
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

622 | P a g e

www.ijacsa.thesai.org

FPGA-based Implementation of a Resource-Efficient

UNET Model for Brain Tumour Segmentation

Modise Kagiso Neiso
1
, Dr. Nicasio Maguu Muchuka

2
, Dr. Shadrack Maina Mambo

3

Department of Electrical & Electronics Engineering, PAUSTI, Juja, Kenya
1, 2, 3

Department of Electrical & Control Engineering, Egerton University, Nakuru, Kenya
2

Electrical Engineering Department, Walter Sisulu University, Ibika, South Africa
3

Abstract—In this study an optimized UNET model is used for

FPGA-based inference in the context of brain tumour

segmentation using the BraTS dataset. The presented model

features reduced depth and fewer filters, tailored to enhance

efficiency on FPGA hardware. The implementation leverages

High-Level Synthesis for Machine Learning (HLS4ML) to

optimize and convert a Keras-based UNET model to Hardware

Description Language (HDL) in the Kintex Ultrascale (xcku085-

flva1517-3-e) FPGA. Resource strategy, First in First out (FIFO)

depth optimization, and precision adjustment were employed to

optimize FPGA resource utilization. Resource strategy is

demonstrated to be effective, with resource utilization reaching a

saturation point at a 1000-reuse factor. Following FIFO

optimization, significant reductions are observed, including a 55

percent decrease in Block RAM (BRAM) usage, a 43 percent

reduction in Flip-Flops (FF), and a 49 percent reduction in Look-

Up Tables (LUT). In C/RTL co-simulation, the proposed FPGA-

based UNET model achieves an Intersection over Union (IoU)

score of 74 percent, demonstrating comparable segmentation

accuracy to the original Keras model. These findings underscore

the viability of the optimized UNET model for efficient brain

tumour segmentation on FPGA platforms.

Keywords—UNET; field programmable gate array; high-level

synthesis for machine learning; brain tumour segmentation

I. INTRODUCTION

Brain tumours are abnormal growths of cells in or around
the brain and can be cancerous or non-cancerous [1].
Mutations in the DNA, radiation exposure and immune system
problems are the causes of brain tumours which cause a
noticeable mortality and low recovery rates. Early detection of
brain tumours is crucial as it increases the possibility of
successful treatment [2]. Magnetic resonance imaging (MRI)
and computed tomography (CT) are imaging modalities used
to diagnose brain tumours, with MRI producing more detailed
brain scans [3]. Diagnosis of brain tumours from MRI requires
skilled manpower in the medical field [4]. The expertise
required for brain tumour diagnosis is insufficient and is
susceptible to the human error factor, which has resulted in the
implementation of deep learning (DL) to predict tumours to
assist doctors [5].

Convolutional Neural Networks (CNN) are the deep DL
model that perform better for feature extraction, but they
require large datasets for efficient training which is hindrance
for applications in medical imaging as large dataset are not
easily accessible. Ronnerberger et al. proposes a UNET
architecture that requires less image samples for successful

model learning [6]. The UNET architecture has a drawback of
consuming a lot of resources and computing inefficiency when
applied in CPU and GPU [7]. The computational inefficiency
of existing tumour prediction methods has become a critical
concern in the medical imaging field. In response to this
challenge, recent research has focused on areas to apply the
UNET model for brain tumour detection in field
programmable gate arrays (FPGA‟s), due to their inherent
speed advantage over traditional processors. In a related study
[8], the FPGA implementation of CNN was discussed,
emphasizing on the necessity of a balanced design that
considers resource utilization against performance.

In this work the challenge of balancing computational
resource against performance in UNET for brain tumour
prediction is addressed by proposing a modified UNET model
and a comprehensive optimization of hardware resource
utilization during FPGA inference. The modifications methods
used in this work are tailored to enhance efficiency and
efficacy of the UNET model for brain tumour prediction. The
UNET model was optimized by reducing the size of original
UNET model and FPGA hardware optimization strategies
used entailed resource strategy, FIFO buffer depth
optimization and precision.

The rest of this paper is organized as follows: Section II is
literature review of relevant theory and related work; Section
III describes materials and methods to carry out the work;
Section IV is analysis and interpretation of results and
discussion and conclusion is given in Section V and Section
VI respectively.

