
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

533 | P a g e  

www.ijacsa.thesai.org 

Explore Innovative Depth Vision Models with 

Domain Adaptation 

Wenchao Xu
1
, Yangxu Wang

2
 

School of Electrical and Computer Engineering, Nanfang College Guangzhou, Conghua 510970, China
1
 

Department of Network Technology, Software Engineering Institute of Guangzhou, Conghua 510990, China
2
 

 

 
Abstract—In recent years, deep learning has garnered 

widespread attention in graph-structured data. Nevertheless, due 

to the high cost of collecting labeled graph data, domain 

adaptation becomes particularly crucial in supervised graph 

learning tasks. The performance of existing methods may 

degrade when there are disparities between training and testing 

data, especially in challenging scenarios such as remote sensing 

image analysis. In this study, an approach to achieving high-

quality domain adaptation without explicit adaptation was 

explored. The proposed Efficient Lightweight Aggregation 

Network (ELANet) model addresses domain adaptation 

challenges in graph-structured data by employing an efficient 

lightweight architecture and regularization techniques. Through 

experiments on real datasets, ELANet demonstrated robust 

domain adaptability and generality, performing exceptionally 

well in cross-domain settings of remote sensing images. 

Furthermore, the research indicates that regularization 

techniques play a crucial role in mitigating the model's sensitivity 

to domain differences, especially when incorporating a module 

that adjusts feature weights in response to redefined features. 

Moreover, the study finds that under the same training and 

validation set configurations, the model achieves better training 

outcomes with appropriate data transformation strategies. The 

achievements of this research extend not only to the agricultural 

domain but also show promising results in various object 

detection scenarios, contributing to the advancement of domain 

adaptation research. 

Keywords—Deep learning; neural network; domain adaptation; 

lightweight; regularization techniques 

I. INTRODUCTION 

Remote sensing technology, as a crucial tool for observing 
the Earth and its ecosystems, has played an indispensable role 
in multiple domains [1]. However, due to various factors such 
as capture devices, time, and location influencing the 
acquisition process of remote sensing images, there exist 
differences in remote sensing data across different domains. 
Consequently, models trained in one domain (source domain) 
often exhibit decreased performance when applied to another 
domain (target domain). This challenge is commonly referred 
to as distributional difference [2]. 

Indeed, distributional difference has long been a persistent 
issue in machine learning. A series of studies have 
demonstrated that as the mismatch between distributions 
increases, performance noticeably declines [3]. A widely 
adopted approach to address this issue is Domain Adaptation 
(DA). Previous research has shown that domain adaptation 
markedly impacts the accuracy and reliability of processing 

remote sensing images. To tackle this problem, researchers 
have explored various methods, such as reannotating a portion 
of target domain data for model fine-tuning [2], making the 
data distributions of the source and target domains more 
similar through feature selection or transformation [4], utilizing 
adversarial training for domain alignment [5], and employing 
strategies like self-supervised learning [6] and meta-learning 
[7]. These approaches have, to some extent, alleviated the 
problem of distributional differences. 

With the rapid development of the third wave of artificial 
intelligence—deep learning, deep convolutional neural 
networks (CNNs) are significantly pushing the performance 
boundaries of computer vision at an incredible pace [8]. The 
latest advances in Unsupervised Domain Adaptation (UDA) in 
image processing have been attempted and progressed in 
various fields. Goel et al. [9] achieved unsupervised domain 
adaptation by guiding transfer learning and employing the 
Jensen-Shannon (JS) divergence method. In the remote sensing 
domain, Elshamli et al. [10] introduced an innovative approach 
to domain adaptation, incorporating denoising autoencoders 
and domain adversarial neural networks, especially in the 
classification of hyperspectral and multispectral images. In the 
agricultural domain, Zhang et al. [11] narrowed the gap 
between the source and target domains for agricultural land 
extraction using Generative Adversarial Networks (GANs). 
Similarly, Valerio et al. [12] accomplished unsupervised leaf 
counting, while Marino et al. [13] achieved potato defect 
classification. In plant disease recognition, Fuentes et al. [14] 
proposed open-set adaptation and cross-domain adaptation 
methods to enhance tomato disease recognition using unlabeled 
data. Additionally, Wu et al. [15] achieved cross-domain 
recognition of wild plant diseases. In robotics, Magistri et al. 
[16] introduced Unsupervised Domain Adaptation (UDA) 
techniques for semantic segmentation, enhancing the 
adaptability of agricultural robots to better perceive and 
understand different environments. These collective efforts 
address challenges associated with domain transfer and 
variability, contributing to the robustness and adaptability of 
image processing models for various application domains. 

