low-light image enhancement method based on a 
fast, flexible and robust strategy. The method combines 
adaptive enhancement and parameter adjustment to efficiently 
enhance images while preserving detail and quality. 
EnlightenGAN [14] employs an unsupervised deep learning 
approach within a Generative Adversarial Network (GAN) 
framework to address low-light image enhancement 
challenges. Depth-Aware Decomposition and Restoration 
Network (DA-DRN) [15] introduces a self-sensing depth 
Retinex network, directly restores degraded reflectance and 
preserves the detail information in the decomposition stage by 
using the dependence between reflectance and illumination 
pattern. Although these methods can significantly improve the 
brightness and contrast of images, challenges persist in noise 
removal and image detail recovery. Some methods may result 
in overly enhanced image, leading to potential distortions. 

The essence of the Retinex method lies in the estimation of 
luminance and reflectance maps. Traditional methods, with 
their limited decomposition ability, often result in over-
enhancement or under-enhancement. In contrast, the learning-
based approach demonstrates enhanced decomposition results 
and effectively improves contrast. It is noteworthy that many 
learning-based methods primarily utilize spatial information 
from low-light images to generate high-quality   normal-light 
images, often neglecting the recovery of detailed information. 
Therefore, the enhancement module proposed in this paper 
leverages the FEM attention module, embedding it into U-Net's 
jump connection to augment the network's learning capacity 
for meaningful features. This augmentation is achieved by 
integrating image features and spatial attention mechanisms in 
the channel dimension. This design not only utilizes spatial 
information to strengthen contrast but also prioritizes the 
recovering of finer detail from the image. 

In low-light conditions, image quality is often constrained 
by the optical signal attenuation, resulting in a significant 
degradation of the signal-to-noise ratio and a notable increase 
in noise. Some methods use the denoising model as 
preprocessing methods for low-light image enhancement; 
however, this preprocessing result in the loss of details in the 
low-light image. Chen et al. [16] introduced a model 
employing two parallel CNN branches: one for extracting 
brightness information and the other for extracting residual 
noise information. Low-light Photo Denoising via a Diffusion 
Model (LPDM) [17] is a denoising method for low-light 
images that utilizes a diffusion process. Initially, low-light 
images are enhanced to improve their brightness and contrast, 
followed by noise reduction through a diffusion process. 
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Although this method is effective in reducing noise, it 
introduces certain issues, such as the loss of some image 
details. To mitigate the loss of detail information during the 
denoising process, this paper introduces a denoising network to 

suppress noise in the reflection map. However, eliminating 
noise by restraining high-frequency signals in reflectivity map 
may lead to the loss of inherent details. 

 

Fig. 1. The framework of the proposed method.

III. PROPOSED METHOD  

As illustrated in Fig. 1, the whole pipeline is based on 
Retinex. Initially, a comprehensive loss function is 
incorporated into the decomposition network to obtain light 
and reflection maps. In order to mitigate the loss of detailed 
information, a denoising network is introduced to suppress the 
high frequency information in the reflection image. Finally, the 
FEM attention module is proposed in the enhancement network 
to process the light image, aiming to better preserve object 
details, create smoother color transitions, and yield a clearer, 
more natural image. 

A. Decomposition Module 

The loss function of decomposition network consists of 
perception loss function, illumination consistency loss function 
and global consistency loss function. 

1 2 consistency 3 globalperceptualL L L L         (1) 

The values of 1 , 2  , 3  and are 0.3, 0.4, and 0.3. 

The perception loss function is designed to preserve the 
perceived quality of the image.  Traditional pixel level loss 
function often falls short in accurately capturing the perceived 
quality of the image. Hence, we choose a pre-trained 
convolutional neural network to extract image features and 
subsequently calculate the feature difference between the 
generated low-light image and the target image. 
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Where, the input low-light image is I ，the target light map 

is L , ( )I represents the feature map extracted by the pre-

trained convolutional neural network (such as VGG16), and N  

is the number of feature maps, 2|| . || stands the 2L  norm. 

The illumination consistency loss function ensures the 
structural information’s consistency between the generated 
low-light image and the target image.  
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The G( ) represents the gradient of the image. 

The global consistency loss function elevates the overall 
consistency of the generated low-light image and the target 
image. 
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The ()mean represents the mean of the image. 

B. BRM Module 

The BRM module (Fig. 2) adopts the concept of a residual 
network as a reference and comprises 5 convolution layers. 
The convolution kernel size is {1, 3, 3, 1}, and the 
corresponding number of the convolution kernel is {64, 128, 
128, 64}. For the activation function, SELU is assigned to 
correspond to the convolution kernel 3, and LeakyReLu to the 
convolution kernel 1. Finally, a 64×1×1 convolution layer 
added to the jump junction. 

 

Fig. 2. The framework of BRM. 
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C. Denoising Module 

The heavy noise in low-light images obscures essential 
details, structure, and other valuable information, burying 
useful features beneath irrelevant ones. It is these severe 
degradations that make the training process challenging for 
network learning and the recovery of useful features (such as 
details, structure, and corrected color information). 

Previous methods often eliminate noise by suppressing 
high-frequency signals in the reflection map. However, those 
signals frequently encompass critical image details and texture 
information. The inhibition of high-frequency signals can lead 
to detail loss or blurring, resulting in visually smooth or less 
sharp enhanced image. In this paper, a denoising network is 
posed to remove noise in low-light images by considering 
spatial information from images. U-Net [18] has demonstrated 
excellent results in numerous computer vision tasks, and it is 
frequently employed in low-light image enhancement 
networks. Nevertheless, U-Net’s use of multiple max pooling 
layers has resulted in loss of feature information. In our 
network, the maximum pooling layer is replaced by the 
extended convolution layer, enabling a broader context 
information range by increasing the receptive field size of the 
convolution kernel without reducing the feature map 
resolution. The BRM module from the decomposition network 
is integrated into the denoising network, with each sub-module 
of U-Net being replaced with BRM. In the denoising network’s 
encoder part, subsampling is achieved by adding an average 
pooling layer with a pool core size and step size of 2 to the 
BRM module at the end. In the decoder part, up-sampling is 
realized by incorporating a deconvolution layer with 
convolution kernel size and step size of 2 to the BRM module. 
The spatial information in images often contains rich details 
and structural information. The denoising network proposed in 
this paper leverages spatial information for denoising, 
enhancing its ability to preserve details and resulting in clearer 
and more natural images after denoising. 

In the denoising network, a novel loss function is proposed 
in this paper. By integrating the Mean Square Error (MSE) loss 
term with the smoothing loss term, the image’s noise 
suppression and smoothing effect can be optimized 
simultaneously. The MSE loss term aids in minimizing the 
pixel-level difference between the real image and the low-light 
image, thereby mitigating the impact of noise. The smoothing 
loss item promotes the smooth characteristics of the low-light 
image, enhancing the clarity of edges and details. The specific 
process is as follows: 

  L Lsmooth Lmse    (5)

The tradeoff between smoothness and the difference at the 
pixel level in the denoising loss function can be controlled by 
adjusting the weighting factor  for the smoothing loss term, 

which defaults to 0.2. 

2|| ||Lmse Igi Igi    (6)

Where, Igi represents the grayscale image relative to the 

low-light image, and Igi  represents the grayscale image 

relative to the real image. 

~ 2 || ||Lsmooth Igi    (7)

Where, Igi represents the image processed by the 

denoising network, and  represents the gradient operator, 

which is used to calculate the gradient of the image. In this 
paper, the Prewitte operator is arranged to represent the value 
of the gradient operator, which can be represented by the 
following two matrices: 

1 0 1 1 1 1

1 0 1 , 0 0 0

1 0 1 1 1 1

x y
G G
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   

      
      

  (8)

D. Enhancement Module 

After denoising, residual shadow blocks and halo artifacts 
persist in low light images. In this paper, an enhancement 
module is devised to remove these artifacts while improving 
the quality of low-light images. Notably, the generation of 
shadow blocks and halo artifacts can be attributed to the U-
Net’s jump connection, wherein severely degraded features are 
directly conveyed to the up-sampled stage by linking up-
sampled features with previous down-sampled features, leading 
to the retention of degraded features. 

