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Abstract—This paper presents a fully-automated system for 

detecting road signs in the United States and assess their visibility 

during daytime from the perspective of the driver using images 

captured by an in-vehicle camera. The system deploys YOLOv8 

to build a multi-label detection model and then, calculates 

various readability and detectability factors, including the 

simplicity of the surroundings, potential obstructions, and the 

angle at which the road sign is positioned, to determine the 

overall visibility of the sign. This proposed system can be 

integrated into Driver Assistance Systems (DAS) to manage the 

information delivered to drivers, as an excess of information 

could potentially distract them. Road signs are categorized based 

on their visibility levels, allowing Driver Assistance Systems to 

caution drivers about signs that may have lower visibility but are 

of significant importance. The system comprises four main 

stages: 1) identifying road signs using YOLOv8; 2) segmenting 

the surrounding areas; 3) measuring visibility parameters; and 4) 

determining visibility levels through fuzzy logic inference system. 

This paper introduces a visibility estimation system for road 

signs specifically tailored to the United States. Experimental 

results showcase the system’s effectiveness. The visibility levels 

generated by the proposed system were subjectively compared to 

decisions made by human experts, revealing a substantial 

agreement between the two approaches. 

Keywords—Road sign detection; YOLOv8; driver assistance 

system; fuzzy logic; detectability; visibility estimation 

I. INTRODUCTION  

In recent times, there has been a notable rise in the 
adoption of Driver Assistance Systems (DAS), primarily 
driven by the expanding complexity of road networks [1]. 
These systems are integrated into vehicles to simplify the 
driving experience and enhance overall driver safety. Road 
signs serve as a vital source of information for both drivers 
and these advanced systems, yet their visibility and 
detectability (the driver's capacity to spot a road sign within a 
complex or cluttered environment, essentially measuring how 
effectively the sign stands out) can be compromised in various 
scenarios. These scenarios can be categorized as either 
temporary, influenced by factors like lighting and adverse 
weather conditions, or permanent, resulting from vandalism or 
improper sign placement [2].  

Reduced visibility of road signs significantly diminishes 
the effectiveness of communication between drivers and these 
signs. Consequently, DASs can play a crucial role in notifying 
drivers about warnings in such situations. Road sign detection 
is a basic step that every DAS system should have. It is 
noteworthy that an effective Driver Assistance System (DAS) 
should achieve a balance, avoiding the inundation of drivers 

with excessive road information. Overloading drivers with 
information may pose a risk of distraction, as discussed in [3]. 

Employing computer vision techniques in Driver 
Assistance Systems (DASs) enables the detection and 
estimation of road sign visibility. This information can then be 
used to alert drivers about crucial warnings regarding less 
visible signs. The implementation of these techniques 
contributes to enhanced driver safety. 

In this work, we propose a fully-automated computer 
vision system for detecting and assessing the visibility of road 
signs in the United States in terms of their detectability and 
readability. Detectability is defined as the driver's capacity to 
identify and acknowledge the presence of specific road signs 
within complex or cluttered environments while readability 
represents the clearness degree of the foreground text on the 
sign. This proposed system can be integrated into Driver 
Assistance Systems (DAS) to streamline the information 
presented to drivers. Furthermore, transportation agencies 
could leverage this system to assess the placement of road 
signs across their road networks. The proposed system 
deploys YOLOv8 in the detection of road signs and estimates 
their visibility using fuzzy logic after measuring five different 
visibility parameters.  

The proposed system aims to: 1) implement a fully-
automated multi-label detection model of United States road 
signs using YOLOv8 which is the latest YOLOs’ detection 
algorithm; 2) measuring five novel visibility parameters of 
road signs that describe both sign readability and detectability; 
3) evaluate visibility level of road signs to low, medium and 
high using fuzzy inference system that connects the suggested 
visibility parameters to the visibility output. 

The rest of the article is prepared as follows: Section II 
provides a background of road sign detection and visibility 
estimation systems. Section III demonstrates the proposed 
visibility estimation system. Section IV evaluates the system 
performance experimentally based on certain metrics. Lastly, 
Section V elaborates the conclusions. 

II. RELATED WORK 

Automated estimation systems for assessing the visibility 
of road signs should integrate Road Sign Detection (RSD) 
systems. The primary objective of RSD is to pinpoint the 
location of road sign objects within a scene or within images 
captured from inside a vehicle. RSD systems can be primarily 
categorized into two groups: those reliant on color and those 
based on shape. In the realm of color-based detection, some 
researchers have utilized RGB color thresholding to segment 
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road sign images, as demonstrated in [4, 5], while others have 
proposed the use of HSI color space for the same purpose, as 
indicated in [6]. 

Conversely, shape-based approaches have also been put 
forth by various researchers. In study [4], for instance, a 
Support Vector Machine (SVM) was trained using four 
vectors representing distances from the border to the bounding 
box to recognize road sign shapes. Researchers in [7] 
employed a Distance to Border (DtB) vector to identify the 
shape of road signs. For detecting Regions of Interest (ROI), a 
boosted detector cascade was trained using dissociated 
dipoles, while the recognition of triangular or circular road 
sign shapes was achieved through the utilization of the Hough 
transform and radial symmetry, as described in [8]. In study 
[9], a genetic algorithm was employed, and Haar-like features 
were deployed in study [6] to detect road sign shapes. 
Researchers in study [10] employed a set of cascaded 
geometric detectors, capitalizing on the inherent symmetry of 
road sign shapes for detection and recognition. In study [11], a 
speed recognition system has been proposed based on 
independent component analysis. In research [12], geometric 
features were deployed in the recognition of speed signs in the 
United States.  

Recently, Convolutional Neural Network (CNN) was 
deployed with different architectures in detection tasks [13, 
14] including road sign detection and recognition. In research 
[15], mask R-CNN was deployed to detect 200 traffic-sign 
categories with automatic end-to-end learning. In study [16], 
the authors analyzed seven architectures for detecting the road 
signs: YOLO, YOLOv2, YOLOv3, PP-YOLO model and R-
CNN, Fast R-CNN, Faster R-CNN. This study implies that 
YOLOv3 and Faster R-CNN perform comparatively better for 
road sign detection. In [17], authors proposed a detection 
model to detect and identify traffic signs based on YOLOv7 
and Convolutional Block Attention Module. In study [1], 
authors proposed a road sign detection and recognition system 
based onYOLOv5s object detection algorithm. 

Several researchers have also proposed methods for 
estimating road sign visibility from digital images. 
Researchers in [18] introduced a novel technique for 
measuring road sign retro-reflectivity using two varied 
illumination images. In study [3], traffic signals’ detectability 
and discriminability were quantified using in-vehicle images. 
Researchers in [19] utilized five image features to gauge the 
visibility of certain sign. For visibility estimation in foggy 
conditions, authors of study [20] introduced a method utilizing 
in-vehicle images. Researchers in [21] extracted both local 
and global features to evaluate a human driver's ability to 
detect and recognize road sign objects. Lastly, researchers in 
[22] showcased a novel approach based on SVM learning to 
estimate road sign saliency. In study [23], tilt angle of road 
sign was used to assess its condition. In study [24], various 
detectability features of road signs were measured to estimate 
the visibility level in cluttered environments. 

In research [25], a three-dimensional approach for 
visibility assessment of highway signs has been proposed. The 
proposed approach measures sign’s visibility, legibility, and 
readability based on its placement, height, and traffic flow. In 

[26], a system for classifying horizontal road signs as correct 
or with poor visibility is proposed. This system deploys 
YOLOv4-Tiny neural network model for classification and the 
contrast difference for visibility estimation. In [27], a study 
authors proposed a camera-based visibility estimation method 
for a traffic sign. The proposed method integrates both the 
local features and global features in a driving environment. 
These features measure sign’s positional relationships and the 
contrast between a traffic sign and its surroundings. In 
research [28], author proposed an imaging-based system to 
estimate road sign visibility in a cluttered environment from 
the driver’s perspective in daytime using in-vehicle camera 
images. The proposed system deploys a geometric sign 
detector and suggests two visibility parameters which are 
color difference and environment complexity. In study [29], 
authors proposed a method that can automatically detect the 
occlusion and continuously quantitative estimate the visibility 
of traffic sign. The proposed method deploys road sign 
orientation and occlusion in evaluating its visibility. In study 
[30], authors proposed a quantitative visual recognizability 
evaluation method for traffic signs in large-scale traffic 
environment. The proposed method evaluates the geometric, 
occlusion and sight line deviation factors of traffic signs. 