Despite these advancements, it is noteworthy that the visual 
representations learned by deep CNNs exhibit considerable 
domain invariance. There is evidence that combining existing 
CNN representations with a linear classifier can achieve 
relatively high accuracy [17]. In earlier research, Lu et al. [18] 
posed a challenging question, namely achieving domain 
adaptation without explicit adaptation of data distribution. This 
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provided an opportunity to reconsider the problem of cross-
domain generalization from a new perspective. 

 

Fig. 1. Two typical scenarios. The target domain is shown in gray and the 

source domain is shown in red. Different tags indicate different categories. 

As Fig. 1 illustrates two typical data distributions, an 
interesting phenomenon can be observed: samples from 
different domains but of the same class are close enough, while 
samples from different classes have a sufficiently large gap. In 
scenario (a), the distribution difference between the source and 
target domains is small, but due to confusion among different 
classes, the final recognition performance is not ideal. In 
contrast, in scenario (b), despite a marked difference between 
different domains, samples from different classes are still 
linearly separable. This suggests that the magnitude of 
differences between the source and target domains is not a 
good indicator of the final recognition accuracy. Is the CNN 
representation powerful enough to eliminate the need for 
domain adaptation? This study aim to explore a visual model 
that achieves domain adaptation without the need for explicit 
adaptation, designed a novel deep convolutional neural 
network, Efficient Lightweight Aggregation Network 
(ELANet), which innovatively employs an ELA module for 
optimizing feature decoding. Experimental results demonstrate 
the significant optimization of ELANet, showcasing domain 
adaptability due to the powerful representational capabilities of 
current CNNs and some carefully designed features. The 
validation process is based on three datasets: the Global Wheat 
Head Detection 2021 (GWHD) dataset focusing on wheat [19], 
and two remote sensing datasets, namely Remote Sensing 
Object Detection (RSOD) [20] and University of Chinese 
Academy of Sciences - Aerial Object Detection (UCAS-AOD) 
[21]. For the remote sensing datasets, the "airplane" category 
was selected, with RSOD serving as the source domain and 
UCAS-AOD as the target domain. Extensive experimental 
results demonstrate the effectiveness of the ELANet method, 
and some interesting findings are reported. 

In summary, the contributions of the research can be 
summarized as follows: 

 ELANet: A visual model with domain adaptation, 
reporting state-of-the-art performance in cross-domain 
settings for agricultural and remote sensing scenarios, 
demonstrating sufficient generality. 

 Validation of the effectiveness of regularization 
techniques: The study proves that utilizing 
regularization techniques to mitigate domain variance is 

effective. In particular, incorporating a module that 
dynamically adjusts feature weights in response to 
domain redefinition is a more intelligent approach. 

 Effective Training Set and Validation Set 
Configuration: Training under the same configuration 
for training and validation sets is more effective, 
provided the existence of data transformation strategies. 

II. METHODOLOGY 

A. ELANet Model Design 

The ELANet model is designed based on two components: 
Encoder and Decoder. The Encoder extracts and downsamples 
features from input images through a series of convolutional 
and channel transformation layers, forming feature maps at 
different resolutions. The Decoder is responsible for the feature 
extraction task and includes multiple branches. Each branch 
processes features at different scales through convolutional and 
channel fusion operations. Multi-scale feature fusion enhances 
detection performance. Finally, an Adaptive Scale Fusion 
(ASF) layer is employed to adaptively fuse features, reducing 
the need for deep downsampling to obtain high-level semantic 
information [22], as depicted in Fig. 2. The following sections 
will introduce the global architecture of the ELANet model and 
its optimizations. 