Inspired by SENet [19] in image recognition, the FEM 
attention module is incorporated into U-Net's jump connection 
to enhance noise removal and facilitate detail recovery. This 
inclusion is particularly effective in eliminating shadow blocks 
and halo artifacts. The FEM attention module operates by 
integrating image features in the channel dimension, assigning 
higher weights to valuable features (such as the correct color, 
detail, and texture features). This enabling the network to better 
learn these crucial features, while assigning lower or zero 
weights to less important features (such as noise, distorted 
colors, shadow blocks, and halo artifacts) or even giving no 
weight at all. 

The loss function of the enhancement module is shown as 
follows: 

    Re Ren con Re perL L L     (9) 

Where  is the weight used to balance different loss terms, 

the default value is 0.1. Ren conL  the content loss value obtained 

by calculating the absolute value of the difference between the 
enhanced image and the real enhanced image at each position 
of pixel, and adding the absolute value of all differences. The 
presented loss metric quantifies the holistic disparity between 
the generated enhanced image and the authentic enhanced 
image. Re perL  is the perception loss, which is gained by 

computing the square difference in the perception space 
between the generated enhanced image and the actual 
enhanced image, summing across all pixel positions. To 
maintain a balanced consideration of the various layers within 
the feature map, normalization is conducted by dividing the 
dimensions of the feature map. 

Content loss is defined as follows: 

    
N

Re con low en

i

L S S     (10) 
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Where i is the index of the pixel, lowS is the generated 

enhanced image, enS is the real enhanced image. || is the 

absolute value symbol.   means adding the difference of 

each pixel, that is, adding the difference between the generated 
enhanced image and the real enhanced image at each pixel 
position.  

Perceived loss means: 

21
* || ( ) ( ) ||

( )
 low enLRe per j S j S

CjHjWj
       (11)

Where Cj  represents the number of channels in the feature 

map of the J-th layer and the number of channels in the feature 
map of different layers used in the perception loss. Hj  is the 

height of the feature map of the J-th layer, which represents the 
height of the feature map of the different layers used in 
perception loss. Wj  represents the width of the feature map of 

the J-th layer, representing the width of the feature map of the 
different layers used in perception loss. j represents a 

function that maps the image to the J-th layer feature map, 
which is used to extract the representation of the features of 
image on the perceptual space. lowS  represents the enhanced 

image generated. enS  is a true enhanced image. 2|| || represent 

the square of the Euclidean norm of two vectors used to 
calculate the square of the difference in perceptual space 
between the generated and real enhanced images.  

E. FEM Module 

In recent years, a multitude of attention modules have been 
proposed to incorporate learnable weights in information 
processing, facilitating dynamic adjustments and the 
assignment of significance to various parts of the input data. 
This approach draws inspiration from human perceive and 
cognitive processes, enabling models to concentrate on 
information that significantly contributes to a given task or 
problem. For instance, Hu et al. [19] propose a Squeeze-and-
Excitation (SE) block, which effectively performs feature 
recalibration by modeling the interrelationships between 
channels. Recognizing the importance of positional 
relationships between pixels, Non-Local Network (NLNet) 
[20] explored a nonlocal operation to capture the interactions 
between any two positions, irrespective of their spatial 
distance. Subsequently, the Cross Partial attention Volume 
Transformer (CPVT) module introduces an attention 
mechanism that crosses partial channels and divides the input 
feature map into several subgroups, each encompassing a 
subset of the channels. The attention mechanism is applied to 
each subgroup, focusing exclusively on channel relationships 
within the current subgroup and not considering channels in 
other subgroups. This approach achieves a balance between 
computational efficiency and performance. 

These methods prove advantageous in addressing complex 
tasks like object detection and scene segmentation. A notable 
example is Axial-Deeplab [21], a deep learning model 
designed for image segmentation tasks. It employs an Axial 
attention mechanism for processing large-scale images and 
incorporates a segmented attention mechanism to enhance the 
capture of relationships between objects.  However, these 

approaches may exhibit limited impact on low-level tasks, such 
as image enhancement. To address this issue, we propose an 
FEM (Fig. 3) attention module in this paper. The module 
effectively removes shadow blocks and halo artifacts by 
integrating image features and spatial attention mechanisms in 
the channel dimension. Furthermore, optimized jump 
connections are introduced, enabling adaptive exploration of 
contrast information within the image and facilitating the 
recovery of potentially fine details in low-brightness areas. 