In conclusion, the literature demonstrates that the 
implementation of automated vision-based road signs 
detection and recognition systems represents a significant 
advancement in modern transportation networks. In addition, 
visibility of these road signs is a major concern for both 
drivers and transportation agencies. The literature shows a lot 
of shortcomings of current road sign visibility estimation 
systems which can be concluded as the lack of automation in 
both the detection and visibility estimation, the deficiency of 
road sign detection models under different illumination and 
occlusion conditions, the failure to measure all visibility 
parameters that represent the road sign readability and 
detectability, and the need to estimate the road sign visibility 
to various levels either by a rule-based or machine learning 
techniques. As artificial intelligence techniques continue to 
evolve towards greater efficiency, these systems could be 
improved and automated completely for better safety over 
transportation networks. Additionally, current road sign 
visibility estimation systems should deploy powerful detection 
models that have the capability  

III. THE PROPOSED SYSTEM 

The proposed system based on road sign imaging, depicted 
in Fig. 1, comprises four distinct modules: 

1) Multi-label road sign detection: In this initial module, 

the system builds a detection model using YOLOv8 algorithm 

based on the in-vehicle images to detect and identify three 

categories of road sign objects (regulatory, warning and stop 

signs). 

2) Cropping of surrounding regions: In this module, the 

system geometrically extracts four adjacent regions around the 

road sign object. These regions would be used in the next 

module to calculate some visibility parameters. 

3) Measurement of visibility parameters: During this 

module, the system establishes and computes five visibility 
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parameters which are: 1) readability of sign foreground; 2) 

color difference between the sign and its four surrounding 

regions; 3) complexity of surroundings; 4) occlusion; and 5) 

tilting. These parameters characterize both the readability and 

detectability of each road sign.  

4) Determination of visibility levels: In this module, the 

system assesses and categorizes the visibility level of each 

road sign as low, medium, or high using fuzzy logic inference 

system. 

B. Multi-Label Road Sign Detection 

In this module, YOLOv8 algorithm is used to detect three 
different types of US road signs: 1) Regulatory Signs (White 
Rectangular-shape signs); 2) Warning Signs (Yellow 
Diamond-shape signs); and 3) Stop Sign (Red Octagonal-
shape signs. The multi-label detection model was trained on 
Google Colab notebook after building an annotated road sign 
dataset of 664 images. Once the model was trained, it was 
tested on a separate set of validation images to evaluate its 
performance. 

In-vehicle 
Camera 
Image

Multi-Label Road 
Sign Detection

Determination of 
Visibility Levels

HighMediumLow

Cropping of 
Surrounding Regions

Measurement of 
Visibility Parameters

 

Fig. 1. Flow diagram of the proposed system. 

1) Dataset preparation: Originally, 664 images in which 

one US road sign is existed, was collected and uploaded to 

Roboflow. Data analysis operations were achieved such as: 

pre-processing, resizing, annotation, augmentation and health 

check. All images were resized to 640x640. The following 

augmentations were done on these images: Rotation (between 

-21° and +21°), Saturation (between -20% and +20%), 

Brightness (between -20% and +20%), Blur (up to 1px), Noise 

(up to 3% of pixels). A set of 1519 images was achieved 

splitted as: 1332 for training, 116 for validation, and 71 for 

testing. 

2) Model training and evaluation: The model was trained 

using YOLOv8. It was evaluated for detecting three classes: 

Stop signs, Warning signs and Regulatory signs. The number 

of Epochs used to train the model was 150. The model 

detection performance was evaluated using mean average 

precision (mAP), recall and precision.  

The output of this module is road sign surrounded by a 
bounding box as shown in Fig. 2. This detected road sign 
would be used in the next modules to estimate its visibility. 

 

Fig. 2. Examples of detected road signs. 

C. Cropping of Surrounding Regions 

In the module of the proposed system, road sign visibility 
is characterized by the driver's capacity to distinguish the 
sign's location from the surrounding background in a real-life 
scenario. Various elements in the background might divert the 
driver's attention away from identifying the road sign's 
location. To gauge visibility, we assess the road sign's location 
in relation to its surroundings. For Stop, Warning, and 
Regulatory signs, we have extracted four adjacent regions 
from the input image, as illustrated in Fig. 3. This process has 
been accomplished by mirroring the bounding box in the four 
directions. For Warning signs, the four regions were obtained 
after rotating the sign. Each region possesses a symmetrical 
shape and double the area of the sign region. These four 
surrounding regions are denoted as R1, R2, R3, and R4, while 
the sign region is designated as S, as shown in Fig. 3. 

 

Fig. 3. The four surrounding regions for: a) Regulatory sign; b) Warning 

sign; c) Stop sign. 
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D. Measurement of Visibility Parameters 

Different detectability and readability parameters of road 
sign region and surrounding regions are used to determine the 
visibility level of the road sign. Five parameters are proposed 
to describe the visibility of road signs: 1) readability of sign 
foreground; 2) color difference between the sign and the four 
surrounding regions; 3) complexity of surroundings; 4) sign 
occlusion; and 5) sign tilting.  

Fig. 4 shows some road signs exhibiting poor visibility 
based on these parameters. Each parameter is designed as low 
or high based on ranges that were determined by a human 
expert. 

1) Readability of sign foreground: This parameter 

measures the clearness degree of the foreground text on the 

sign. The greater the difference between the foreground and 

background is better considering the different colors in the 

three sign classes. This parameter, denoted by R, has been 

computed on the gray images of the detected signs by 

subtracting the average gray levels of both foreground and 

background as: 

           (1) 

where, GF is the gray level of the sign foreground (white 
on Stop signs and black on Warning and Regulatory signs), 
GB is the gray level of the sign background (red on Stop signs, 
yellow on Warning signs and white on Regulatory signs).  

A lower color difference between the sign foreground and 
background (0 - 120) diminishes a driver's ability to read and 
recognize road signs, whereas a higher color difference (120 - 
255) enhances readability probabilities. Therefore, a 
significant color difference between the sign foreground and 
background leads to improved road sign visibility. 

(b)(a) (c)

(d) (e)  

Fig. 4. Examples of low visibility road signs due to: a) Color difference between sign and surroundings, b) Occlusion, c) Complexity of surrounding regions, d) 

Readability of sign foreground, e) Tilting. 

2) Color difference: This parameter measures the 

clearness degree of the sign with respect to its surrounding 

regions. The process involves computing the average color of 

the RGB values for both the road sign and its four surrounding 

regions. The color disparity between the sign region and each 

of its four surrounding regions is then quantified as follows: 

   √        
          

          
  (2) 

   √        
          

          
  (3) 

   √        
          

          
  (4) 

   √        
          

          
   (5) 

where, (         ) are the average RGB colors of the sign 

region and (             ) are the average RGB colors of each 
surrounding region Ri. 
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Subsequently, these four disparity values are averaged to 
derive the overall color difference value, denoted as D. A 
lower color difference (0 - 120) diminishes a driver's ability to 
detect road signs, whereas a higher color difference (120 - 
255) enhances detection probabilities. Therefore, a significant 
color difference between the sign region and its adjacent 
regions leads to improved road sign visibility. 

3) Surrounding complexity: This parameter computes the 

amount of details that exist in the sign surroundings. It 

involves extracting the edges from all the surrounding areas 

and calculating the total number of edge pixels. The ratio 

between the number of edge pixels and the total number of 

pixels in these surrounding regions is employed to ascertain 

the shape complexity (C) of the road sign's surroundings, as 

follows: 

  
  

  
    (6) 

where, NE is the number of edge pixels in the surrounding 
regions and NT is the total number of pixels in these regions.  

A complex environment around the road sign will result in 
a high complexity parameter value, leading to a reduced level 
of visibility. The overall complexity level of the surrounding 
regions of the sign will vary between high (0.2 - 1) and low (0  
– 0.2) based on the value of the complexity parameter 

4) Occlusion: This parameter quantifies the extent to 

which the road sign is partially obscured by objects like trees 

or leaves. It takes into account partial occlusion occurring on 

the top and right sides of the road sign region while 

disregarding occlusion on the left and bottom sides. The 

occlusion parameter (O) is formulated as follows: 

    
  

  
   (7) 

where, AO is the filled area of the apparent sign blob 
computed as the number of pixels and AT is the estimated area 
of road sign region computed as  the bounding box area. 

The level of occlusion can vary, being classified as either 
low (0 - 0.15) or high (0.15 - 1) based on the occlusion 
parameter value. Increased occlusion in the sign region would 
lead to reduced detectability and visibility of the road sign 

5) Tilting: This parameter measures the tilting degree of 

road sign. The tilting parameter (T) is computed using the 

regionprops function on Python. 