 

Fig. 2. The architecture of ELANet. 

 

Fig. 3. Details of module design. 

B. Encoder 

The role of the encoder is to map the input RGB images 
into feature maps. Specifically, includes five downsampling 
operations performed by convolutional layers with a stride of 2 
and a 3×3 kernel size. In the middle, a C2f module [23] is 
inserted for feature extraction, generating feature maps at 
different stages. The sequence of operations can be described 
as follows: Conv3-Conv3-C2f-Conv3-C2f-Conv3-C2f-Conv3-
C2f (In Convk, 'k' represents the size of the convolution 
kernel). These operations are connected sequentially, with the 
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output of the previous layer serving as the input for the next 
layer. The initial channel number is 3, corresponding to the 
RGB image channels, and it increases gradually. It's 
noteworthy that in the final stage of the Encoder, a Multi-Head 
Self-Attention module called Attention-based Intra-scale 
Feature Interaction (AIFI) [24] is employed to handle the 
highest-level features of the backbone network, as depicted in 
Fig. 3. The mathematical processes are defined by Eq. (1) and 
Eq. (2): 

             (     )  (1)

             (    (     ))  (2) 

where,       represents the last layer feature map output by 
the Encoder. Initially, the two-dimensional feature       is 
flattened into a vector, which is then processed by the AIFI 
module. Subsequently, the output is reshaped back into two 

dimensions, denoted as      , facilitating its transmission to 
the Decoder for feature analysis. 

C. Decoder 

The role of the Decoder is to combine and utilize features 
from the Encoder and decode predictive information. In visual 
models for processing remote sensing images, the utilization of 
gradient information is crucial. This process is generally 
achieved through continuous upsampling to facilitate the fusion 
of semantic information. Despite being a common approach, 
there is inevitably a problem of feature information loss or 
degradation, impacting the fusion effectiveness across non-
adjacent levels. To address this issue, this study introduces the 
ELA module, whose structure is depicted in Fig. 3. 
Specifically, the ELA module employs two consecutive 
convolutional operations to capture richer feature 
representations. Subsequently, by introducing additional 
gradient flow branches in parallel, incorporates a broader 
context to enhance abstraction capabilities for targets. The 
features from the first six layers are concatenated to 
simultaneously utilize multi-scale information, strengthening 
the detection capabilities for targets of different sizes. Finally, 
a 1×1 convolutional layer is applied to reduce the 
dimensionality of the matrix, thereby alleviating the 
computational load of the model. With these connection 
operations, the model gains richer gradient information, 
achieving higher accuracy and more reasonable latency. 
Notably, in the ELANet model, a further adaptation is made 
using Adaptive Spatial Fusion (ASF) proposed by Yang et al. 
[25], which supports direct interaction between non-adjacent 
levels for adaptive spatial feature fusion. Through two 
consecutive convolutional operations, the ELA module adapts 
well to objects of different scales. The first convolutional 
operation captures features at a smaller scale, while the second 
convolutional operation integrates these features within a larger 
receptive field, making the model more flexible and accurate in 
detecting objects of different sizes. The design of the Decoder 
section integrates features from three different levels of the 
Encoder. ASF allocates different spatial weights to enhance the 
importance of key levels and reduce the impact of conflicting 
information from different levels. 

Representation learning in convolutional neural networks 
faces the challenge of strong correlations between adjacent 

pixels, implying the potential provision of redundant 
information. To address this issue, there are some carefully 
designed strategies within each output feature of ASF, utilizing 
regularization techniques to alleviate domain variance. 
Specifically, a dropout strategy with a probability of 0.1 and 
Shuffle Attention (SA) attention strategy [26] during the 
upsampling and downsampling processes are employed. Since 
the zeroing of elements after dropout is random, connecting an 
SA attention strategy for responsive feature weight adjustment 
is deemed necessary. This necessity will be validated and 
analyzed in the experiments below. Finally, ELANet merges 
the decoded feature maps from different stages into the original 
feature image. Through pixel-level prediction, the regression 
branch predicts the distance from each anchor point to the four 
edges of the target bounding box, determining the target's 
position. 

D. Loss Function 

In the implementation of the ELANet model, use three loss 
functions to guide the regression of bounding boxes. The 
Classification Loss is used to measure the difference between 
the predicted class and the true class. This process is guided by 
the cross-entropy loss function, a common binary classification 
loss function, defined as follows: 

    
 

 
∑ [        (    )    (    )]
 
    (3)

In Eq. (3), let the ground truth be denoted as y, the 
predicted result as y, and n represents the batch size. 

The Regression Loss is composed of Complete Intersection 
over Union (CIoU) and Distribution Focal Loss (DFL). CIoU 
is used to guide the model in learning the matching degree of 
bounding boxes. Specifically, assuming the predicted box and 
the ground truth box are denoted as    and    respectively, it is 

described as follows: 

          
  (     )

  
     (4) 

In Eq. (4), IoU represents the Intersection over Union, and 
  (     ) calculates the Euclidean distance between the center 

points of the two rectangular boxes. Here,   is the length of the 
diagonal of the minimum bounding rectangle of the predicted 
and ground truth boxes,   is used to measure the similarity of 
aspect ratios, and   is the impact factor of  . Next,     
optimizes the position of the bounding boxes through smooth 
L1 loss. For each positive sample  , it is defined as: 

     
 

    
∑    (       )    
    
   

 (5) 

In Eq. (5),      represents the number of positive samples, 

   (        ) represents the smooth L1 loss for the i
th
 positive 

sample, and    is the weight associated with the i
th
 sample. 

Combining Eq. (4) and Eq. (5), the regression loss Lr can be 
obtained as              . 

The final loss for ELANet is defined as the weighted sum 
of the classification loss and regression loss, i.e.,         
       . 
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III. EXPERIMENT 

A. Experimental Details 

1) Data preprocessing: The RSOD and UCAS-AOD 

datasets consist of 446 and 1000 airplane images, respectively, 

designated as the source domain and target domain. For 

convenience, this configuration is named RSOD.  Beyond 

that, the GWHD dataset was intentionally set up for cross-

domain settings, with 165 wheat spike images in the source 

domain and 71 in the target domain. In Fig. 4, present the size 

information for each instance in these two datasets. The 

RSOD dataset exhibits significant size differences between 

source and target domain data, while the primary difference in 

the GWHD dataset originates from variations in the external 

and internal environments. 

2) Training details: The experiments are implemented in 

PyTorch [27] and accelerated using an NVIDIA RTX 3090 

GPU. To improve computational efficiency, the longest side 

of input images is scaled to 608 pixels, and the other side is 

scaled proportionally, which also suits the resolution 

requirements when deploying on low-end edge devices. The 

Adaptive Moment Estimation (Adam) algorithm [28] was 

employed as the optimizer with a momentum factor set to 

0.937, and the initial learning rate was set to 0.01. Considering 

convergence speed, perform 150 epochs of optimization on 

the RSOD dataset and 300 epochs on the GWHD dataset. To 

ensure the robustness of model training, strategies such as 

color distortion, random scale transformations, and mosaic 

data augmentation are employed. 

 

Fig. 4. Instance size information for each dataset. 