II. LITERATURE REVIEW

Brain tumour segmentation is the technique of
automatically detecting and labelling malignant brain tissues
depending on tumour type [9]. Convolutional Neural Network
has been successful in image segmentation applications in
deep learning with applications in the medical field. The use
of CNN in image segmentation entails deciding on the dataset
to train the model; CNN architecture to use; loss function and
the back-propagation weight adjustment algorithm.

A. Brain Tumour Dataset

Brain MRI scans is private patient‟s data which require
confidential handling by health practitioners. However with
the rise in the use of technology in the medical field, there is a
need for the data to be made public and anonymous of
patient‟s identity [10]. International research institutes have

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

623 | P a g e

www.ijacsa.thesai.org

made this data available for public use in developing medical
imaging solutions such as The Cancer Genome Atlas (TCGA)
dataset, BrainWeb dataset and MICCAI Brain Tumour
Segmentation (BraTS 2020) Challenge dataset.

1) The Cancer Genome Atlas (TCGA): TCGA has

different data such as TCGA Lower Grade Gliomas (LGG)

and Glioblastoma Multiforme (GBM) which are basically

grades of gliomas standardized by the World Health

Organization. LGG are less aggressive while GBM is an

exceptionally aggressive kind of brain glioma that develops

from astrocytes or their progenitors [11]. In reserach [12],

automatic and manual identification of GBM sub-

compartments segmentation was performed and results

showed that automated segmentation gave the highest area

under the curve (AUC) as compared to manual segmentation.

The TCGA dataset was created to identify a causal relation

between genomic alterations and cancers [13]. TCGA data

does not have specific pixel segmentation of tumour regions

which will require additional radiologist expert knowledge to

label the scans for training a machine learning model [14].

2) BrainWeb: Simulated Brain Database (SBD): The SBD

currently has brain MRI data that has been simulated using

two anatomical models: normal and multiple sclerosis (MS).

T1-weighted (spin-lattice relaxation), T2-weighted (spin-spin

relaxation), and PD-weighted (proton-density) sequences were

employed to simulate entire three-dimensional data volumes

for these models [15]. In study [16], the SBD database was

utilized for improving the magnetic resonance imaging (MRI)

segmentation using fuzzy C-means method and obtained

experimental results that were more stable and accurate when

compared to existing methods. SBD was created for computer

aided image analysis by providing samples with ground truth.

The SBD dataset is simulated for general use in computer-

based analysis algorithms which diminishes its appeal when

compared to other datasets sourced from actual patients.

3) MICCAI Brain Tumour Segmentation (BraTS 2020)

challenge dataset: The BraTS 2020 dataset is made up of

clinically obtained pre-operative multimodal MRI images of

Glioblastoma (GBM/HGG) and lower grade glioma (LGG)

that were collected from multiple institutions [17,18]. It

contains a diagnosis that has been verified pathologically and

has been divided into training and validation data. The dataset

has expert manual segmentations that define the boundaries of

the tumour regions, which include enhancing tumour, the

peritumoral edema, and the necrotic and non-enhancing

tumour core. All the scans of BraTS are in Neuroimaging

Informatics Technology Initiative (NIfTIS) file format and

they describe native (T1) and post-contrast T1-weighted

(T1Gd), T2-weighted (T2), and T2-Fluid Attenuated Inversion

Recovery (FLAIR) volumes, and were acquired using various

clinical protocols and scanners from numerous institutions.

The BraTS dataset has been used in several research with [19]

introducing a residual mobile U-Net (RMU-Net) for MRI

brain tumour segmentation. The RMU-Net archived dice

coefficient scores for WT, TC, and ET on the BraTS 2020

dataset of 91.35%, 88.13%, and 83.26%, respectively, and

91.76%, 91.23%, and 83.19% on the BraTS 2019 dataset, and

90.80%, 86.75%, and 79.36% on the BraTS 2018 dataset.

The BraTS dataset is more versatile than the TCGA as it
has manual segmentation that has been done by experts, which
is essential for the training of a prediction model. In
comparison to the SBD, BraTS dataset is more competitive as
it has been sourced from real MRI scans that represents the
real life cases as compared to simulated SBD. BraTS dataset is
also specialized for segmentation with UNET as it has ground
truth that has multiclass labels [20].

