
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

498 | P a g e  

www.ijacsa.thesai.org 

Double Branch Lightweight Finger Vein Recognition 

based on Diffusion Model 

Zhiyong Tao
1
, Yajing Gao

2
, Sen Lin

3
 

School of Electronic and Information Engineering, Liaoning Technical University, Huludao, China 125105
1, 2 

School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, China 110159
3 

 

 
Abstract—Aiming at the problems of high complexity, 

insufficient global information extraction and easy overfitting in 

finger vein recognition, a finger vein recognition method based 

on diffusion model is proposed. Firstly, finger vein images are 

generated according to the dataset by diffusion model, which is 

used to prevent overfitting; secondly, a streamlined convolutional 

neural network is used to form a two-branch lightweight 

backbone network with an improved multi-head self-attention 

mechanism, which can effectively reduce the complexity of the 

model; and finally, in order to maximally extract the image's 

overall information, the convolution is used to merge the 

extracted local and global features, and the recognition results 

are output. The algorithm can reach a maximum recognition rate 

of 99.78% on multiple datasets, while the number of references is 

only 2.15M, which further reduces the complexity of the 

algorithm while maintaining a high accuracy compared to other 

novel finger vein recognition algorithms as well as lightweight 

convolutional neural network models. As the first attempt in this 

field, it will provide new ideas for future research work. 
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lightweight network 

I. INTRODUCTION 

Lately, the focus of researchers on finger vein recognition 
technology has intensified, attributed to its exceptional security 
and precision. Since the vein network of each individual is 
hidden under the skin, finger vein-based biometrics has a 
massive advantage in live identification. As a developing 
technology, finger vein recognition-based biometrics is far 
from flawless. Various internal and external factors can impact 
the performance of finger vein verification. These factors 
include: Lighting Conditions, Finger Placement Angle, and 
Uniform illumination. Therefore, high-precision and high-
robustness algorithms are essential for feature extraction, 
recognition, or verification of finger vein images. A typical 
finger vein recognition process includes image acquisition, 
preprocessing, feature extraction, and matching. In the finger 
vein image acquisition process, a finger vein image acquisition 
device consisting of an image sensor and an infrared light 
source is used. Preprocessing of the acquired finger vein 
images is carried out to facilitate the subsequent feature 
extraction process. Suppressing noise, improving image 
contrast, and performing data augmentation are common image 
preprocessing methods. 

Feature extraction in finger vein recognition involves two 
main categories: traditional recognition methods and deep 
learning methods. Traditional recognition methods for feature 

extraction can be further classified into three distinct 
categories: template-based methods [1], representation-based 
methods [2], and feature-based [3][4][5] learning methods. 
These methods require manual labeling of parameters, depend 
on image quality, and have cumbersome recognition steps. 
Compared with machine learning methods, deep learning 
[6][7][8][9] based methods can achieve more stable recognition 
results by acquiring more profound image features through 
Convolutional Neural Networks (CNN). Therefore, some 
researchers proposed deep learning-based finger vein 
recognition methods. For example, Radzi et al. [10] proposed a 
CNN-based finger vein recognition method, Fang et al. [11] 
proposed a lightweight two-channel network to improve the 
verification of finger veins by extracting the mini-region of 
interest (ROI), Zhang et al. [12] proposed Domain Adaptation 
Finger Vein Network (DAFVN) improve the final recognition 
result by extracting illumination invariant features in the image 
and reducing the effect of light on the recognition result. 
Recently, researchers proposed the Vision Transformer (ViT) 
[13] method, which has attracted widespread attention in deep 
learning. Compared with CNN, ViT focuses more on global 
features and has shown excellent performance in several 
domains. In addition, researchers have proposed some 
improved methods, such as Liu et al. [14] proposed Swin 
Transformer, which obtains global and local features by 
constructing hierarchical feature maps and sliding windows, 
with better experimental results but high model complexity, 
and Peng et al. [15] proposed Parallel Network Architecture, 
which makes use of convolution and Multi-Head Self-
Attention (MHS) mechanism. Head Self-Attention (MHSA) to 
extract local and global features in parallel, which improves the 
network performance but is ineffective for small datasets. 
Based on the advantages of Transformer, researchers started 
applying it to finger vein recognition. Huang et al. [16] 
proposed Finger Vein Transformer (FVT) model for 
recognition, which achieves multi-scale feature extraction by 
reducing the number of tokens layer by layer, but exploiting 
the Transformer increases the complexity and computation at 
the same time. 