The degree of tilting can be categorized as either low (0 - 

15º) or high (15º - 90º), contingent upon the tilting angle 
value. A pronounced tilt of the road sign would result in 
reduced detectability and consequently, a low visibility level. 

E. Determination of Visibility Levels 

Road signs are classified in this module using fuzzy logic 
in terms of visibility levels to: low, medium, or high. A Fuzzy 
Inference System (FIS) connecting parameters to the visibility 
level operates through a series of defined steps to determine 
the appropriate visibility label based on the input parameters. 
Considering the parameters calculated in the previous module 
(Readability, Color Difference, Surrounding Complexity, 
Occlusion, and Tilting) and their fuzzy sets mapped to 
visibility levels (Low, Medium, High), here's how the FIS 
functions: 

1) Input variables and membership functions 

 Parameters like Readability, Color Difference, 
Surrounding Complexity, Occlusion, and Tilting serve 
as input variables. 

 Each parameter has fuzzy membership functions (e.g., 
low, high) that describe how input values correspond to 
these linguistic terms. These membership functions 
have defined ranges and shapes, such as triangular or 
Gaussian that assign degrees of membership to each 
linguistic term based on the input's value within its 
range. Table I shows the membership functions of the 
input parameters. 

2) Fuzzy rules 

 Based on expert knowledge or empirical data, fuzzy 
rules are established to connect the input parameters to 
the output visibility levels. 

 For example, rules might state: 

 "If Readability is High AND Occlusion is Low AND 
Color Difference is Low, THEN Visibility Level is 
High." 

TABLE I. THE MEMBERSHIP FUNCTIONS OF THE FIVE VISIBILITY PARAMETERS 

Fuzzy Parameter 
Membership Function 

Type 

Parameter Range for 

Low 

Membership Parameters 

for Low 

Parameter Range for 

High 

Membership Parameters for 

High 

Readability Triangular 0 to 120 a=0, b=60, c=120 120 to 255 a=120, b=180, c=255 

Color difference Triangular 0 to 120 a=0, b=60, c=120 120 to 255 a=120, b=180, c=255 

Surrounding 
complexity 

Triangular 0 to 0.2 a=0, b=0.1, c=0.2 0.2 to 1 a=0.2, b=0.4, c=0.6 

Occlusion Gaussian 0 to .15 

Mean  = 0.075 

Standard Deviation = 

0.0375 

0.15 to 1 

Mean = 0.575 

Standard Deviation = 

0.2125 

Tilting Trapezoidal 0 to 15 a=0, b=5, c=10, d=15 15 to 90 a=15, b=20, c=85, d=90 
 

3) Inference engine 

 The inference engine evaluates the fuzzy rules based 
on the current input values. 

 It calculates the degree to which each rule contributes 
to different visibility levels using fuzzy logic 
operations like AND, OR, and NOT. 
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 Aggregation methods, such as the Mamdani, combine 
the rules to determine the degree of support for each 
visibility level based on the input parameter values. 

4) Defuzzification 

 Once the inference engine processes the rules and 
combines their outputs, the defuzzification process 
aggregates the fuzzy output sets to derive a crisp, 
actionable output. 

 This process converts the fuzzy output into a specific 
visibility level, such as Low, Medium, or High, based 
on methods like centroid, mean of maximum (MOM), 
or weighted average. 

5) Output - determining visibility level 

 The final step yields a specific visibility level 
determined by the FIS after processing the input 
parameters through the defined membership functions 
and rules. 

 This output provides a clear and actionable visibility 
level based on the linguistic description or numerical 
range that best fits the input parameter combinations. 
Table II shows the membership functions of the output 
variable which is the visibility level. 

The Fuzzy Inference System connects the input parameters 
related to visibility to the appropriate visibility level using 
fuzzy logic, allowing for a more understanding and decision-
making process in scenarios where traditional binary or crisp 
logic might be insufficient. 

The relationship between parameters and visibility levels 
is determined according to the following fuzzy rules: 

1) If Readability is Low AND Occlusion is not high 

THEN Visibility Level is Low 

2) If Occlusion is High THEN Visibility Level is Low 

3) If Readability is High AND Occlusion is Low AND 

Color Difference is Low AND Surrounding Complexity is 

High AND Tilting is High THEN Visibility Level is Low 

4) If Readability is High AND Occlusion is Low AND 

Color Difference is Low AND Surrounding Complexity is 

Low AND Tilting is High THEN Visibility Level is Medium 

5) If Readability is High AND Occlusion is Low AND 

Color Difference is Low AND Surrounding Complexity is 

Low AND Tilting is Low THEN Visibility Level is High 

6) If Readability is High AND Occlusion is Low AND 

Color Difference is Low AND Surrounding Complexity is 

Low AND Tilting is Low THEN Visibility Level is High 

7) If Readability is High AND Occlusion is Low AND 

Color Difference is High AND Surrounding Complexity is 

Low AND Tilting is Low THEN Visibility Level is High 

8) If Readability is High AND Occlusion is Low AND 

Color Difference is High AND Surrounding Complexity is 

High AND Tilting is Low THEN Visibility Level is High 

9) If Readability is High AND Occlusion is Low AND 

Color Difference is High AND Surrounding Complexity is 

Low AND Tilting is High THEN Visibility Level is High 

10) If Readability is High AND Occlusion is Low AND 

Color Difference is High AND Surrounding Complexity is 

High AND Tilting is High THEN Visibility Level is Medium 

The rules connecting parameters to visibility levels in this 
fuzzy inference system have varying weights, indicating their 
significance in determining the visibility level. The lowest 
weight, at 0.2, is assigned to Rule 1, while Rule 2 holds a 
weight of 0.7, emphasizing the role of Occlusion in 
determining visibility. Rules 3 and 4, with weights of 0.8 and 
0.9 respectively, highlight the combined impact of 
Readability, Occlusion, Color Difference, and Surrounding 
Complexity. Finally, Rules 5 to 10, each with a weight of 1.0, 
underscore the comprehensive consideration of Readability, 
Occlusion, Color Difference, Surrounding Complexity, and 
Tilting in determining the visibility level, demonstrating their 
paramount importance in decision-making. 

TABLE II. THE MEMBERSHIP FUNCTIONS OF THE OUTPUT VARIABLE WHICH IS THE VISIBILITY LEVEL 

Visibility 

Level Fuzzy   

Output 

Membership 
Function Type 

Parameter 
Range for Low 

Membership 

Parameters for 

Low 

Parameter 

Range for 

Medium 

Membership 

Parameters for 

Medium 

Parameter 
Range for High 

Membership 

Parameters for 

High 

Low Triangular 0 to 0.33 
a=0, b=0.17, 
c=0.33 

0.17 to 0.67 
a=0.17, b=0.42, 
c=0.67 

0.33 to 1 
a=0.33, b=0.67, 
c=1 

Medium Triangular 0.17 to 0.67 
a=0.17, b=0.42, 

c=0.67 
0.33 to 0.83 

a=0.33, b=0.58, 

c=0.83 
0.67 to 0.83 

a=0.67, b=0.83, 

c=0.83 

High Triangular 0.33 to 1 
a=0.33, b=0.67, 

c=1 
0.67 to 1 a=0.67, b=0.83, c=1 0.67 to 1 

a=0.67, b=0.83, 

c=1 
 

IV. EXPERIMENTAL RESULTS 

The visibility estimation system was tested on images of 
road signs taken by an in-vehicle camera in the United States. 
These in-vehicle images were obtained using a SAMSUNG 
ST65 camera, along with images from the VISAT

TM
 Mobile 

Mapping System. All images were resized to 640x640 pixels. 
In this section, we will demonstrate the results of both the 
detection model and the visibility estimation model.   

A. Road Sign Detection Results 

In this subsection, we evaluate the performance of the 
YOLOv8 detection model, which plays a crucial role in 
automatically identifying the road sign. The evaluation 
focuses on key metrics such as Accuracy, Precision, and 
mAP@0.5, providing insights into the model's accuracy and 
proficiency in object detection. The detection model 
underwent training for 150 epochs. 
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Fig. 5 presents a snapshot of quantitative metrics used to 
gauge the detection model's performance during training, 
including precision, recall, and mean average precision 
(mAP@0.5). These metrics shed light on the model's 
effectiveness in identifying road signs in in-vehicle images. 
Additionally, it is observed that box loss and class loss are 
converging. 

The detailed breakdown of the model's performance is 
illustrated in the confusion matrix presented in Fig. 6, 
outlining true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN) for each object class 
(e.g., Warning sign, Regulatory sign, Stop sign, and 
background). 

Precision measures the accuracy of true predictions made 
by the model. It is a crucial metric for object detection, as it 

assesses the model's ability to correctly identify objects 
without generating too many false positives. Recall assesses 
the model's ability to detect all relevant objects, reducing false 
negatives and ensuring no objects of interest are overlooked. 
mAP@0.5, a comprehensive metric, combines precision and 
recall, providing an aggregate evaluation of the model's 
performance across different object classes and considering 
precision-recall trade-offs. 

The detection model has achieved remarkable results of 
the three performance metrics where mAP@0.5= 91.5%, 
Precision= 86.1%, and Recall= 90.5%. It is noticed that the 
model achieved better results of both Stop and Warning signs 
while missing some Regulatory signs. This happens because 
of the high effect of illumination on white signs especially 
when they are facing the sun. 

 

Fig. 5. Performance metrics of the detection model throughout the training process for 150 epochs. 
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Fig. 6.   Confusion matrix of the detection model. 

B. Visibility Estimation Results 

Testing the fuzzy inference system (FIS) designed for road 
sign visibility demands a comprehensive procedure, especially 
when assessing its efficacy with a set of images. The initial 
step involves sourcing a diverse dataset of road sign images 
captured in various conditions, encompassing differing 
lighting, weather scenarios, angles, and distances. This dataset 
must cover a wide spectrum of potential real-world scenarios 
to ensure the FIS is tested under varying conditions. Upon 
gathering the images, preprocessing becomes pivotal. 
Standardizing the dataset involves resizing images to a 
uniform dimension, normalizing lighting conditions, and 
potentially applying filters or enhancements to accentuate 
visibility features present within the signs. Feature extraction 
follows, where specific visual features linked to the 
parameters considered in the FIS - such as readability, color 
difference, occlusion, surrounding complexity, and tilting - are 
identified and extracted from the images. This process is 
crucial to align the image data with the FIS parameters for 
subsequent analysis. 
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Integrating the FIS into the testing process involves 
applying the system to the extracted features from each image. 
This step aims to predict the visibility level for each sign 
based on the rules and weights defined within the system. 
Simultaneously, ground truth labeling becomes essential 
(assigning visibility labels to the images based on either 
human judgment or known visibility conditions captured 
during image acquisition). This establishes a benchmark 
against which the FIS's predictions can be evaluated. Post-
prediction, an evaluation phase ensues where the predicted 
visibility levels are compared with the ground truth labels 
using various metrics, such as accuracy, precision and recall. 
Any discrepancies or misclassifications are carefully analyzed 
to understand potential shortcomings within the FIS.  The 
procedure allows for iterative refinement. Any observed 
inconsistencies or errors guide adjustments to the FIS, such as 
tweaking membership functions, rules, or weights, aiming to 
enhance its accuracy and reliability.  

1) Evaluating the Effectiveness of the Proposed Fuzzy 

Inference System: In evaluating the effectiveness of the 

proposed fuzzy inference system for visibility estimation, a 

distinct approach has been taken. Through a training phase 

involving 45 in-vehicle images, thresholds for detectability 

parameters were determined, crucial for classification into 

high, medium, or low visibility levels. This training set, 

comprising various road signs and diverse visibility scenarios, 

was instrumental in setting suitable threshold values, guided 

by expert decisions. These thresholds, rooted in the training 

phase, were then applied to a test set consisting of 50 in-

vehicle images, including rectangular regulatory, diamond 

warning and stop signs, mirroring real-world diversity in 

visibility conditions. 

The comparison between the decisions rendered by the 
proposed system and those of human experts unveils 
promising results. Out of 50 road signs tested, there was 
concurrence between the proposed system and expert 
judgments for 4 signs, representing an impressive 92% 
accuracy. Notably, even within the 4 instances of discordance, 
the disagreement usually amounted to merely one visibility 
level, showcasing a remarkable alignment between the 
proposed system's estimations and the human expert 
decisions. Fig. 7 shows examples of the proposed visibility 
estimation output along with the five visibility parameters and 
expert decision. 

Further analysis revealed a nuanced performance 
difference in handling yellow and red versus white road signs. 
The system exhibited a higher proficiency with yellow and red 
signs owing to the impact of illumination on white color, 
affecting the accuracy of the color difference detectability 
parameter.  

2) Parametric influence on fuzzy inference system: 

shaping accuracy and decision dynamics: The effectiveness 

and accuracy of the outcomes are profoundly influenced by 

the parameters incorporated within the system. These 

parameters, such as membership functions, threshold values, 

and rule weights, play a pivotal role in shaping the decisions 

and predictions made by the system. Membership functions, 

serving as the backbone of fuzzy logic, define the degree of 

membership of an input to a specific linguistic term (like 'low,' 

or 'high'). Their design profoundly impacts the system's ability 

to interpret and categorize input data, significantly influencing 

the resulting output. Threshold values, especially in the 

context of detectability parameters for road sign visibility 

estimation, dictate the boundary between different visibility 

levels. Setting these thresholds involves a delicate balance; 

they need to be robust enough to delineate distinct visibility 

categories while remaining adaptable to varying 

environmental conditions. 

(a)

D = 163 C = .18

O = .39  T = 2

System Output : Low

Expert Decision : Low

R= 185

(b)

D = 152  C = .05

O = 0.03  T = 7

: High

: High

R= 205

System Output
Expert Decision

(d)

D = 147  C = .05

O = 0.03  T = 5

: Low

: Low

R= 64

System Output
Expert Decision

(c)

D = 52 C = . 83

O = .02 T = 8

: Medium
: Medium

R= 213

System Output
Expert Decision

 

Fig. 7. Visibility estimation outputs of the proposed system for road signs 

with expert decision: a) Low, b) High, c) Medium, d) Low. 

Rule weights hold significance in the determination of the 
overall decision-making process within the fuzzy system. 
They assign importance or precedence to different rules, 
emphasizing the relative significance of specific parameters in 
contributing to the final output. Properly calibrated weights 
ensure that more critical parameters exert a more considerable 
influence on the system's decision. The effect of these 
parameters on the system's output is intricate and 
interconnected. Subtle adjustments or alterations in 
membership function shapes, threshold values, or rule weights 
can significantly impact the system's performance. Well-tuned 
parameters often lead to more accurate, reliable, and adaptable 
outcomes, enhancing the system's robustness across diverse 
datasets and real-world conditions. 

Understanding the influence of these parameters allows for 
iterative refinement, facilitating continuous improvement in 
the system's accuracy and adaptability. Through careful 
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calibration and fine-tuning of these parameters, a fuzzy 
inference system can be optimized to yield more precise and 
dependable results, making it a valuable tool in addressing 
complex decision-making tasks where traditional binary logic 
falls short. 

V. CONCLUSIONS 

In this work, we proposed a fully-automated system to 
detect road signs in the United States and estimate their 
visibility from images captured by an in-vehicle camera. Sign 
visibility is defined as the drivers' capability to perceive road 
signs on roadways, encompassing both the ability to detect the 
signs (Detectability) and the ability to read and recognize their 
contents (Readability). 

The proposed system can be deployed in Driver Assistance 
Systems (DAS) or by transportation agencies. The proposed 
system has deployed YOLOv8 to build a detection model of 
three different road sign categories. Then, it measured five 
visibility parameters which are: readability of sign foreground, 
color difference between the sign and its surroundings, 
complexity of surroundings, sign occlusion, and sign tilting. 
The proposed system classifies road signs to three visibility 
levels: high, medium, and low. A Fuzzy Inference System 
(FIS) connecting these parameters to the visibility level 
operates through a series of defined steps to determine the 
appropriate visibility label based on the input parameters. The 
proposed system has achieved outstanding efficiency results 
with mAP@0.5= 91.5% for the detection model and an 
accuracy= 92% for the visibility estimation module. The 
accuracy of the proposed visibility estimation system has been 
compared with human expert pre-determined decisions. 

The proposed system is distinguished by its being fully-
automated, the efficiency of detecting road signs under 
various illumination and occlusion conditions, the ability to 
classify road signs visibility to multiple levels and the 
inclusion of both readability and detectability parameters of 
road signs from the perspective of driver. 

In the future, we are planning to include more road sign 
categories in the visibility estimation system. Additionally, the 
size of dataset can be increased to improve the precision of the 
detection model. Hardware implementation can also be 
implemented based on the proposed computer vision system. 
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