 

Fig. 3. The framework of FEM. 

The FEM module comprises two Conv+ReLU layers, 
AdaptiveAvgPool2d, AdaptiveMaxPool2d, an up-sampling 
module and a Dual Attention Module (DAM). Specifically, for 
an input feature graph X with dimensions H × W × C, 
AdaptiveAvgPool2d and AdaptiveMaxPool2d are employed to 
extract representative information. The average of these two 
operations generates a global information feature map with 
dimensions 1 × 1 × C. Then, the feature map with global 
information undergoes amplified through up-sampling, and the 
number of channels is compressed using 1×1 Conv to obtain a 
global feature map with dimensions H × W × C1. Following 
this, a DAM module is introduced to extract global features 
from spatial and channel dimensions. The DAM consists of 
two input branches: channel attention branch, and spatial 
attention branch. For an input feature graph X with dimensions 
of H × W ×C, the channel attention branch employes global 
average pooling and global maximum pooling to generate the 
global average pooling feature map Cavg and the global 
maximum pooling feature map Cmax in spatial dimension, 
respectively. Their purpose is to emphasize the information 
regions, and these results are combined to produce the output 
Fc (R1×1×C) of the attention branch of the channel. The spatial 
attention branch aims to generate a space-based attention map.  
Similar to the channel attention branch, it computes Savg 
(RH×W ×1) and Smax (RH×W ×1) through global average 
pooling and maximum pooling in the channel dimension 
respectively. The output spatial attention map Fs (RH×W ×1) 
is then obtained through a convolution layer. Finally, Fc and 
FS are combined to rescale and optimize the global feature 
map, resulting in the output. The input feature map (encoding 
local information) and the optimized global feature map 
(encoding global information) are combined using the 
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concatenate function and the Conv+ReLU function to generate 
an output feature map with dimensions H × W × C. 

IV. EXPERIMENTAL 

A. Parameter Setting 

The experiment was conducted using PyTorch 1.8.0, with 
network training confined to a 256×256 patch on a single 
NVIDIA GTX 1080Ti GPU. The batch size was set to 2 and a 
total of 1×10^5 iterations were performed. Data enhancement 
involved random horizontal and vertical flips. Employing the 

Adam optimizer, the initial learning rate was set to 410 , 

gradually reduced to 610  through a cosine annealing strategy.  

B. Data Set 

The low light image dataset comprises a curated collection 
of specialized images tailored for the examination and 
evaluation of image processing algorithms in low light 
conditions. Typically, these datasets contain images captured in 
settings with insufficient illumination, offering researchers a 
challenging assortment for the development and assessment of 
algorithms aimed at enhancing the quality of low-light images. 
Derived real-world low-light scenes, these datasets encompass 
derived environments, both indoor and outdoor, capturing a 
range of shooting conditions and objects. These images within 
these datasets commonly exhibit characteristics such as low 
contrast, indistinct light and dark details, and elevated noise 
levels. 

In the experiment of this paper, we utilized the LOL-v1 [9] 
and LOL-v2-real [22] datasets. The LOL dataset consists of 
500 pairs of images, each with low and normal illumination, 
totaling 1,000 images. The images are captured with the same 
camera in varying lighting conditions, these images span a 
diverse array of scenes, both indoor and outdoor, and cover 
various shooting conditions and subjects.  The dataset’s 
diversity ensures comprehensive coverage of low-light scenes, 
which enhance the generalization and robustness of the 
evaluation algorithm. The LOL v2 dataset serves as a sequel to 
LOL v1, consists of two pairs of training and validation 
images, involving the actual shot and composite-generated 
images. Specifically, LOL-v2 is divided into two subsets: 
LOL-v2-REAL and LOL-v2-synthetic. The former includes 
689 pairs of low-light/normal-light images for training and 100 
pairs for testing, primarily adjusted by modifying camera 
parameters like exposure time and ISO. The latter is generated 
on an illumination distribution analysis of RAW format 
images. 

C. Evaluation Index 

1) Subjective evaluation: The method presented in this 

paper is compared with several advanced low-light image 

enhancement methods, including KIND  [10], KIND+ + [23], 

NE [24], SCI [13] and RetinexNet [9]. Experiments are 

conducted using publicly available source code provided by 

the authors of these methods. 

The results depicted in Fig. 4, The RetinexNet method 
overly smoothens details and even causes color deviations, 
making the image look unnatural. Moreover, the results of 
RetinexNet still contain a lot of noise. Although it uses BM3D 

to remove noise from the decomposed reflectance component, 
it cannot clearly remove the noise. The main reason is that 
BM3D is designed to remove Gaussian noise with a fixed noise 
level. However, the noise in the reflectance component is more 
diverse and complex than Gaussian noise. Although KIND and 
KIND + + introduced a recovery network to recovery color and 
remove noise from reflected images, the results were still 
inconsistent. For instance, in the first row of the Fig. 4, the 
KIND++ enhanced image still displays color deviation when 
compared to the reference image. In the second row, KIND 
treats a small light source as noise and removes it. In the sixth 
row, it is evident that KIND has unevenly enhanced the image. 
In the third image, the enhanced KIND ++ image still has color 
bias compared to the reference image. The SCI based method 
produces visually appealing results, it carries some undesirable 
artifacts (such as white walls). In contrast, upon observing the 
visualization results, particularly the outline of the teddy bear 
in the first row of Fig. 4 and the texture details of the book in 
the third row, our proposed method outperforms in terms of 
enhancement, reduced noise, and more accurate detail 
recovery. Conversely, other methods yield a fuzzy recovery 
effect due to noise interference in low light images, with the 
recovered images retaining significant noise. By comparing the 
results of different methods in the fifth line of images, our 
proposed method performs superior performance in restoring 
color saturation, presenting a more natural and vivid color 
enhancement effect. Moreover, in contrast to the restored color 
of the window in the second row of Fig. 4 and the floor in the 
last row, it can be concluded that our proposed method excels 
in maintaining color fidelity, suppressing noise, and removing 
artifacts. 

 

Fig. 4. Subjective comparison on the LOL-V1 dataset. 

Fig. 5 illustrates the impact of the experiment detailed in 
this paper, along with comparisons to other experiments on the 
LOL V2 dataset. Although RetinexNet can enhance the low-
light areas in images, it exhibits severe color distortion and 
halo artifacts (a significant amount of halo artifacts can be 
observed around the contours of the mountains in the second 
row of images). In contrast, our method effectively brightens 
the low-light areas reasonably while maintaining the realistic 
visibility of the result. Besides enhancing brightness, our 
method also successfully reduces color distortion and halo 
artifacts. SCI introduces and even amplifies noise after 
enhancement, and therefore suffers from severe noise 
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distortion and color degradation when brightening dark areas. 
Conversely, our experimental results have superior color-
recovery performance. KIND tends to exhibit some under-
enhanced areas and apparent color distortions. Although the 
KIND ++ can remove noise, excessive sharpening (the surface 
of the mountain in the second row and the intersection of 
branches in the sixth picture) may introduce other problems 
such as loss of detail, blurring, and causing the image to 
unnatural. Compared to all these methods, our method can 
effectively enhance the brightness and display details of the 
image while suppressing noise, and it presents the most 
abundant and reasonable color information. 

 

Fig. 5. Subjective comparison on the LOL-V2dataset. 

2) Objective evaluation: According to Table I, our method 

achieves superior results, which manifests that the enhanced 

images obtained by this pipeline are more visually 

satisfactory. 

To objectively evaluate the enhancement results, we 
employed four classical indicators, and the results are 
presented in Table I. Among these metrics, PSNR [25] is 
utilized to measure the noise level and degree of distortion 
between the original image and the processed image. A higher 
PSNR value indicates a closer result to the reference image at 
the pixel-level. SSIM [26] is employed to evaluate structural 
similarity, considering perceptual properties such as image 
structure and content. A higher SSIM value indicates a greater 
similarity in structure to the reference image. The method 
proposed in this paper achieves excels in both PSNR and 
SSIM, highlighting its advantages in lighting restoration and 
structural restoration. KIND and NE also achieved high PSNR 
values, indicating their effectiveness in restoring global 
illumination. GMSD [27] assesses image quality by comparing 
gradient amplitude difference between the original and the 
processed images. NIQE [28] quantifies the effect of the image 
enhancement algorithm by analyzing the statistical 

characteristics of the image and generating a continuous value 
score. A lower NIQE score indicates higher quality detail, 
brightness, and tone, indicative of a more natural appearance 
devoid of artifacts or pseudo-details. Consistently, our method 
achieves superior performance in both PSNR and SSIM. The 
enhanced images generated by our pipeline exhibit a more 
natural and vivid appearance, showcasing enhanced global and 
local contrast. 

TABLE I. COMPARISON OF OBJECTIVE EVALUATION INDICATORS OF 

DIFFERENT MODELS 

 KIND KIND++ NE SCI RetinexNet Our 

PSNR 21.38 19.21 22.61 20.80 18.4 23.15 

SSIM 0.85 0.79 0.82 0.72 0.62 0.88 

NIQE 0.610 0.556 0.526 0.470 0.831 0.419 

GMSD 0.060 0.106 0.091 0.063 0.137 0.040 

D. Ablation Experiment 

1) Comparison of the effectiveness of FEM module: To 

validate the efficacy of the FEM module, a model was trained 

with the FEM module replaced by an ordinary convolution. 

Fig. 6 illustrates the impact of FEM module on image 

enhancement. The results indicate that the model 

incorporating the FEM module effectively preserve object 

details and achieves smoother color transition in the image. 

Notably, in the third and fourth images, the enhanced results 

closely approximate the real image, aligning with the 

characteristics of the natural landscape. Analysis of the data 

presented in Table I reveals a notable improvement when 

utilizing models with FEM module compared to those 

without. Specifically, the PSNR increases by 3.74 (=20.22-

16.48) and SSIM increases by 0.18 (=0.81-0.63).  These 

finding lead to conclusion that models incorporating FEM 

modules exhibit superior performance in image enhancement. 

 

Fig. 6. Ablation experiments to verify the effectiveness of the FEM model. 

2) The effectiveness of the denoising network: To validate 

the efficacy of the denoising module, a comparison was made 

between a method trained without the denoising network and 

the original method. As depicted in the Fig. 7, the 
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experimental results employing the denoising network 

effectively remove the noise from the image, and the results 

after the removal of noise contain finer details and more vivid 

colors. It is illustrated in the Table II that the method 

incorporating the denoising network improves the PSNR ratio 

by 2.88 (22.77-19.29) and the SSIM ratio by 0.17 (0.84-0.67). 

These results demonstrate the effectiveness of the denoising 

network in this experiment. 

 

Fig. 7. Ablation experiments to verify the effectiveness of the FEM module. 

TABLE II. RESULTS OF THE OBJECTIVE EVALUATION OF THE ABLATION 

EXPERIMENTS 

Different situations PSNR SSIM NIQE GMSD 

No FEM module 16.48 0.63 0.51 0.083 

FEM module 20.22 0.80 0.46 0.066 

No denoising  network 19.29 0.67 0.58 0.073 

denoising  network 22.17 0.84 0.43 0.042 

V. CONCLUSIONS  

This paper proposes a low light image enhancement 
method based on Retinex. We propose an efficient network for 
decomposing a low light image, incorporating an innovative 
loss function that integrates perceptual, light consistency and 
global consistency to obtain high quality light and reflection 
maps. The decomposition network comprises a reflection 
image extraction module (RM) and an illumination image 
extraction module (IM). Additionally, we integrate a 
denoising network and an enhancement module to further 
improve image quality. Our method not only enhances image 
color smoothness, reduce artifacts, but also effectively remove 
noise to restore image details under   low-light conditions. By 
employing the FEM attention module instead of the 
convolution layer, our method successfully preserves object 
details. This results in a smoother color transition, yielding 
clearer and more natural images. Experimental results 
demonstrate that the proposed method achieves significant 
performance improvement across various low-light scenes. 
When compared to other existing methods, our method excels 
in image enhancement and detail recovery, showcasing 
superior noise removal and artifact suppression. In future 

work, we aim to extend the application of this method to other 
computer vision tasks, substantiating its versatility and 
performance advantages in different domains through 
comparisons with other state-of-the-art methods. 
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