B. U-NET

U-NET is a convolutional neural network that was
proposed by [6] for biomedical image segmentation
applications. It was optimized to archive accurate prediction
with few training images, as they are normally few sample
images in the medical field. The original model constitutes of
a contraction path which records context and expansion path
which enables accurate localization. The UNET model is
computationally demanding which translates into high
resource utilization on hardware. There have been proposed
methods to reduce the high resource demand by the UNET.

In study [21] a reduced UNET model architecture for
classification of weeds and crops using segmentation was
proposed. Reduction of the model was archived by reducing
the number of filters per convolution layer. The proposed
model in [21] has parameters that are 27% smaller while
maintaining accuracy of 95% and an error rate that is 7%
lower than the original UNET model. The reduction is
however done on the number of filter per layer, and maintains
the UNET architecture in terms of layers. In [22], the reduced
depth UNET architecture with three down-sampling and two
up-sampling sections is proposed, replacing the five down-
sampling and four up-sampling sections of the original UNET
architecture. Results obtained showed that the approach
produced more accurate results [22]. There is gap in the
existing work to combine reduction in number of filters and
model depth as proposed by [21, 22].

1) Evaluation criteria: In order to evaluate segmentation

there are metrics in image processing that can be used for

quality assurance. The output image pixels are compared

against those of the ground truth to establish the extent of

accuracy. Intersection over union (IoU) and dice similarity

coefficient (DSC) are the most common used metrics in

medical imaging.

a) Intersection over union (Iou): Intersection over union

is an evaluation metric that measures the intersection between

the predicted mask and the actual mask, also known as the

Jaccard index [23]. IoU calculation incorporates two

indicators of false positive (FP) and true positive (TP) results.

A true positive occurs when the model accurately predicts that

a pixel is a component of an object when in fact it is. If the

model forecasts a pixel as belonging to an item when in fact it

belongs to the background, this is known as a false positive.

The intersection of the anticipated segmentation mask and the

ground truth mask, when compared to the union of the two

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

624 | P a g e

www.ijacsa.thesai.org

masks, is known as the IoU. IoU is particularly useful in

multiclass segmentation where there is an imbalance in

classes.

IoU = TP / (TP + FP + FN) (1)

where, TP is the number of true positives, FP is the
number of false positives, and FN is the number of false
negatives.

b) Dice similarity coefficient: The Dice similarity

coefficient also termed as Srensen-Dice index or simply the

Dice coefficient is a statistical instrument used to determine

the similarity of two sets of data [24, 25]. The dice similarity

coefficient is both a spatial overlap indicator and a tool for

validating reproducibility. The proportion of specific

agreement was another name for it. A DSC value ranges from

0 to 1, with 0 indicating no spatial overlap and 1 representing

total overlap. DSC examines the agreement between a

predicted segmentation and its ground truth at a pixel level.

The equation for the DSC metric is:

DSC=2 * |X ∩ Y| / (|X| + |Y|) (2)

 Where X and Y are two sets.

 A set with vertical bars on either side denotes the set's
cardinality, or the number of elements in that set, e.g.
|X| denotes the number of elements in set X.

 ∩ is used to express the intersection of two sets and

refers to the items that are shared by both.

2) Model Training Optimization Algorithm

Cost Function

The error between real y and predicted y at its present
position is measured by the cost (or loss) function [26]. A loss
function can be used to increase the effectiveness of the
machine learning model by giving it feedback in order to
change the parameters reducing the error, and ultimately
locating the local or global minimum. Until the cost function
is near to or equal to zero, it iterates repeatedly, moving in the
direction of steepest descent. Learning in the model stops at
the steepest descent. A cost function determines the average
error across the whole training set, whereas a loss function just
considers the error of one training sample [27].

Gradient Descent (Gd)

Optimizers update the model in response to the output of
the loss function, consequently reducing the loss function. To
locate a local minimum or maximum of a given function,
gradient descent (GD), an iterative first-order optimization
technique, is utilized. This method reduces the cost function
and is mostly used as an entry level optimization in machine
learning application [28]. