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Abstract—Extractive reading comprehension is a prominent 

research topic in machine reading comprehension, which aims to 

predict the correct answer from the given context. Pre-trained 

models have recently shown considerable effectiveness in this 

area. However, during the training process, most existing models 

face the problem of semantic information loss. To address this 

problem, this paper proposes a model based on the SpanBERT 

pre-trained model to predict answers using a multi-layer fusion 

method. Both the outputs of the intermediate layer and the 

prediction layer of the transformer are fused to perform answer 

prediction, thereby improving the model's performance. The 

proposed model achieves F1 scores of 92.54%, 84.02%, 80.86%, 

71.32%, and EM scores of 86.27%, 81.25%, 69.10%, 56.42% on 

the SQuAD1.1, SQuAD2.0, Natural Questions and NewsQA 

datasets, respectively. Experimental results show that our model 

outperforms a number of existing models and has excellent 

performance. 

Keywords—Machine reading comprehension; pre-trained 
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I. INTRODUCTION 

With the advent of the big data era, getting the right 
answers from massive amounts of data in a timely and accurate 
manner has become an urgent task. As one of the most popular 
natural language processing (NLP) tasks in recent years, 
machine reading comprehension (MRC) aims to enable 
machines to learn how to read and understand texts, that is, to 
find answers to given questions from relevant articles. 
Extractive reading comprehension, a subtask of MRC, has also 
made significant progress in recent years, requiring models to 
extract a continuous passage of text from the given input text 
as the final answer. 

Extractive reading comprehension can overcome the 
limitations of relying solely on individual words or entities to 
answer questions. Its task is to use a model to extract an answer 
from a given passage or paragraph based on a given question. 
As shown in Fig. 1, given the question "when does season 2 of 
lethal weapon come out" and the passage "Lethal Weapon is an 
American buddy cop action comedy ...", the model reads and 
understands the passage and question, and then extracts a 
continuous segment "September 26, 2017" from the passage as 
the answer. The commonly used datasets for extractive reading 
comprehension include the SQuAD dataset [1], the NewsQA 
dataset [2], the TriviaQA dataset [3], and so on. 

In deep learning-based reading comprehension models, the 
prediction of answer boundaries relies heavily on information 
interactions, and scholars have proposed one-way attention 

models to employ attention mechanisms to enhance the 
interaction of information between passage and question. For 
example, Hermann et al. [4] used the one-way attention model 
as the basis for contextualizing questions, calculating the 
weight of each word in a passage, and generating a final 
representation of the passage. However, because one-way 
attention mechanisms only account for unidirectional attention, 
resulting in limited interaction between passage and question, 
researchers later proposed bidirectional attention models. For 
example, Seo et al. [5] proposed the bidirectional attention 
model BiDAF, which computes attention between question and 
passage separately in both directions to enhance information 
interaction and achieve good results. 

In 2018, Google introduced the bidirectional pre-training 
language model BERT [6]. Since its release, BERT has 
achieved outstanding results in the field of NLP. Its remarkable 
performance is attributed to its internal multi-layer transformer 
structure, and directly using BERT with a simple answer 
predictor can achieve good performance on the SQuAD 
dataset [6]. 

The study by Ganesh et al. [7] showed that different layers 
of the transformer encoder focus on different semantic 
information. Ramnath S et al. [8] experimentally demonstrated 
that the prediction layer of BERT focuses more on contextual 
understanding and answer prediction, but ignores the 
interaction between context and question, while the earlier 
layers of the transformer focus more on the latter. Thus, some 
semantic information is lost during the learning process. 

Since BERT was proposed, a number of pre-training 
models have been successively proposed. Among them, 
SpanBERT [9] is a representative model. Compared to BERT, 
SpanBERT [9] is more suitable for extractive tasks. However, 
it does not take into account the representational information 
emphasized by intermediate transformer layers, which may 
affect the final answer extraction in subsequent iterations. 

 This paper aims to address the potential problem of 
semantic information loss during learning in SpanBERT by 
investigating the fusion of semantic information from the 
intermediate and prediction layers of the transformer. A 
method is proposed to predict answers using a multi-layer 
transformer based on the SpanBERT model. The lower layer 
and the prediction layer of the transformer work together to 
predict answers. The predicted answer span information from 
both layers is combined to improve the accuracy of the 
predicted answers. The contributions of this work are outlined 
as follows: 
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1) We propose a model that can address the problem of 

semantic information loss during the learning process of the 

pre-trained model SpanBERT. Our model enhances the 

interaction between the paragraph text and the question by 

utilizing the SpanBERT model, the representation information 

emphasized by the intermediate layer and the final prediction 

layer of the transformer can be fused to improve the 

performance of the model's answer extraction. 

2) A new approach to vector fusion is proposed in this 

study, which can effectively combine semantic information. 

An attention mechanism is utilized to fuse the outputs of the 

intermediate and prediction layers of the transformer, resulting 

in a new fused vector. This vector can be used to generate a 

probability distribution vector of the answer span, which is 

then multiplied by the answer prediction vector to obtain the 

predicted answer span. Combining the representational 

information that the final prediction layer and the middle layer 

focused on will improve the accuracy of the model's answer 

extraction. 

3) We conduct comparison experiments on four datasets, 

including SQuAD1.1, SQuAD2.0, NaturalQA, and NewsQA, 

with two evaluation metrics, including F1 score and EM score, 

experiment results show that the proposed model has excellent 

performance. 

 
Fig. 1. Example of extractive reading comprehension. 

II. RELATED WORK 

MRC technology was first developed in the 1970s. In 1977, 
W.G. Lehnert et al. [10] designed the QUALM system, which 
used question-answering rules. In the 21st century, researchers 
integrated machine learning methods into MRC research. 
However, there were still drawbacks such as weak model 
generalization and insufficient feature extraction. The 
development of neural networks provided an opportunity for 
the advancement of MRC technology. From unidirectional 
attention mechanisms to bidirectional attention mechanisms, 
MRC technology has made significant strides and remarkable 
advancements. In recent years, the bidirectional pre-training 
language model BERT has achieved superior results in 
multiple task domains. 

Reading comprehension tasks can be categorized as cloze 
tests, multiple-choice, span extraction, and generative reading 
comprehension. 

Cloze-style tests prompt the machine to select the correct 
answer from a finite number of alternatives by removing words 
from the sentence. Representative datasets include CBT [11] 
and CNN/Daily Mail [4]. Representative models include the 
Gated Attention Reader [12] and others. 

Multiple-choice reading comprehension has a more flexible 
answer format than cloze tests, as it is not limited to words or 
entities in context. However, the answers to the questions must 
still be provided in advance. Representative datasets for this 
type of task include MCTest [13] and RACE [14], while 
representative models include DCMN+ [15]. 

Currently, span extractive reading comprehension is the 
most popular task in this field, which is more challenging than 
traditional machine reading comprehension. The goal is to 
extract a contiguous span from a given text paragraph, which is 
not selected from a list of options. 

Extractive reading comprehension models typically consist 
of four network architecture components: an embedding 
module, a feature extraction module, an information interaction 
module, and an answer prediction module. The embedding 
module converts each word in the passage and question into a 
fixed-length vector representation. To achieve this, a classical 
word vector encoding method such as Word2vec [16] can be 
used. The feature extraction module is often positioned after 
the embedding layer to extract context and question features 
separately. This module typically uses classical deep neural 
networks, such as recurrent neural networks and convolutional 
neural networks, to extract contextual information. The 
information interaction module is responsible for combining 
the encoded information of the paragraph and the question. It 
also captures the relationships between the words in the 
paragraph and the question to obtain their representations. The 
answer prediction module is located at the end of MRC 
systems and provides answers to questions based on the 
primary context. 

In the extractive reading comprehension task, two 
classifiers are typically trained to predict the starting and 
ending indices of the answer. Common datasets for extractive 
reading comprehension include SQuAD, NewsQA, TriviaQA, 
SearchQA [17], and so on. Representative models include 
SpanBERT, BLANC [18], etc. 

Although extractive reading comprehension has made 
significant advancements, its capabilities remain insufficient. 
Specifically, confining answers to a specific span within the 
context is still unrealistic. Generative reading comprehension 
requires machines to infer, summarize and provide open-ended 
answers from multiple passages of text. Of the four different 
types of tasks, generative reading comprehension is the most 
difficult. NarrativeQA [19] is a dataset that represents 
generative reading comprehension, and UniLMv2 [20] is a 
model that represents this type of task. 

In addition to the task form, reading comprehension models 
can be structurally divided into a reading comprehension 
module and an answer prediction module. The reading 
comprehension module aims to answer the given questions 
based on the given passages. It is considered the core part of 
the model, where the model learns information from the input 
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text passage and question and generates the input text 
representation. For instance, Seo et al. [5] proposed BiDAF, 
which uses a bi-directional attention mechanism to improve the 
interaction between the question and the text passage, resulting 
in a more effective representation of the input text. BERT, on 
the other hand, enhances word embedding through multiple 
layers of transformer. SpanBERT, which is built on top of the 
BERT architecture, further improves text comprehension in the 
continuous span extraction task by training with span mask and 
span boundary objective.  In this paper, we use SpanBERT as 
the foundational architecture of our model. 

The answer prediction module is divided into different 
types of tasks. For the cloze reading comprehension task, the 
module predicts the probability values of multiple candidate 
answers based on the text vector information and selects the 
option with the highest probability as the predicted answer. For 
the extractive reading comprehension task, the answer is a 
continuous segment of the given text. The answer prediction 
module should generate two probability distributions based on 
the text representation: one for the starting position of the 
answer and the other for the ending position. 

III. MODEL 

Our model utilizes SpanBERT, a pre-trained model with 12 
layers of transformer encoder, similar to BERT. The 12th layer 
is typically used for final answer prediction. However, 
language is complex and contains not only grammar and 
semantic information, but also hidden information such as 
emotion and deduction. Therefore, each layer of the 
transformer encoder learns different information during the 
training process. This model addresses the limitation of 
existing models that ignore other potentially helpful layers for 
answer prediction, by incorporating them into the prediction 
process. To improve answer prediction performance, this paper 
proposes a model that utilizes an information fusion approach. 
The basic architecture of our model is shown in Fig. 2. 

First, both the passage and the question are input into the 
embedding layer for learning, resulting in the output of each 
layer of the transformer. Subsequently, the output of the middle 
layer and the output of the prediction layer are combined to 
obtain a fusion vector that contains the semantic information 
from both the middle layer and the prediction layer. Finally, the 
answer interval information predicted from the fusion vector is 
further fused with the answer information extracted from the 
prediction layer to obtain the final answer. 

A thorough explanation of our model, including the 
encoding layer, encoder attention block, answer extraction, loss 
function, and other components, is given in this section. 

A. Embedding 

Suppose the question sequence is Q=[             ] and 
the passage sequence is P=[              ]. They are 
separated by a separator when inputting to the model, as shown 
in the following formula: 

[   ]               [   ]               [   ]   (1) 

After inputting the text into SpanBERT, the encoding 
sequences    (  = 1~12) of each layer of the transformer 
encoder can be obtained through the encoder modules. When n 

= 12,     represents the encoding sequence of the SpanBERT 
prediction layer, and the example of    is as follows: 

    [   ]    
    

      
  [   ]    

    
      

  [   ] (2) 

 
Fig. 2. Model architecture. 

B. Encoder Attention 

The specific steps of information fusion are as follows: 

1) Take out the results of the n-th layer and the last layer 

of the transformer encoder, and the encoding of the question is 

separately extracted to obtain the encoding information of the 

question for the two layers, denoted as    and      , 

respectively. 

2) The semantic information is combined between the two 

layers by means of dot product, and then calculate the weight 

of each of the two layers through the fully connected layer. 

The formula is as follows: 

  
      (  )   (3) 

     
      (     )      (4) 

              
       

          (5) 

                (          )  (6) 

   and       represent the encoded vectors of the question 
part in the n-th layer and the prediction layer of the transformer 
encoder. SUM(*) is used to avoid the problem of inconsistent 
lengths of Q in the input text by stacking the encoding 
information of    and       according to the word encoding 
dimension.            represents the fused semantic 
information.       ( )  is a linear function.    and       
represent the weights calculated for the n-th layer and 
prediction layer when predicting the answer, respectively. 
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3) By calculating the weights, we can obtain the fusion 

vector encoding as follows. 

                          (7) 

   and       represent the encoding sequences obtained 
from the n-th layer and the 12-th layer of the transformer 
encoder, respectively.        represents the fused vector of the 

word encoding information. 

C. Answer-span Prediction 

In the previous section, we fused the encoding of the n-th 
layer and the prediction layer to obtain a new fused vector. In 
this section, we propose a new approach for span prediction to 
improve the performance of the model. The formula is as 
follows: 

       
   (           

 )

∑     (          
   

 )
  (8) 

       
   (           

 )

∑     (          
   

 )
  (9) 

       represents the fusion vector that fuses the word 

encoding information from the n-th and prediction layers.   

、  、  
  and   

  represent the trainable weights and bias 

parameters.       and       represent the relative probability 
of each word as the beginning and ending position of the 
answer. 

After obtaining the probability distributions of the answer 
span, which are represented by the fused vector of       and 
     , the calculation of the guided-layer attention vector can 
be initiated. The formula is as follows: 

                              (10) 

 
Fig. 3. Distribution of guided-layer attention vector. 

The guided-layer vector represents the probability 
distribution of the predicted answer region. By multiplying 
      and      , as shown in Fig. 3, the predicted probability 
value of words belonging to the answer span is higher than 
both ends, and the farther the distance is, the lower the 
probability value is. That is, the overall distribution of 
Attention is normal.  The overall distribution exhibits a normal 
distribution, which could facilitate the ability to predict answer 
span for the guided-layer attention vector. 

Finally, the answer prediction layer       and the 
probability distribution vector of the answer region are dot-
multiplied, and then the final answer prediction is calculated by 
       ( ). The calculation formulas are as follows. 

                      (     )  (11) 

                         (12) 

                         (13) 

       
   (          

 )

∑     (           
 )

          (14) 

     
  

   (          
 )

∑     (           
 )

                     (15) 

     ( ) represents the vector splitting operation.         
and         are used to predict the start and end indices of 
context.      and      denote answer prediction vectors that 
have merged the information of the probability distribution 

vector of answer region.    、  、  
  and   

  represent the 

trainable weights and bias parameters. 

D. Loss Function 

The loss function used in our model is the joint cross-
entropy loss function, which is based on the negative log 
probabilities of the true answer's start and end positions in the 
predicted distribution. The formula is as follows: 

     
 

 
∑ *   (   

 
    

     )     (   
 
    

   )+ 
         (16) 

       and      are the probability distributions of the start 
and end positions of the answers predicted by the model.      
represents the prediction layer.   

  and   
  are the start and end 

positions of the real answer in the i-th training sample. 

The same answer prediction is done for the fusion vector to 
obtain the loss function   . 

    
 

 
∑ *   (   

 
 

     )     (   
 
 

   )+ 
            (17) 

We define our final loss function as the weighted sum of 
the two loss functions: 

       (   )        (18) 

λ is a hyper-parameter moderating the ratio of two loss 
functions. 

IV. EXPERIMENTAL SETUP 

A. Datasets 

To validate the effectiveness of the proposed model, 
experiments were conducted and analyzed on four datasets: 
SQuAD1.1, SQuAD2.0 [21], Natural Questions [22] and 
NewsQA. 

The Stanford Question Answering Dataset (SQuAD) is a 
large-scale English reading comprehension dataset constructed 
by Stanford University, which has been an indispensable 
dataset for MRC tasks since its release and has a milestone 
significance for the development of MRC technology. 
SQuAD1.1 contains 536 high-quality articles from English 
Wikipedia, which are divided into natural paragraphs. In 
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addition, there are 107,785 questions and corresponding 
answers, all of which are manually annotated. 

SQuAD 2.0 builds on SQuAD 1.1 by adding unanswerable 
questions. Dataset creators provide an unanswerable question 
for each paragraph to interfere with the model's prediction. The 
training dataset contains 87k answerable and 43k unanswerable 
questions. 

Natural Questions is a dataset of natural language queries. 
Each example consists of a Google query and a Wikipedia 
passage, where the answer is a span of the Wikipedia passage. 
The Natural Questions dataset contains 300,000 natural 
questions with human annotated answers. 

The NewsQA dataset contains examples selected from over 
10,000 news articles from CNN, along with 119,633 manually 
generated question-answer pairs. The answers are snippets of 
any length from the news article, and the dataset also includes 
partially unanswerable questions. 

B. Evaluation Metrics 

F1 is the most widely used evaluation metric in existing 
extractive reading comprehension models. The Precision value 
is computed as follows: 

           
  

      
  (19) 

TP represents the number of true positive samples and FP 
represents the number of false positive samples. Then the 
Recall value is then calculated as follows: 

        
  

      
   (20) 

FN represents the number of false negative samples. F1 
value is calculated from Precision and Recall with the 
following formula. 

       
                 

                 
         (21) 

EM (Exact Match) is a common evaluation metric for 
question answering systems, and it is also one of the main 
metrics for SQuAD. It measures the percentage of all 
predictions that exactly match the ground-truth answer. The 
calculation formula is as follows: 

     
      

    
   (22) 

       indicates the number of correct predictions and      

represents the number of all predictions. 

C. Experimental Setup 

The implementation of this model is based on Python and 
its third-party libraries, with PyTorch serving as the deep 
learning framework. The hyperparameters λ are set to 0.8 in 
joint loss functions. The experimental datasets used are 
SQUAD1.1, SQUAD2.0, NaturalQA, and NewsQA. To 
facilitate model performance testing and due to limited 
computing resources, the training batch size is set to 16 for the 
SQUAD2.0 dataset and 8 for the other three datasets. The 
learning rate is set to 2*e

-5
, and the maximum length of input 

text is set to 384. The word vector dimension is set to 768, and 

the number of training epochs is set to 4 on the SQuAD2.0 
dataset and 3 on the other three datasets. 

D. Baselines 

BLANC [18]: To improve the accuracy of the final answer 
prediction, the model primarily employs a context prediction 
method. The model first predicts a soft label, then uses this soft 
label to calculate the context boundary probability, and finally 
uses the context boundary probability to optimize the final 
answer boundary prediction. 

BERT-base [6]: BERT-base is a pre-trained language 
representation model that generates a deep bidirectional 
language representation using a masked language model 
(MLM). It is regarded as a landmark model in MRC, 
significantly advancing the field's development. 

SpanBERT [9]: This BERT variation is tuned for fragment 
extraction tasks, resulting in more accurate representations. 
Two aspects contribute to the optimization. Firstly, it 
recommends adopting span masking rather than single-word 
masking for learning at fragments. Second, it trains the masked 
boundary words representation to anticipate masked fragment 
information. 

ALBERT [23]: Compared to BERT, ALBERT overcomes 
the difficulties of extensive model parameterization and 
growing training time. It incorporates three major innovations: 
factorized embedding parameters, shared parameters across 
layers, and Sentence Order Prediction (SOP). The SOP creates 
not only positive examples by establishing the correct order of 
two consecutive sentences, but also negative examples by 
reversing their order. 

LinkBERT [24]: LinkBERT is a cross-document language 
modeling training method that takes advantage of document 
links. In contrast with BERT, this approach has a distinct 
benefit in that it uses the links between documents to improve 
language modeling. LinkBERT treats the corpus as a document 
graph and employs linked documents as supplementary input 
to the model rather than modeling a single document. 

DeBERT-base [25]: The proposed model aims to increase 
the robustness and effectiveness of the system when dealing 
with incomplete data. This is achieved by reconstructing 
hidden embeddings for sentences containing missing words. 

OneS [26]: This model is based on the human learning 
model and introduces a new task of extracting essential 
knowledge from different knowledge sets for model pre-
training. 

KALA [27]: To solve the problem of catastrophic 
forgetting that occurs during adaptive pre-training, this model 
adjusts the intermediate hidden layer representation of a pre-
trained model by incorporating knowledge from multiple 
domains. 

ALBERTbase+V4ES [28]: This model proposes a 
verification mechanism that divides the machine learning 
process into two modules: general reading and fine-grained 
reading. The general reading module involves reading the text 
and question to obtain a preliminary answer. The fine-grained 
reading module reads again and generates a final answer. 
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RoBERTa-base [29]: This model enhances its performance 
by increasing the number of parameters and training data. 

V. RESULTS AND DISCUSSION 

A. Results 

In this section, two evaluation metrics (F1 and EM) are 
used on four datasets to verify the effectiveness of the proposed 
model in the paper. The experimental results are shown in 
Table I, Table II, Table III, and Table IⅤ. 

From the experimental results on the SQuAD1.1 dataset, 
the results in Table I show that the proposed model achieves 
good performance. The F1 score of our model improved by 
0.6% and the EM score improved by 0.84% compared to 
SpanBERT. Compared to other models such as BERT-base, 
ALBERT-large, DeBERT-base, OneS and BLANC, the F1 
scores are improved by 4.04%, 1.94%, 0.44%, 2.84% and 
0.67%, and the EM scores are improved by 5.47%, 2.37%, 
0.17%, 3.27% and 0.97%, respectively. In the experimental 
results of the SQuAD2.0 dataset, as shown in Table II, the F1 
score of our model is improved by 0.59% and the EM score is 
improved by 0.76% compared to SpanBERT. In addition, 
compared to models such as BERT-base, OneS and 
ALBERTbase+V4ES, the F1 scores of our model are improved 
by 3.62%, 3.82% and 0.62%, and the EM scores are improved 
by 3.65%, 4.15% and 0.95%, respectively. 

From the results of the NaturalQA dataset, as shown in 
Table III, the F1 score of our model is improved by 2.55% and 
the EM score is improved by 2.50% compared to SpanBERT. 
Compared to other models such as BERT-base, ALBERT and 
BLANC, the F1 scores of the model can be improved by 
4.47%, 4.97% and 0.82% respectively, and the EM scores can 
be improved by 4.62%, 5.29% and 0.77%, respectively. From 
the experimental results of the NewsQA dataset, as shown in 
Table IV, the F1 score of our model improved from 67.93% of 
SpanBERT to 71.32%, with an improvement of 3.39%, and the 
EM score of the model is improved by 3.57%. 

All of the above results show that our model has excellent 
performance. 

Overall, our model performs better on the NaturalQA and 
NewsQA datasets when compared to the SQuAD1.1 and 
SQuAD2.0 datasets. This is because the SQuAD datasets have 
a flaw where the questions and answers are very similar, 
resulting in the front layer of the transformer losing less 
semantic information during the learning process. On the other 
hand, the NaturalQA and NewsQA datasets are generated 
based on real questions and answers, so more semantic 
information is lost in the front layer transformer during model 
learning. 

B. Effect of Different Layers on Results 

There are 12 layers of transformer encoders in SpanBERT, 
but each layer focuses on different information. During its 
iterative learning process, some information about the answer 
in the earlier transformer encoder layers may be forgotten. In 
this section, F1 and EM are used as evaluation metrics to 
investigate the effectiveness of each layer in guiding the 
prediction layer to predict the answer, using SQuAD1.1, 

SQuAD 2.0, NaturalQA and NewsQA datasets as experimental 
datasets. The experimental results are shown in Fig. 4. 

TABLE I.  RESULTS (%) OF EXPERIMENTS ON THE SQUAD1.1 

Models F1 EM 

BERT-base 88.50 80.80 

SpanBERT 91.94 85.43 

ALBERT-large 90.60 83.90 

LinkBERT 90.10 - 

DeBERT-base 92.10 86.10 

OneS 89.70 83.00 

BLANC 91.87 85.30 

ALBERTbase+V4ES 91.10 83.40 

Our model 92.54 86.27 

TABLE II.  RESULTS (%) OF EXPERIMENTS ON THE SQUAD2.0 

Models F1 EM 

BERT-base 80.40 77.60 

SpanBERT 83.43 80.49 

ALBERT-large 82.30 79.40 

DeBERT-base 82.50 79.30 

OneS 80.20 77.10 

ALBERTbase+V4ES 83.40 80.30 

RoBERTa-base 83.70 80.50 

Our model 84.02 81.25 

TABLE III.  RESULTS (%) OF EXPERIMENTS ON THE NATURALQA 

Models F1 EM 

BERT-base 76.39 64.48 

SpanBERT 78.31 66.60 

ALBERT-large 75.89 63.81 

LinkBERT 78.30 - 

BLANC 80.04 68.33 

Our model 80.86 69.10 

TABLE IV.  RESULTS (%) OF EXPERIMENTS ON THE NEWSQA 

Models F1 EM 

BERT-base 65.07 50.11 

SpanBERT 67.93 52.85 

ALBERT-large 66.02 51.18 

LinkBERT 69.30 - 

KALA 68.27 54.25 

BLANC 70.31 55.52 

Our model 71.32 56.42 
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Fig. 4. (a), (b), (c), (d) represent the experimental results (F1/EM score) of different layers of SpanBERT as a guided-layer on SQuAD1.1, SQuAD2.0, 

NaturalQA, and NewsQA datasets (%), respectively. 

From Fig. 4(a), we can see that on the SQuAD1.1 dataset, 
our model achieves optimal performance when using the 
output of the 11-th layer of the transformer encoder for fusion 
vector calculation. Specifically, compared to the SpanBERT 
model, the F1 score increased by 0.6% to 92.54% and the EM 
score increased by 0.84% to 86.27%. From Fig. 4(b), it can be 
observed that when using the prediction layer of the 
SpanBERT to directly predict the answer, the model achieves 
78.31% (F1) and 66.6%(EM) on the NaturalQA dataset. 
However, when using different intermediate layers of the 
SpanBERT with the prediction layer to generate a new fused 
vector through encoder attention, the model achieves an 
improvement of 2.04% to 2.41% in F1 score and 1.93% to 
2.5% in EM score. Among these experiments, the best 
performance was achieved when using the 5-th layer. This 
suggests that there is some semantic information loss in the 
early layers of the SpanBERT encoder during the iterative 
process. It also demonstrates the effectiveness of the proposed 
model. 

As shown in Fig. 4(c) and Fig. 4(d), experiments on the 
SQuAD2.0 and NewsQA datasets, it was found that the best 
performance could be achieved when using the outputs of the 
6-th and 2-nd layers of transformer encoder, respectively. 
Choosing different layers of transformer encoder to conduct 
experiments on different datasets always resulted in the best 
performance, indicating that our model is effective, and the 12 
layers of transformer encoder in the SpanBERT model have 
differences in processing semantic information, and each layer 
focuses on different semantic information. 

C. Effects of Hyperparameterλ 

In the experiment, a weighted sum of the joint loss function 
       and the loss function     of the answer prediction layer 

was used as the total loss function of the model, and a 
hyperparameter λ was introduced to balance the weight of the 
two loss values. In this section, we use SQuAD1.1 and 
NewsQA as experimental datasets, with F1 score and EM score 
as evaluation metrics, to verify the optimal value of the 
hyperparameter λ in the joint loss function. The experimental 
results are shown in Fig. 5. 

We set λ to [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], 
and conduct experiments by incorporating λ into the 
calculation of the joint loss function        . As λ increases, the 
accuracy of the model in predicting answers increases. In the 
experiments on the SQuAD1.1 dataset, the model achieved the 
best performance when λ was set to 0.8, with an F1 score of 
92.54% and an EM score of 86.27%. In the experiments on the 
NewsQA dataset, the model achieved the best performance 
when λ was set to 0.7, with an F1 score of 71.35% and an EM 
score of 56.13%. As λ increases further, the model's 
performance decreases. 

 
Fig. 5. (a) Results (%) for different values of  λ  on SQuAD1.1 dataset. (b) 

Results (%) for different values of  λ  on NewsQA dataset. 
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D. Different Pre-trained Models 

In the above experiments, we used SpanBERT as a pre-
training model to verify the effectiveness of our model. In 
order to verify the applicability of this method to other pre-
trained models, we also conducted comparative experiments by 
using two pre-trained models including BERT and SpanBERT. 
The experimental results are shown in Table V and Table VI. 

TABLE V.  RESULTS WITH DIFFERENT PRE-TRAINED MODELS (SQUAD1.1) 

 
SQuAD1.1 

F1 EM 

Bert-BASE 
BASELINE 88.10 80.49 

+our method 88.76 81.34 

SpanBERT 
BASELINE 91.58 84.97 

+our method 92.54 86.27 

TABLE VI.  RESULTS WITH DIFFERENT PRE-TRAINED MODELS (NEWSQA) 

 
NewsQA 

F1 EM 

Bert-BASE 
BASELINE 65.07 50.11 

+our method 66.74 51.69 

SpanBERT 
BASELINE 67.93 52.85 

+our method 71.32 56.42 

According to Table V, we can see that when using BERT 
as the pre-training model, our model can improve the model's 
F1 score by 0.66% to reach 88.76%. The model's EM score can 
be improved by 0.85% to reach 81.34%. When using 
SpanBERT as the pre-training model, the model's F1 score can 
be improved by 0.96% to reach 92.54%, and the model's EM 
score can be improved by 1.30% to reach 86.27%. From 
Table VI, on the NewsQA dataset, when using BERT as the 
pre-training model, our model can improve the model's F1 
score and EM score from 65.07% and 50.11% to 66.74% and 
51.69%, respectively. Using SpanBERT as the pre-training 
model, the model's F1 score can be improved by 3.39% to 
reach 71.32%, and the model's EM score can be improved by 
3.57% to reach 56.42%. These results suggest that our method 
is applicable to other pre-training models. 

E. Effects of         

In this section, we conduct comparative experiments using 
just the fusion vector        as the prediction layer and 

evaluate the performance. The experimental results are shown 
in Table VII and Table VIII. 

TABLE VII.  RESULTS OF        (NATURALQA) 

 
NaturalQA 

F1 EM 

       78.96 67.21 

SpanBERT 78.31 66.60 

Our model 80.86 69.10 

TABLE VIII.  RESULTS OF        (NEWSQA) 

 
NewsQA 

F1 EM 

       68.54 53.40 

SpanBERT 67.93 52.58 

Our model 71.32 56.42 

According to the experimental results shown in Table VII, 
on the NaturalQA dataset, when using the fusion vector        

as the prediction layer, the model achieved an F1 score of 
78.96% and an EM score of 67.21%, which is higher than the 
pre-trained model SpanBERT's 78.31% and 66.60%. However, 
there is still a performance gap compared to the experimental 
results of the proposed model in this paper. Similar 
experimental results were also verified on the NewsQA dataset. 
We can see that our model still has the highest performance, 
which indicates that our model is effective. 

VI. CONCLUSION 

In this paper, a SpanBERT-based multi-layer fusion 
extractive reading comprehension model is proposed. By 
fusing the representational information obtained from the 
intermediate transformer layer with the representational 
information obtained from the prediction layer, a new fusion 
vector is obtained through an encoder attention mechanism. 
Using the fusion vector, the distribution probability vector of 
the answer region is then computed and used together with the 
prediction layer to jointly predict the answer. Finally, answer 
extraction is performed. We have conducted extensive 
experiments to demonstrate the effectiveness of our model. 
Although the comparative experiments have shown the clear 
performance advantages of our model on the respective 
datasets, there are still certain problems and room for 
improvement. Specifically, even though the learning process of 
the pre-training model no longer suffers from the loss of 
semantic information, the learning process of our model still 
relies solely on the input data and does not use external 
knowledge, whereas people often use external knowledge to 
improve their understanding of textual data during the reading 
comprehension process. As a result, future studies can use the 
incorporation of external knowledge to enhance the semantic 
data, thereby improving the performance of the model. In the 
future work, we will also explore other pre-trained models for 
machine reading comprehension tasks. 
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