To enhance the efficiency of recognizing finger veins, some 
researchers have introduced data enhancement techniques to 
make the model better adapt to finger vein images in various 
scenarios. Yang et al. [17] proposed Finger Vein 
Representation Using the Generative Adversarial Networks 
(FV-GAN) model, which was the first time GAN was in the 
field of finger vein recognition. Choi et al. [18] proposed a 
Conditional Generative Adversarial Network (CGAN) to 
recover blurred images. They used a deep convolutional neural 
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network for the finger vein images—a convolutional neural 
network for finger vein image recognition. Hou et al. [19] 
proposed a ternary classifier, GAN, for generating training data 
to improve the learning ability of the CNN classifier. Although 
high-quality images can be generated using GAN networks, 
they require more extensive databases and may be unstable 
during training. 

Diffusion Model (DM) [20] is a recently emerged deep 
generative model for high-quality image generation, which is 
rapidly evolving and is widely used in tasks such as text-to-
image generation, image-to-image generation, and video image 
generation. Also, one of the data enhancement methods, the 
diffusion model has a more straightforward training process 
and generates higher-quality images compared to GAN 
networks. Jonathan et al. [20] proposed the Denoising 
Diffusion Probabilistic Model (DDPM), which is used for 
image generation tasks, generating the image quality is higher 
than other generation models such as GAN. Robin [21] et al. 
proposed Latent Diffusion Models (LDM), which achieve 
image generation by introducing a cross-attention conditioning 
mechanism, which significantly improves the training and 
sampling efficiency without degrading its quality. 

Summarizing the above research methods, the existing 
algorithms for finger vein recognition generally have high 
complexity, recognition accuracy needs to be improved, and 
the training process is unstable, so a two-branch lightweight 
finger vein recognition model (FV-DM) based on the diffusion 
model is designed to achieve finger vein image generation 

using the diffusion model to solve the problem of overfitting 
due to the small finger vein dataset. The CNN and the 
improved E-MSHA module are used to extract image features 
in parallel with the dual-branching in the feature extraction 
process to avoid the problem of low accuracy caused by 
insufficient feature extraction, while the diffusion model is 
used in the finger vein recognition process in order to explore a 
new way of finger vein recognition. The comprehensive 
experiments on the self-constructed dataset and three public 
datasets show that FV-DM all achieve better recognition 
results, as well as lower model parameters and computational 
complexity, shorter recognition time, and lower Equal Error 
Rate (EER). 

The remainder of this paper is organized as follows. 
Section 2 introduces our modelling approach and explains how 
it works. Section 3 describes the experiments conducted to 
validate the performance of the model. In Section 4, we 
summarize the paper and make suggestions for future work. 

II. METHODOLOGY 

A. Diffusion Model 

Recently, the diffusion model as a generative model has 
received more and more attention from researchers due to its 
powerful image generation ability. As shown in Fig. 1, the 
diffusion model is mainly divided into the forward noise 
addition process and the reverse denoising process. The solid 
line indicates the forward noise addition process and the 
dashed line indicates the reverse denoising process. 

 
Fig. 1. Network structure diagram of diffusion model. 

1) Forward noise addition process: The forward noise 

addition process uses Gaussian noise to gradually add noise to 

the input image, generating a series of noise samples 

0 1, ,..., Tx x x  until the image becomes a pure noise image. 

Assuming that 0( )q x  is the probability distribution of the real 

image, 1( | )t tq x x   represents the probability distribution of 

the current image tx obtained by adding noise to the previous 

step image 1tx   in the forward noise addition process, and the 

mathematical expressions for each step of the process of 

adding Gaussian noise are shown in (1): 

-1 -1( | ) ( | 1- , )t t t t t tq x x N x x I    (1) 

Where t  is the diffusivity and t  varies with time. The 

formula is expressed as a mean 
t 11 t tx     with a 

variance Gaussian 
2
t t   distribution. If the final image Tx  

is obtained through 0x , the whole process can be regarded as a 

Markov chain from 1t   to the moment t T , as shown in 

Eq. (2): 

0: 0 1

1

( ) ( ) ( | )
T

T t t

t

q x q x q x x 



    (2) 

In the forward noise addition process, Eq. (1) can be 
expressed as by the simplified way in literature [23]: 
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1 11t t t t tx x z       (3) 

Where 1tz   denotes the noise at moment 1t  . The tx  at 

any moment is obtained from the original image 0x  with the 

formula shown in the following equation: 

1t t      (4) 

1

t

t ii
 


    (5) 
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x z

 

 

   

  
  (6) 

0 0( | ) ( | , (1 ) )tt t tq x x x x I  N   (7) 

tz  is denoted as a Gaussian distribution satisfying (0, )IN  

2) Reverse denoising process: The reverse denoising 

process is also known as the inverse diffusion process. The 

main purpose is to gradually predict the target image 0x  from 

the purely noisy image Tx , i.e., to derive the 1tx   distribution 

from tx , which can be transformed into what is shown in Eq. 

(8) by using Bayes' formula: 

1
1 1

( )
( | ) ( | )

( )

t
t t t t

t

q x
q x x q x x

q x


    (8) 

According to the forward noise addition process, 

1( | )t tq x x   is known, and for 1( )tq x   and ( )tq x , it can be 

solved by adding the known condition 0x , as shown in the 

following equation: 

1 0
1 0 1 0

0

( | )
( | , ) ( | , )

( | )

t
t t t t

t

q x x
q x x x q x x x

q x x


    (9) 

In the process of reverse denoising, the features in the input 
noisy image are predicted by the neural network, and this paper 
chooses U-Net as the model for noise prediction. U-Net is a U-
shaped network structure, which consists of downsampling on 
the left side, upsampling on the right side, and cross-layer 
connections. The downsampling reduces the size of the feature 
map through the convolution operation and reduces the 
computational cost. The upsampling gradually restores the 
feature map to its original size through the inverse convolution 
operation, and the cross-layer connection is used to splice the 
features between the downsampling and the upsampling, which 
can effectively integrate the features of different levels of the 
image. For normalisation, Group Normalization (GN) is 
chosen. Finally, for the downsampling and upsampling 
operations in U-Net, the convolution with a step size of 2 and 
the inverse convolution are chosen, respectively. The specific 
structure is shown in Fig. 2. 

B. Design of the Network Model 

Inspired by DDPM [20], a finger vein recognition network 
based on a diffusion model is designed. It is shown in Fig. 3 

 

 

 

Fig. 2. U-Net Structure diagram. 
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Fig. 3. Structure diagram of diffusion model. 

The network structure contains two main parts: the image 
generation part and the image feature extraction part. Firstly, 
the diffusion model is used to achieve image generation by 
forward noise addition process and reverse denoising process. 
Then, the generated image is passed into the feature extraction 
network along with the actual image, and the Residual [22] 
module and the E-MHSA module extract the global and local 
features of the image, respectively, and stitch the features after 
extraction, which allows for better fusion of the features and 
further improves their expressive ability. The fused features 
are passed through the convolution module to achieve the 
extraction of deeper features. As shown in the figure, the 
convolution module consists of an ordinary convolution of 
size, an ordinary convolution of size, and a maximum pooling 
layer and is stacked twice in the feature extraction process to 
extract image features more comprehensively.  

C. Residual Structure 

The model uses a Residual module and an improved E-
MHSA module for local and global feature extraction in the 
early stage of feature extraction. The Residual module consists 
of an inverted residual structure, which can effectively reduce 
the computational cost while extracting the local features of 
the image. The specific structure is shown in Fig. 4. 

 
Fig. 4. Residual structure diagram. 

The inverted residual structure contains two ordinary 

convolutions, a DW convolution, a Dropout layer and a jump 

connection. The input information is first increased by 1 1
size ordinary convolution, then the image size is transformed 

by DW convolution with a convolution kernel size of 3 3 , 

and finally the number of channels is decreased by 1 1  size 

ordinary convolution, and the Dropout is used to randomly 

discard the features to prevent the parameter from relying too 

much on the training data and the phenomenon of overfitting. 

Finally, the output of the Dropout layer is added with the 

result of the jump join to complete the output of the 

information. The jump connection is mathematically defined 

as: 

( ) ( )H x F x x     (10) 

Where ( )F   is a function containing convolution, pooling, and 

modified linear unit operations, x  inputs the feature map, and 

( )H x  is the output of the inverted residual structure. The 

inclusion of jump connections in the inverted residual 

accelerates the convergence of the network and improves the 

generalization of the model. 

D. E-MHSA Structure 

Since MHSA has a strong ability to capture low-

frequency signals, which are used to provide global 

information, the enhanced E-MHSA module is used in this 

paper for global feature extraction. Compared to the 

traditional MHSA, E-MHSA incorporates average pooling 

operation and down-sampling before the computation of the 

attention mechanism in order to reduce the computational cost 

and achieve a more efficient and lightweight deployment. As 

shown in Fig. 5, the E-MHSA module is similar to the 

Transformer Block in ViT, which first captures the low-

frequency signals through E-MHSA with the following 

formula: 
0

1 2E-MHSA( ) ( ( ), ( ),..., ( ))hx concat SA x SA x SA x W  (11) 

Where 1 2[ , ,..., ]hx x x x  denotes the division of input feature 

x  into multiple heads in the channel dimension and h  is the 

number of heads divided. In this paper, we take 8 as the 

number of heads for the attention mechanism. ( )SA   is the 

computational formula for the attention mechanism, and the 

formula is as follows: 
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( ) ( , ( ), ( ))Q K V
s sSA x Attention X W P X W P X W     (12) 

where sP  represents the average pooling operation with step 

size s . 

 

Fig. 5. Structure diagram of E-MHSA. 

III. EXPERIMENTS AND ANALYSES 

A. Presentation of Datasets 

The experiments were conducted on three public datasets, 
FV-USM [24], SDUMLA-HMT [25], THU-FVFDT2 [26], and 
with a self-constructed dataset, FV-SIPL, which were divided 
in a 2:1 ratio, except for the THU-FVFDT2 dataset, in which 
the training and test sets were equally divided. The data 
information is shown in Table I. 

TABLE I. DATA INFORMATION FROM FOUR DATASETS 

Dataset 
Total number of 

categories 

Total 

image 
count 

Total 

training sets 

Total 

test sets 

FV-USM 492 5904 3936 1968 

SDUMLA-

HMT 
636 3816 2544 1272 

THU-
FVFDT2 

610 1220 610 610 

FV-SIPL 108 1296 864 432 

1) FV-USM: The dataset was provided by Universiti 

Teknologi Malaysia and contained finger vein images from 

123 volunteers, with 12 images captured from each of the four 

fingers of each volunteer. Therefore, the whole dataset covers 

a total of 492 finger categories and 5904 images. The size of 

each of these images is 640×480pixels. 

2) SDUMLA-HMT: The dataset was provided by 

Shandong University, which contains finger vein images of 

106 volunteers, and 6 images were collected for each index, 

middle, and ring finger of each volunteer's hands the whole 

dataset covers a total of 636 finger categories and 3816 

images, where each image size is 320×240pixels. 

3) THU-FVFDT2: The dataset was provided by Tsinghua 

University and contained finger vein images of 610 

volunteers. Finger vein images were collected twice for each 

volunteer, with a total of 1220 images, each with a size of 

200×100pixels. 

4) FV-SIPL: This dataset was made by the Signal and 

Information Processing Laboratory of Liaoning University of 

Engineering and Technology by using infrared finger vein 

acquisition sensors to collect finger vein images from 27 

volunteers. Among them, 12 images were acquired for each of 

the four fingers of each volunteer, and the whole dataset 

covered 108 finger categories and 1296 images in total. The 

size of each image is 176×415 pixels. 

B. Image Preprocessing 

In order to facilitate the subsequent process of image 
feature extraction, preprocessing operations are performed on 
the image. Taking the FV-USM dataset as an example, the 
main processes are shown in Fig. 6(a) to (d) below. 

 
Fig. 6. Image preprocessing process. 

For the original images in the dataset, first of all, through 

the ROI extraction operation, to reduce the interference of 

irrelevant information on the recognition results, and then 

carry out image normalisation, pass the normalised images 

into the diffusion model, and set the number of iterations in 

the training process to be 10000, and the time T  to be 1000. 

the same parameter settings are carried out on the commonly 

used generative model GAN, and it can be seen through 

Fig. 6(d) and Fig. 6(e) that the images generated by the 

diffusion model are clearer and show more similar image 

features to the original image, so the use of diffusion model is 

chosen as the data enhancement method in FV-DM. 

