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Abstract—Forecasting crude oil prices hold significant 

importance in finance, energy, and economics, given its extensive 

impact on worldwide markets and socio-economic equilibrium. 

Using Long Short-Term Memory (LSTM) neural networks has 

exhibited noteworthy achievements in time series forecasting, 

specifically in predicting crude oil prices. Nevertheless, LSTM 

models frequently depend on the manual adjustment of 

hyperparameters, a task that can be laborious and demanding. 

This study presents a novel methodology incorporating Particle 

Swarm Optimization (PSO) into LSTM networks to optimize the 

network architecture and minimize the error. This study employs 

historical data on crude oil prices to explore and identify optimal 

hyperparameters autonomously and embedded with the star and 

ring topology of PSO to address the local and global search 

capabilities. The findings demonstrate that LSTM+starPSO is 

superior to LSTM+ringPSO, previous hybrid LSTM-PSO, 

conventional LSTM networks, and statistical time series methods 

in its predictive accuracy. LSTM+starPSO model offers a better 

RMSE of about +0.16% and +22.82% for WTI and BRENT 

datasets, respectively. The results indicate that the LSTM model, 

when enhanced with PSO, demonstrates a better proficiency in 

capturing the patterns and inherent dynamics data changes of 

crude oil prices. The proposed model offers a dual benefit by 

alleviating the need for manual hyperparameter tuning and 

serving as a valuable resource for stakeholders in the energy and 

financial industries interested in obtaining dependable insights 

into fluctuations in crude oil prices. 

Keywords—Crude oil; deep learning; Particle Swarm 

Optimization; Long Term-Short Memory; forecasting 

I. INTRODUCTION 

As one of the most significant commodities in the world, 
crude oil is responsible for the energy consumption. It is the 
foundation for daily items, from plastics to transportation 
fuels. Considering that fluctuations in crude oil prices 
significantly influence economies worldwide, price 
forecasting can help reduce the risks of oil price volatility [1]. 
Predictive methods in oil and gas operations can boost 
efficiency, lower costs, and reduce environmental impact from 
a good forecasting model [2]. Machine learning researchers 
and developers face challenges when working with large 
datasets and diverse data types, primarily because of noisy and 
unclean data [3]. Several pre-processing methods have been 

developed to address this issue, with specific methods yielding 
favourable outcomes. Hence, the choice of pre-processing 
techniques would depend upon the data's characteristics and 
quality. Typically, benchmark datasets such as ready data do 
not necessitate extensive pre-processing tasks [4]. However, 
the most significant challenge is effectively managing 
substantial quantities, especially the time series data, which 
requires the development of a more understandable model. 
The abovementioned difficulties are relevant to the oil and gas 
data, especially in real-time data monitoring. Further 
investigation is required to effectively tackle the obstacles and 
determine the practicability of these methodologies using 
benchmark and real-life data. 

Recently, there has been an increasing preference for 
incorporating predictive analytics in the oil and gas sector. 
Machine learning methods and their diverse applications in the 
oil and gas sector encompass multiple areas, such as pipeline 
prediction [5], well-log formation [6], and crude oil price 
forecasting [7].   

Due to its effectiveness in predictive analytics, the Long 
Short-Term Memory (LSTM) model is widely utilized in 
various oil and gas industry sub-fields and other engineering 
and finance-related disciplines. Prior studies have examined 
various methodologies on LSTM, including LSTM with 
optimization and CNN with LSTM. For instance, CNN and 
LSTM address two instances of degradation prediction in 
offshore operation platforms for natural gas treatment plants 
and seawater injection pumps for oil [8]. Compared to a single 
LSTM model, the performance of the CNN with the LSTM 
model is superior, exhibiting a notable enhancement of 15.5% 
in precision.  

Furthermore, the performance of LSTM has also been 
documented in reputable studies on time series [9], [10]. Yang 
et al. [9] employed the LSTM model to forecast short-and 
long-term production events in shale gas wells. The method 
performed better than the ARIMA, Arps, and Duong methods. 
In another study, Song et al. [11] used LSTM, a feature 
extraction and optimization model that incorporates feature 
engineering and parameter optimization and exhibits the 
lowest mean absolute error (MAE) value compared to other 
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models such as BPNN, LSTM, and random forest as reported 
by Dyer et al. [12]  

One of the recent challenges in oil and gas is predicting 
crude oil prices. The demand for crude oil price prediction has 
increased due to crude oil's complex and highly unpredictable 
characteristics of crude oil [13]. Several methods were 
proposed and evaluated using benchmark datasets. For 
instance, LSTM and Henry gas solubility optimization 
(CHGSO) technique to estimate crude oil prices using West 
Texas Intermediate (WTI) and Brent Crude Oil Time Series 
COTS datasets [14] and Hybrid Wavelet Transform (WT) 
Bidirectional Long Short-Term Memory Network (BiLSTM)-
Attention-CNN. WT-BLAC performs well for WTI data with 
R2, RMSE, MAPE, and MAE of 0.97, 2.25, 1.18, and 2.63, 
respectively. Furthermore, it evaluated a similar dataset using 
ensemble and ANN but with a different range of time series 
data [15]. The models have acceptable and significant 
interpretability in time series prediction of crude oil futures 
prices.  

Support vector regression model did another forecasting 
crude oil prices, which are infamous for being unpredictable 
and have been fine-tuned using a genetic algorithm [2]. They 
use a ten-year daily dataset from NASDAQ and key economic 
input features. A study by Shahbazbegian et al. [10] divided 
time series into sub-series by the proposed hybrid model, 
which employs a multifaceted approach to capture distinct 
characteristics, LSTM is combined with the Markov switching 
model to forecast volatile and fluctuating sub-series.  

After integrating these predictions using a linear 
combination, a comprehensive estimation of the time series 
for WTI crude oil prices is generated. The proposed method's 
respective RMSE and MAPE values are 4.18 and 0.03. 
Furthermore, He et al. [16] found that a hybrid forecasting 
model based on multi-modal features for price trends and 
employing the variational mode decomposition algorithm, 
extraction of data features with multiple modes, and time 
series employment of analysis provides acceptable 
performance. More research on crude oil forecasting solutions 
is still in demand. LSTM and its variants have great potential 
to obtain better forecasting results by embedding an 
appropriate optimization method. This paper focuses on using 
LSTM embedded with one of the popular computational 
optimizations, PSO. PSO is chosen due to its ease of 
implementation, high precision, and fast convergence [17], 
[18]. The applied forecasting model for oil and gas power 
transformers obtained an acceptable solution with PSO [19], 
[20]. Hence, we improve the LSTM by integrating with PSO. 

PSO star and ring topology, as well as a new particle 
representation that could improve the accuracy performance of 
crude oil forecasting, are embedded. The ring star topology 
and CHGSO_LSTM method, LSTM, and statistical time 
series techniques on benchmark crude oil price data compared 
the experimental results. Benchmark crude oil price data 
setting is the same as tested for CHGSO_LSTM by [14]. The 
rest of the paper follows the organization of the section as 
follows. Section II describes preliminaries on PSO and LSTM. 
The material and method for the proposed solution are in 
Section III. The computational results and discussion is 

mentioned in Section IV and V respectively. Finally, Section 
VI concludes the paper. 

II. PRELIMINARIES 

A. Particle Swarm Optimization 

In 1995, James Kennedy and Russell Eberhart introduced 
the PSO algorithm as a powerful population-based 
optimization technique [17], [18]. PSO has gained popularity 
among scientists and researchers due to its ease of 
implementation, high precision, and rapid convergence. The 
PSO algorithm is renowned for exploring and exploiting the 
search space effectively, rendering it suitable for various 
applications [17], [19]. PSO algorithm is a metaheuristic 
optimization technique that employs a population of particles 
to iteratively adjust their positions and velocities to find the 
best solution to a given problem. Before implementing PSO, 
particle representation must be designed carefully for 
the proper objective function [20]. The particle representation 
is an essential element of the PSO design for ensuring the 
algorithm's efficiency. Particle representation is a mechanism 
for encoding problem-solving solutions. Its ability to 
determine the properties of individual particles is used to map 
feature elements. By assigning an appropriate representation 
to each particle, PSO could facilitate efficient solutions [20], 
[21]. 

PSO can systematically investigate various regions within 
the search space while leveraging the search process to 
enhance and optimize a viable solution. The search strategies 
employed in the PSO algorithm are affected by the 
parameters, namely the acceleration constants (C1 and C2) and 
the inertia weight, as discussed by Shi and Eberhart [22]. Eq. 
(1) and Eq. (2) denote the velocity and position formulas 
adapted from the canonical PSO [18], [22]. 

                                          

                                                        ) (1) 

                     (2) 

where, 

                = new velocity of the     particle 

                = current velocity of the     particle 

               = current position of the     particle 

               = new position of the     particle 

              = inertia weight 

         = acceleration coefficient 

   and    = random function in the range of  [      

          =  position of the personal best of the     particle  

            = position of the global best derived from all 
particles in the swarm 

The cognitive component, represented as             
    encompasses various factors such as the acceleration 
coefficient, a random function, and the difference between the 
personal best position,       , and the current position,   . 
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The difference between the previous position,     and the 
personal best position        can be observed. The social 
component,                 , incorporates the acceleration 
coefficient, a random function, and the disparity between the 
previous position,    , and the global best position,         
The specific component signifies the historical performance of 
the particle, which is obtained from the combined version of 
all particles.  

Another PSO strategy is topology. Topology is another 
PSO technique for exploiting and exploration. Topology 
controls how particles interact and exchange information, 
enabling them to jointly explore and seek the best outcome, 
such as the star, ring, and square. It establishes how 
information is shared and how interactions take place among 
particles to find the best solution. 

B. Long Term-Short Memory 

LSTM can effectively capture long-range dependencies 
within sequential data [23]. This characteristic renders it 
highly appropriate for natural language processing, speech 
recognition, and time series analysis. Due to its feedback 
connections and capacity to acquire knowledge of long-time 
features from time series data, the LSTM network 
demonstrates significant efficacy in processing and predicting 
sequential data. The ability to capture extensive dependencies 
in sequential data is a considerable advantage of LSTM in 
deep learning [23]. 

LSTM is a deep learning technique demonstrating 
remarkable efficiency in capturing extensive dependencies 
within sequential data. LSTM is accomplished by employing 
memory cells alongside various gating mechanisms, including 
input, forget, and output gates. The architecture of the LSTM 
is depicted in Fig. 1. These mechanisms enable the extended 
short-term memory network to preserve and strategically 
discard information over duration, thereby facilitating its 
ability to accurately capture the interdependencies inherent in 
the dataset.  

A neural network model's performance with dense and 
LSTM units depends on several variables, including the 
problem's complexity. Increasing the number of dense units in 
a neural network can enhance the model's ability to discover 
the patterns and relationships in the data when dealing with 
complex problems. Similarly, increasing the number of LSTM 
units would improve its ability to capture long-term 
dependencies and remember previous information over time. 
This is especially important in tasks involving sequential data, 
such as time series analysis.  

 

Fig. 1. LSTM architecture. 

Furthermore, dense units can transform input data into a 
higher-dimensional space, increasing the model's ability to 
separate and classify. However, it is crucial to exercise caution 
when selecting the appropriate number of dense and LSTM 
units to prevent the data's overfitting or underfitting. 
Furthermore, the structure and architecture of the neural 
network model can influence the effectiveness of dense and 
LSTM units. Considering the specific problem, it is 
recommended to experiment with different combinations of 
dense and LSTM units to find the optimal configuration that 
yields the best performance and generalization on the given 
task. The selection and number of dense and LSTM units 
during the construction of neural network models can impact 
the performance of the models [24] [25]. The configuration 
and selection of dense and LSTM units in a neural network 
model can significantly impact its performance. 

III. MATERIALS AND METHODS 

This section elaborates on the description of the materials, 
data sources, and research methodologies used. The proposed 
approach captures the steps to see the performance of 
enhancement of LSTM with PSO models on crude oil 
forecasting. The approach includes data acquisition, pre-
processing, construction of the proposed methods, and 
evaluation. We propose two variants of the LSTM+PSO 
model, including the LSTM+starPSO and LSTM+ringPSO 
models, and compare them with ARIMA, SARIMAX, and 
LSTM. Fig. 2 demonstrates the overview of the proposed 
methodology. In addition, we introduced a particle 
representation or solution mapping for the PSO. Detailed steps 
are elaborated in the following sub-sections. 

A. Data Acquisition 

This study uses two different datasets: the WTI Crude Oil 
dataset [26] and the BRENT Crude Oil dataset [27]. Brent 
Crude refers to the assemblage of oil extracted from the North 
Sea's seabed, whereas WTI Crude denotes the amalgamation 
of oil obtained from land in the United States. WTI and 
BRENT are widely recognized benchmarks in the oil and gas 
industry. Specifically, the price of BRENT oil is commonly 
utilized as a reference point for the light oil market in Africa, 
Europe, and the Middle East. The datasets used for this study 
were obtained from the FRED website, a publicly accessible 
economic data repository owned by the Federal Reserve Bank 
of St. Louis. The website provides daily frequency data on 
WTI and BRENT crude oil prices from the early 1990s.  

Nevertheless, the scope of this study is limited to the 
utilization of data solely from the period spanning from 
January 4, 2000, to April 15, 2021. The WTI dataset 
comprises 5409 objects, while the BRENT dataset contains 
5438 objects. Both datasets share the same features: date, 
price, open, high, low, volume, and percentage change. A 
recent finding shows that the same dataset was used as a main 
part of a study by Altan and Karasu [28], which used two 
different forecasting methods, PSO+LSTM and 
CHGSO+LSTM. It was reported that the CHGSO+LSTM 
approach performed better than the LSTM method. The 
dataset's narrative was interestingly explored by using other 
LSTM variants. 
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Fig. 2. Flow of methodology. 

B. Data Cleaning 

From the data behavior perspective, the two datasets, WTI 
and BRENT, exhibit no missing values. Therefore, no missing 
value procedure is imposed. However, the identification of 
outliers is required. The interquartile range (IQR) method can 
detect outliers by utilizing the interquartile range Data 
distribution should be determined in the interquartile range 
within Q1 and Q3 or between the 25th and 75th percentiles. 
An outlier is any data point that lies outside a predefined 
range, typically defined as below the 25th percentile and 
above the 75th percentile by about 1.5 times. This careful 
method of outlier discovery and eradication improves the 
overall data quality and ensures that the dataset is used for 
subsequent forecasting. Eq. (1) is the IQR formula [29]. 

            (3) 

where, Q1 is the first quartile, and Q3 is the third quartile. 

C. Proposed Method 

This section explains an enhancement method of LSTM 
with PSO in forecasting crude oil. The initial part of the 
method construction is the identification of particle 
representation. A new particle representation is proposed to 
adhere to the LSTM architecture and its parameters. The aim 
is to find the best position of the particle that can give an 
optimal or near-optimal solution. It is represented by the 
particle's item, namely, lookback, LSTM unit, Dense Unit, and 
learning rate. The representation consists of discrete and 
continuous values shown in Fig. 3. 

 
Fig. 3. Particle representation. 

The LSTM-PSO algorithm incorporates two distinct 
topologies: the star and the ring. Consequently, two hybrid 
methodologies are proposed, specifically LSTM+starPSO and 
LSTM+ringPSO. Algorithm 1 outlines the procedural steps 
involved in the implementation of LSTM+starPSO. The 
LSTM+ringPSO follow similar steps, except Step 9. The 
algorithm commences by initializing the population of 
particles or swarm size. It is followed by initializing various 
parameters, including the number lookback, LSTM unit, 
dropout, dense unit, and learning rate. The Step 4 involves 
initializing the inertia weight,    and acceleration constants    
and   ). Steps 5 and 6 involve the initialization of the 
minimum value of velocity (Vmin), the maximum value of 
velocity (Vmax), the minimum position (Pmin), and the 
maximum value of position (Pmax). The subsequent step 
involves determining the setting for formulating the objective 
function and the iteration number, denoted as i. The ninth step 
involves the uploading of input data. Step 10 involves the 
implementation of the LSTM+starPSO algorithm, while Step 
11 entails the computation of the Pbest and Gbest values for 
each particle. The updated characteristics of the particle are 
outlined in Step 14. 
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Algorithm 1:  LSTM+starPSO 

1 Begin 

2 Initialize the number of  particles 

3 Initiate number lookback, LSTM unit, dropout, dense unit, 

learning rate 

4 Declare C1, C2 and W 

5 Initialize Vmin, and Vmax 

6 Initialize Pmax and Pmin. 

7 Set the objective function based on RMSE 

8 Set iteration number, i 

9 Load datasets 

10 Execute LSTM+starPSO 

11 Calculate Pbest and Gbest value for each particle 

12 Do 

13 For each particle  

14 Update features of the particle 

15 Calculate the new velocity value, V(new) 

16 Calculate new position, D(new) 

17 Calculate Pbest (new) 

18 Calculate Gbest (new) 

20 While (stopping condition is reached) 

21 End 

The new velocity value for each particle is determined in 
Step 15 by applying Eq. (1). Eq. (2) is utilized to update the 
new position, denoted as P(new), in Step 16. Ultimately, 
Pbest(new) and Gbest(new) values are established by 
considering the fitness value assigned to the given problem. 
The iteration process commences at Step 12 and continues 
until Step 20, during which each particle's current velocity and 
position are updated. The iteration will continue until it meets 
the specified stopping condition. 

D. Performance Measure 

This study has used two essential empirical measurements 
to evaluate and compare the effectiveness of the LSTM and 
PSO+LSTM models. The performance metrics, Mean 
Absolute Percentage Error (MAPE) and Root Mean Squared 
Error (RMSE) are the cornerstone indicators used to evaluate 
the precision and dependability of these models. RMSE is a 
well-known statistical metric that expresses the variance 
between the predicted values produced by the models and the 
actual observed values. A lower RMSE value signifies greater 
accuracy and precision, as the model's predictions closely 
match the observed data. 

Second, by evaluating the relative error as a percentage of 
the actual values, MAPE provides an insightful perspective on 
the performance of the models. MAPE averages out the 
absolute percentage differences between the predicted and 
actual values. This metric is beneficial for Assessing how well 
the models can predict values roughly equivalent to the actual 
data points and approximately proportional to them. A lower 
MAPE indicates that the models make more accurate 
predictions with minor relative errors in applications. 

IV. COMPUTATIONAL RESULTS 

A. Parameter Setting 

The proposed method encompasses two distinct parameter 
setting categories: Particle Swarm Optimization (PSO) and 
Long Short-Term Memory (LSTM). In the Particle Swarm 
Optimization (PSO) context, a population size for initializing 
particles is selected from a set of values, namely {10, 20, 30}. 
The value of the iteration variable, denoted as i, is adjusted to 
a value of 30. The importance of C1 and C2 remains 
consistently equal to 2. The lower and upper bounds for the 
inertia weight are 0.4 and 0.9, respectively. The particle 
representation set by PSO mapping determines the selection of 
random values for parameters such as lookback, LSTM unit, 
dense unit, and learning rate in the context of LSTM. The 
values are selected randomly during the execution of the 
program. The lookback parameter is randomly selected from 3 
to 10, while the LSTM unit is chosen from 64 to 256. The 
density unit and learning rate values are specified within the 
range of [10, 100] and [0.01, 0.01], respectively. 

B. Computational Results using  LSTM Based on the Number 

of Lookback 

In assessing the impact of lookback on LSTM 
performance, we conducted experiments using varying 
lookback values, ranging from 3 to 10, as indicated in Table I. 
The objective is to determine an appropriate value for the 
lookback parameter and identify the optimal RMSE and 
MAPE values. As shown in Table I, the utilization of WTI in 
LSTM models yields diverse RMSE and MAPE values, 
indicating variations in performance. Two lookbacks, 
specifically 5 and 8, stand out due to their comparable RMSE 
and MAPE results. The root mean square error (RMSE) for 
Lookback 5 is calculated to be 2.6604, with a MAPE of 
4.6256. 

On the other hand, Lookback 8 has an RMSE of 2.7761 
and a MAPE of 4.2628. Based on the analysis, it is observed 
that the MAPE of the lookback 8 model is significantly lower 
than that of the lookback 5 model, with a difference of -0.35. 
Additionally, the model with RMSE of lookback value equal 
to 8 is slightly higher than that of lookback equal to 5, with a 
difference of +0.11. Consequently, the model for lookback 
equal to 8 is deemed optimal for the WTI dataset. The results 
obtained on the BRENT dataset indicate a different outcome, 
highlighting the prominence of a particular lookback value of 
7. 

C. Comparison Results of Different Methods 

The forecasting results on the datasets WTI and BRENT 
are summarized in Table II and Table III. We incorporate 
LSTM with starPSO and ringPSO and tabulate the results 
from the recent finding by [28] and the conventional LSTM 
and two statistical time series methods, ARIMA and 
SARIMAX. The best results are highlighted in bold-face type. 
LSTM+starPSO provides better performance for the two 
datasets. In Table II, LSTM+starPSO with LSTM units of 
212, dense unit of 77, and learning rate of 0.0083, lookback 
equals to 8 demonstrates the superior performance compared 
to other methods with RMSE of about 1.7512. We can see 
from Table III on the BRENT dataset a better forecasting 
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performance offered by LSTM+starPSO, where both RMSE 
and MAPE are minimized. The performance seems better than 
CHGSO_LSTM, which reported 1.7540 for WTI and 0.8453 
of the RMSE for BRENT. In terms of the number of 
population, it shows that 20 is acceptable for both datasets. 
According to the results, although the data is univariate, the 
statistical models ARIMA and SARIMAX are ineffective 
compared to LSTM and its variants in forecasting future oil 
prices. 

Every PSO requires an objective function or criterion that 
the PSO seeks to optimize. In this case, RMSE from the 
LSTM result is used as the objective function, which PSO 
tries to minimize the RMSE value. According to our findings, 
the ideal lookback range and learning rate are [6, 7] and 0.008, 

respectively. LSTM+starPSO performs relatively similarly to 
the CHGSO-LSTM model [28] for the WTI and BRENT 
datasets in RMSE and MAPE. For the WTI dataset, +0.16% 
and -8.56% are obtained for RMSE and MAPE. A similar 
trend can be seen with the BRENT dataset, with +22.82% and 
+18.7% in RMSE and MAPE. On the other hand, 
LSTM+ringPSO performs slightly lower than 
LSTM+starPSO, where the result is -3.63% and -13.74% for 
RMSE and MPE for WTI and +20.7% and +21% for RMSE 
and MAPE for BRENT. PSO uses the position and velocity 
update method to find the best RMSE value. LSTM+starPSO 
outperforms CHGSO-LSTM with RMSE and MAPE with 
11% and 5.7% reduction. The same goes for the BRENT 
dataset, where we see a 39% and 42.8% reduction in RMSE 
and MAPE, respectively. 