B. Evaluation Indicators 

In the process of establishing a detection model, it is 
essential to consider both precision and recall. Therefore, this 
study adopts metrics such as Precision, Recall, mAP@0.5, and 
mAP@0.5-0.95 to evaluate the model's performance and assess 
the detection results. The calculation methods for Precision and 
Recall are as Eq. (6) and Eq. (7): 

  
  

     
   (6) 

  
  

     
   (7) 

where, P represents precision, and R represents recall. True 
Positive (TP) is the number of positive samples correctly 
classified, True Negative (TN) is the number of negative 

samples correctly classified, False Positive (FP) is the number 
of negative samples incorrectly classified as positive, and False 
Negative (FN) is the number of positive samples incorrectly 
classified as negative. 

mAP represents the comprehensive performance at 
different Intersection over Union (IoU) thresholds, including 
mAP@0.5 and mAP@0.5-0.95. Here, mAP@0.5 denotes the 
average mAP when the IoU threshold is 0.5, with a higher 
value indicating higher detection precision for that category. 
mAP@0.5-0.95 represents the average mAP at different IoU 
thresholds (ranging from 0.5 to 0.95 with a step size of 0.05), 
placing stricter demands on the model's performance. The 
calculation of mAP is given by Eq. (8): 
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   (8) 

where, n is the number of categories. In this experiment, 
each dataset has only one label, so n=1. 

Furthermore, three metrics will be employed in the 
counting evaluation to assess the consistency between 
predicted and ground truth values, including Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE), and 
Coefficient of Determination (R²). Specifically, they are 
defined by Eq. (9) to Eq. (11): 

    
 

 
∑ |  ̂    |
 
     (9) 

     √
 

 
∑ (  ̂    )
 
   

 
 (10) 

     
∑ (  ̂
 
      )

 

∑ (  ̅̅̅   
 
   ) 

  (11) 

In these formulas, the numerator represents the sum of 
squared differences between the actual values and predicted 
values, and the denominator represents the sum of squared 
differences between the actual values and the mean. The result 
of R

2
 falls within the range of [0, 1], indicating the proportion 

of the squared differences of predicted values to the squared 
differences of actual values near the mean. This metric can be 
understood as a measure of how well the model's predictions fit 
the actual values, with 1 indicating a perfect fit and 0 indicating 
no linear relationship between actual counts and predicted 
values. 

C. Comparision with other Methods 

To validate the effectiveness of ELANet, comparisons with 
two state-of-the-art methods: the two-stage model Faster R-
CNN [29] and the one-stage model YOLOv7-tiny [30], both of 
which are widely used for visual tasks in images. Table I and 
Table II present the quantitative results on the two datasets, 
while Fig. 5 showcases some prediction examples from 
ELANet. 

One notable observation is that, even though both datasets 
explicitly implement cross-domain settings, the performance 
on RSOD significantly surpasses that on GWHD. In reality, 
domain differences in the agricultural domain are extremely 
complex. The chaotic background makes the visual patterns of 
plants diverse and misleading, and the changes in plants 
themselves are also very pronounced. As shown in Fig. 1(a), 
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despite the small distribution difference between the source 
and target domains, the recognition performance is not ideal 
due to the confusion of different category samples. As 
demonstrated in Fig. 5(a), (b), the morphological differences in 
wheat spikes from different regions and varieties are 
substantial. 

 

Fig. 5. Part of ELANet's prediction results. (a, b) are from the GWHD 

dataset, and (c, d) are from the RSOD dataset. 

The comparison of object detection methods on the GWHD 
and RSOD datasets reveals distinct performance 
characteristics. According to the quantitative results shown in 
Table I for models on the GWHD dataset, ELANet achieves a 
precision of 88.7% without the need for adaptation to 
distribution differences on low-resolution input images. 
YOLOv7-tiny, while effective in terms of parameters, exhibits 
moderate precision and recall, with a lower mAP@0.5-0.95 
score. Faster R-CNN, with a higher parameter count, shows 
performance comparable to YOLOv7-tiny but lacks the 
precision and recall achieved by ELANet, possibly due to 
information loss resulting from the simplification of their 
network structures. ELANet achieves optimal performance at 
the same input size of 608×608, substantially improving 
precision and average precision. 