C. Experimental Environment and Parameter Settings 

The experiments were conducted under the Linux 
operating system using PyTorch1.7 framework, and the 
graphics card used for training and testing was GeForce RTX 
3090. The learning rate was set to 0.001, the batch size was set 
to 16, and Stochastic Gradient Descent (SGD) was chosen as 
the optimiser, where the momentum was set to 0.9. The input 
size of finger veins was uniformly adjusted to 224×224pixels, 
and the final experimental results were obtained by training 
iterations 100 times. 

D. Evaluation Indicators 

In order to evaluate the performance and advantages of 

the model, metrics such as Accuracy, Equal Error Rate, 

Average Processing Time for a Single Image, Number of 

Parameters, and Floating Point Operations (FLOPs) are 

selected for evaluation. Accuracy rate, as one of the 

commonly used metrics in finger vein recognition, can reflect 

the ability of the model to correctly identify different 

categories of samples in the entire dataset. The formula for 

accuracy rate is shown in (13): 

TP TN
Accuracy

TP TN FP FN




  
  (13) 
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Where TP  denotes the number of correct positive sample 

predictions, TN  denotes the number of correct negative 

sample predictions, FN denotes the number of incorrect 

negative sample predictions, and FP  denotes the number of 

incorrect positive sample predictions. In image recognition 

tasks, the EER value is usually used as an indicator to evaluate 

the good or bad performance of the model, which is 

determined by the False Acceptance Rate (FAR) and the False 

Rejection Rate (FRR). The formulas for FAR and FRR are 

shown below: 

FP
FAR

FP TN



    (14) 

FN
FRR

TP FN



    (15) 

Wherein the number of samples for incorrect acceptance 

and incorrect rejection is defined by a predetermined 

threshold. When the threshold of matching is greater than the 

preset threshold, it is determined to be incorrectly accepted, 

and vice versa is determined to be incorrectly rejected. The 

value when FRR  and FAR  are equal is the equal error rate. 

The equal error rate reflects the overall performance of the 

recognition method. The smaller the value of equal error rate, 

the better the performance of the recognition method. 

E. Comparison Experiment 

In order to verify the effectiveness of the FV-DM 

method, it is compared with the classical Transformer network 

models: the VIT-B, Swin-T, Conformer-B, Next-ViT and the 

lightweight CNN network model EfficientNetV2. The 

recognition accuracy results of the different methods on the 

datasets are shown in Table II. The results in the table show 

that the methods proposed in this paper achieve the best 

recognition results on all four datasets. Bolding indicates the 

best results and underlining indicates the second best results. 

In addition to the accuracy comparison, the average 

processing time, number of parameters and FLOPs of 

individual images for the different methods were also 

compared, as shown in Table III. In terms of the average 

processing time for a single image, MobileNetV2 is 2.27ms, 

which is 0.53ms faster than FV-DM, which is due to the 

MSHA contained in FV-DM. Other than that, FV-DM 

outperforms the other methods. 

TABLE II. RECOGNITION ACCURACY OF DIFFERENT METHODS ON FOUR 

DATA SETS (UNIT: %) 

Method 
FV-

USM 

SDUMLA-

HMT 

THU-

FVFDT2 
FV-SIPL 

VIT-B[13] 58.67 63.66 59.55 76.28 

Swin-T[14] 95.0 93.33 76.01 95.12 

Conformer-B[15] 99.0 98.67 96.64 99.33 

Next-ViT[27] 98.56 99.0 98.87 99.53 

EfficientNetV2[28] 98.10 98.07 97.78 98.20 

MobileNetV2[22] 98.12 99.0 98.32 99.0 

ResNet101[29] 98.33 98.34 98.21 99.0 

FV-DM(Our) 99.67 99.66 99.10 99.78 

TABLE III. COMPARISON OF EVALUATION INDEX RESULTS OF DIFFERENT 

METHODS 

Method Time/ms Parameters/M FLOPs/G 

VIT-B 11.30 103.03 16.88 

Swin-T 7.21 28.27 4.37 

Conformer-B 7.15 96.63 21.01 

Next-ViT 3.52 31.76 5.79 

EfficientNetV2 3.49 21.46 2.90 

MobileNetV2 2.27 3.50 0.33 

ResNet101 7.61 44.55 7.84 

FV-DM(Our) 2.80 2.15 0.19 

In this paper, four datasets are used to compare different 

recognition methods, including VIT-B, Swin-T and 

Conformer-B. The results are shown in Fig. 7. 

 
Fig. 7. Comparing the equal error rates of different methods. 
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On the SDUMLA-HMT dataset, the equal error rate of 

FV-DM is slightly higher than that of MobileNetV2, but 

except for that, FV-DM maintains the lowest equal error rate, 

which indicates that the FV-DM method has excellent 

performance in finger vein recognition, and it can be used as 

an effective recognition method. Compared with other 

methods, the FV-DM method has higher accuracy and better 

robustness, so it has a wide range of application prospects in 

practical applications. 

TABLE IV. RECOGNITION ACCURACY OF DIFFERENT METHODS ON 

PUBLIC DATASETS (UNIT: %) 

Method FV-USM SDUMLA-HMT THU-FVFDT2 

Merge CNN[30] 96.15 89.99 — 

DS-CNN[31] — 98.00 89.00 

Semi-PFVN[32] 94.67 96.61 — 

LFVRN_CE[33] 98.58 97.75 — 

DGLFV[34] — 99.25 — 

CMrFD[35] 98.33 98.92 — 

FVT 99.73 97.90 90.66 

TFHFT-DPFNN[36] — 98.00 — 

CNNs[37] 97.95 — — 

Coding SchemeA[38] 99.59 95.91 — 

FV-GAN — — 98.52 

Triplet-classifier 

GAN 
99.66 99.53 — 

FV-DM(Our) 99.67 99.66 99.10 

FV-DM is compared with novel finger vein models in 

recent years, and the results are shown in Table IV. Among 

them, FV-DM obtained the highest recognition accuracy on 

both public datasets, SDUMLA-HMT and THU-FVFDT2. 

The recognition accuracy on the FV-USM dataset is lower 

than that of the FVT method by 0.06%, but it is higher than 

that of FVT on the SDUMLA-HMT and THU-FVFDT2 

datasets by 1.77% and 9.03%, respectively. Therefore, from 

the overall results, FV-DM recognition results are better. 

 
(a) Recognition accuracy curves for the four datasets. 

 
(b) Loss curves for the four datasets. 

Fig. 8. Recognition accuracy and loss curve of FV-DM on four datasets. 

By comparing the novel finger vein recognition algorithms in 

recent years, FV-DM has better performance in terms of 

recognition accuracy, recognition time, complexity, etc. the 

recognition accuracy versus test loss curves of FV-DM on the 

four datasets are shown in Fig. 8. 

F. Ablation Experiment 

Ablation experiments were conducted in order to better 

validate the effectiveness of the modules in each part of the 

network. Under the premise that the rest of the conditions 

remain unchanged, modules such as Residual, E-MHSA, 

convolutional module and diffusion model are added to the 

network sequentially, and the accuracy rate is tested with the 

FV-SIPL dataset as an example, and the experimental results 

are shown in Table V. From the table, it can be seen that the 

accuracy rate increases step by step after the modules are 

added. Residual and E-MHSA need to be further fused after 

extracting the local and global features, respectively, to 

achieve a more comprehensive feature extraction, so the 

accuracy rate is increased by 42.92% after adding the 

convolution module compared with the previous one. The 

introduction of the diffusion model can achieve intra-class 

enhancement of the data and avoid the overfitting problem, so 

the accuracy is further improved after adding the diffusion 

model, which verifies the correctness of the conjecture. 

TABLE V. ACCURACY COMPARISON ON THE FV-SIPL DATASET (UNIT: 
%) 

Residual E-MHSA 
Convolution 

module 
Diffusion model Accuracy 

√    41.40 

√ √   55.58 

√ √ √  98.50 

√ √ √ √ 99.78 

IV. CONCLUSION 

Aiming at the finger vein recognition process that does 

not fully consider the global features of the image, is easy to 

overfit, and has other problems, this paper proposes a two-
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branch lightweight finger vein recognition method based on 

the diffusion model. Firstly, the diffusion model is used to 

generate finger vein images to expand the finger vein dataset. 

Secondly, a two-branch network composed of a convolutional 

neural network and improved E-MHSA is used to extract 

global and local features from the expanded dataset. Then, the 

extracted global and local features are fused by the 

convolutional module, and the image features are further 

extracted. Finally, the recognition results are output, and the 

effectiveness of the method is verified on multiple datasets at 

the same time. Experiments show that the method in this paper 

can improve the recognition performance while keeping the 

computational cost small. In future work, the application of 

the diffusion model in finger vein recognition will be explored 

deeply to seek more possibilities. 
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