TABLE I. COMPUTATIONAL RESULTS USING CONVENTIONAL LSTM  BASED ON THE NUMBER OF LOOKBACK 

Dataset WTI BRENT 

Split Lookback RMSE MAPE RMSE MAPE 

60:40 

3 2.1566 3.4105 2.4901 2.6015 

4 3.3722 4.7473 8.1081 7.1307 

5 4.2722 6.8263 7.2351 6.2737 

6 4.2524 6.3045 3.1759 3.0359 

7 10.7975 17.5782 5.2858 6.1048 

8 5.5147 8.2872 6.1838 7.7876 

9 5.2320 9.1245 4.1238 4.2867 

10 4.7698 5.5458 4.9142 4.9342 

70:30 

3 5.6011 10.4097 3.9737 5.3860 

4 4.1777 7.7009 3.3143 3.7884 

5 4.5288 7.8300 2.7562 3.2520 

6 5.6229 10.4402 3.1277 3.7722 

7 1.9410 3.4709 3.9283 4.7050 

8 3.2464 6.2048 5.4484 6.5811 

9 4.6569 8.9385 4.2039 5.3158 

10 4.3710 7.5679 2.7731 3.5558 

85:15 

3 2.6810 5.0949 3.0697 4.0615 

4 6.0544 10.7058 3.5370 4.9132 

5 2.6604 4.6256 3.2284 4.9966 

6 2.7652 5.0243 4.8779 7.9213 

7 3.2381 5.7339 2.1756 2.9873 

8 2.7761 4.2628 4.0058 6.2856 

9 3.3066 6.1230 2.7391 4.0462 

10 3.8408 7.4215 2.6276 3.9131 

90:10 

3 2.4417 4.8107 3.2680 3.7026 

4 5.1032 9.8931 2.5472 3.2090 

5 4.7821 8.8877 1.8540 2.1971 

6 2.1066 4.2554 4.6973 6.7682 

7 3.0119 6.0918 2.5806 3.2530 

8 3.4707 7.1888 3.5000 4.8287 

9 4.4182 8.6690 2.0140 2.5106 

10 4.0567 8.1125 2.3070 2.8610 
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TABLE II. CRUDE OIL FORECASTING MODEL PERFORMANCE 

Performance Measure CHGSO_LSTM [28] 
LSTM+starPSO (Proposed 

method) 
LSTM+ringPSO LSTM ARIMA SARIMAX 

Population 20 20 10 30 20 10 30 - - - 

RMSE 1.7540 1.7512 2.0601 1.9486 1.8199 2.0962 1.9889 1.9410 12.8125 15.0574 

MAPE 2.7570 3.0150 3.5933 3.3466 3.1964 3.7775 3.4424 3.4709 24.8355 29.5014 

Learning Rate 0.01 0.0083 0.0529 0.0076 0.0062 0.0470 0.0043 0.01 0.01 0.01 

LSTM units 200 212 70 145 183 207 154 200 200 200 

Dense Units 50 77 12 84 59 59 71 50 50 50 

Lookback [3, 10] 8 7 7 6 4 5 7 - - 

TABLE III. BRENT CRUDE OIL FORECASTING MODEL PERFORMANCE 

Performance Measure CHGSO_LSTM [28] LSTM+star_PSO LSTM+ringPSO LSTM ARIMA SARIMAX 

Swarm Size 20 20 10 30 20 10 30 - - - 

RMSE 1.8453 1.5024 2.0601 2.8145 1.5283 1.8231 1.7265 1.8540 14.9476 16.2943 

MAPE 2.4525 2.0660 1.9954 3.6217 2.0269 2.0359 2.2522 2.1971 25.1301 27.4191 

Learning Rate 0.01 0.0066 0.0083 0.0011 0.0054 0.0051 0.0057 0.01 0.01 0.01 

LSTM Unit 200 183 106 219 185 209 224 200 - - 

Dense Unit 50 51 60 38 65 27 14 50 - - 

Lookback [3, 10] 10 3 5 7 7 7 5 - - 
 

V. DISCUSSION 

A. Effect of LSTM and Dense Units 

In LSTM, dense units can facilitate the transformation of 
the input data into a higher-dimensional space, increasing the 
model's ability to separate and classify. On the other hand, the 
number of dense and LSTM units should be chosen carefully 
to avoid overfitting or underfitting the data. Therefore, 
network architecture design, including the composition of 
dense and LSTM units, is significantly important [30]. It is 
advisable to experiment with different combinations of dense 
and LSTM units to find the optimal architecture that yields the 
best performance of forecasting accuracy. This paper explores 
using stochastic particle features to determine the most 
suitable number of dense and LSTM units and the 
incorporation of dense layers within an LSTM network. 
Interestingly, the LSTM+starPSO model, which used 212 
LSTM units and 77 for dense units on WTI datasets, showed 
how sufficient dense and LSTM units reduce the overfitting 
problem and increase forecasting accuracy. In the context of 
the BRENT dataset, the model architecture consisted of 183 
LSTM units and 51 dense units. 

B. Effect of Lookback 

Lookback in time series forecasting establishes how much 
historical data the LSTM, LSTM+starPSO, and 
LSTM+ringPSO models should consider when making 
predictions for the following time step. Depending on several 
variables, including the data patterns, the effect of lookback 
on LSTM can be significant. Determining the most effective 
lookback period is contingent upon the unique attributes of the 
time series data [31]. More than eight lookback numbers 
appear required for accurate prediction in the best 

performance models, which offer little but longer-term 
dependencies. With such a small number of lookbacks, more 
is needed. 

C. Effect of Learning Rate 

The role of the learning rate in the LSTM forecasting 
model is to assist in effective converging and achieving good 
performance. We represent the particle with the range of 
learning rate of [0.01, 0.001]. It is randomly chosen within 
these ranges during the LSTM+starPSO and LSTM+ringPSO 
execution. The small learning rate value is randomly chosen at 
about 0.006 to 0.008 for both datasets using LSTM+starPSO, 
meanwhile about 0.004 to 0.005 when using LSTM+ringPSO. 
However, the use of a small learning rate value has a 
significant effect on the forecasting results. It is evident that 
the choice of a small learning rate in LSTM models for time 
series forecasting aims to achieve a better convergence and 
generalization in the exploitation and exploration of the search 
space [32]. 

D. Effect of PSO Topology in LSTM 

Ring topology is a local-based focal point of particles. It 
attracts particles to the best particle in its corresponding 
neighborhood. In our experiment, three swarm sizes are used: 
10, 20, 30. For instance, each particle has 29 neighborhoods 
when using a swarm size equal to 30. However, due to the 
various particle positions in the search space, the nearest 
particle of each particle considers the local neighborhood 
involved in the local search. Each particle's local surroundings 
consist of a fixed number of other particles. It differs from star 
topology, where all particles within the swarm share 
information with and are influenced by the particle with the 
highest performance [33]. Star topology promotes global 
exploration by encouraging particles to move towards the 
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optimal solution discovered by any swarm member. LSTM 
with star topology has demonstrated that each particle in the 
searching space is attracted to the best particle of the swarm. It 
obtained the best forecasting accuracy performance for WTI 
and BRENT datasets. The global searching by star topology 
[34] achieves the objective function of minimizing the RMSE 
value. 

VI. CONCLUSION 

In this study, an enhancement of LSTM incorporated with 
PSO addresses the challenges of forecasting the daily time 
series crude oil price data. The proposed method comprises 
two main steps. At the PSO, particle mapping is designed 
together with topology to achieve a dynamic LSTM 
architecture and improve PSO searching capabilities for 
exploration and exploitation. With this method, more accurate 
forecasting is obtained. Experimental findings show that 
compared with the recent CHGSO_LSTM, the suggested 
LSTM+starPSO offers the most performing methods. It is a 
better outcome compared to LSTM+ringPSO and 
conventional methods. However, more experimental work 
could be conducted by embedding ensembles and executing 
feature engineering strategy and hyperparameter tuning. 
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