TABLE I. QUANTITATIVE RESULTS OF GWHD DATASET 

Method P R mAP@0.5 
mAP@0.5-

0.95 
Params 

YOLOv7-tiny 0.558 0.379 0.387 0.141 11.55M 

Faster R-CNN 0.446 0.391 0.343 0.127 42.20M 

ELANet 0.882 0.816 0.887 0.501 3.59M 

Furthermore, as shown in Table II, the experimental results 
on the RSOD dataset also demonstrate a similar trend. 
However, the evaluation gap between the models is smaller in 
the RSOD dataset experiments. Additionally, it is worth noting 
that ELANet exhibits a smaller model parameter size, only 
3.59M, compared to YOLOv7-tiny and Faster R-CNN with 
11.55M and 42.2M, respectively. ELANet achieves significant 
improvements in both performance and parameter efficiency, 
indicating that it maintains high performance while being more 
parameter-efficient, making it well-suited for lightweight tasks 
without sacrificing efficiency. 

TABLE II. QUANTITATIVE RESULTS OF RSOD DATASET 

Method P R mAP@0.5 
mAP@0.5-

0.95 
Params 

YOLOv7-tiny 0.555 0.821 0.802 0.310 11.55M 

Faster R-CNN 0.832 0.751 0.753 0.278 42.20M 

ELANet 0.894 0.845 0.861 0.337 3.59M 

D. Analysis of Counting Influencing Factors 

Due to the dense distribution of targets in both the GWHD 
and RSOD datasets, evaluating counting performance in this 
context is meaningful. Particularly in the case of the GWHD 
wheat head dataset, the model is prone to various natural 
factors during target detection, such as the influence of 
lighting, rainy weather, thick fog, etc. What’s more, errors may 
arise from the varying shapes, sizes, and densities of different 
wheat head varieties. In this experiment, a linear regression 
plot was employed, along with counting metrics introduced in 
Section III (B), including Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), and the Coefficient of 
Determination (R

2
), to assess counting performance. The 

diagonal line on the coordinate system represents the ideal state 
where the model inference results perfectly match the manually 
counted ground truth. The linear regression plot serves as an 
effective tool to visually analyze the relationship between 
model predictions and actual counts, allowing researchers to 
gain a deeper understanding of the factors influencing counting 
performance. Additionally, it highlights images with the 
highest errors, as shown in Fig. 6. 

It is evident that the maximum errors are primarily 
concentrated under varying lighting conditions, where 
inconsistencies in illumination affect wheat heads in bright and 
shadowed areas differently. The presence of cluttered foliage 
further challenges the target detection model. Through 
experimentation, it was discovered that even human experts 
find it challenging to discern in such conditions. Despite this, 
the ELANet model demonstrates good robustness, indicating 
that the optimized strategies of data augmentation play a 
positive role in enhancing the adaptability of the model for 
target detection performance. This also points towards future 
research directions, specifically addressing how to optimize 
models for strong interference environments to achieve 
stability, reliability, and adaptability in complex conditions. 

 

Fig. 6. Linear regression plot and maximum error plot of GWHD dataset 

count results. 

E. Ablation Study 

In the RSOD dataset, ELANet's performance is 
satisfactory. Building upon this, the focus shifted to conducting 
ablation experiments using Dropout strategy and SA strategy 
on the GWHD dataset. The experimental results are presented 
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in Table III and compared with two domain adaptation 
methods. In the table, "Dp" represents the use of the dropout 
strategy, and "At" represents the application of the SA attention 
strategy. It can be observed that without employing either 
strategy, ELANet achieves an accuracy of 0.87. However, 
using either the dropout strategy or attention strategy alone 
leads to a performance decrease in the detection task, with 
reductions of 1.72% and 0.23%, respectively. On the other 
hand, employing the SA attention strategy after using the 
dropout strategy proves to be highly effective. The random 
zeroing of elements after dropout reduces the risk of 
overfitting, preventing excessive co-adaptation of neurons and 
maintaining feature diversity. This contributes to improving the 
model's generalization performance and robustness. The SA 
attention strategy can re-weight features in response to enhance 
attention to important regions, adaptively fusing contextual 
information of different scales. 

Another interesting finding is that when the training set and 
the validation set share the same settings, the model's 
performance is improved, as shown in Table IV, method A 
involves separate training and validation sets, while method B 
uses the same set for training and validation. From a subjective 
perspective, the model in this situation should not be robust. In 
reality, data transformation techniques alleviate the impact of 
this situation, and the performance improvement is attributed, 
to some extent, to the slightly increased training data. 

TABLE III. ELANET USES DROPOUT STRATEGIES FOR ABLATION STUDIES 

Dp At P R mAP@0.5 mAP@0.5-0.95 

-- -- 0.855 0.810 0.870 0.463 

√ -- 0.848 0.790 0.855 0.457 

-- √ 0.850 0.803 0.868 0.472 

√ √ 0.882 0.816 0.887 0.501 

TABLE IV. COMPARISON OF ELANET PERFORMANCE WITH DIFFERENT 

DATASET SETTINGS 

Method P R mAP@0.5 mAP@0.5-0.95 

A 0.872 0.779 0.864 0.468 

B 0.882 0.816 0.887 0.501 

IV. DISCUSSION AND FUTURE WORK 

In this study, the challenges of cross-domain object 
detection were explored, focusing on addressing distribution 
differences between different datasets. The proposed ELANet 
model, based on feature extraction and fusion, was introduced. 
Experimental results indicate that ELANet performs 
exceptionally well on the RSOD dataset, while its performance 
on the GWHD dataset is relatively lower. This difference may 
be attributed to the clearer features in the airplane images of 
the RSOD dataset, making it easier for the model to learn 
effective feature representations. In contrast, the complex 
background and the similarity in color between target objects 
and the background in the GWHD dataset increase the 
difficulty of model recognition. 

Furthermore, this study compared ELANet's performance 
on the RSOD and GWHD datasets with other methods, 

revealing superior performance on both datasets. This suggests 
that ELANet can better handle cross-domain challenges and 
improve the accuracy of object detection. Nevertheless, there 
are still some issues to be addressed. For example, ELANet's 
performance is influenced by data preprocessing and training 
details. To further enhance the model's performance, deeper 
research into data preprocessing and training techniques is 
needed. Distribution differences have been a long-standing 
issue in machine learning [31]-[35], and it is hoped that this 
work will further stimulate researchers' interest in addressing 
this problem. 

In future research, potential improvement avenues can be 
explored in the following directions: 

Adversarial Robustness Learning: Conduct in-depth 
research to assess ELANet's robustness against adversarial 
attacks. Strengthening the model's security is crucial for real-
world deployment and addressing potential security challenges. 

Testing in Complex Environments: Test ELANet's 
robustness in more complex environmental conditions, 
especially in scenarios with natural factors such as varying 
lighting and rainy weather. Consider employing more powerful 
data augmentation and processing techniques to enhance the 
model's adaptability to these challenges. 

Driving Agricultural Technology Innovation: Expand 
ELANet's application to more agricultural domains, such as 
agricultural robots, precision agriculture, and plant disease 
diagnosis. Through widespread application in agricultural 
technology, ELANet aims to provide more intelligent and 
efficient solutions for agricultural production. 

V. CONCLUSION 

In this study, the focus was on exploring a visual model for 
domain adaptation without the need for explicit adaptation, 
particularly addressing the challenge of domain adaptation in 
supervised graph learning tasks. In this work, the ELANet 
model was proposed, innovatively introducing the ELA 
module and integrating it into the feature decoder, successfully 
achieving high-quality domain adaptation in the remote sensing 
image domain. The model demonstrated outstanding 
performance on real datasets. The research indicates that 
regularization techniques are crucial for mitigating the domain 
variance between training and testing data, especially when 
incorporating a module that reweights features in response. 
Importantly, the use of the ELANet model not only improved 
accuracy but also enhanced efficiency. In experiments 
validating the generality and domain adaptation of ELANet, 
cross-domain settings were employed, demonstrating the 
model's generality and domain adaptability. Overall, the 
introduction of ELANet is expected to advance research in 
domain adaptation, providing an innovative approach to 
addressing domain adaptation challenges in supervised graph 
learning tasks. 
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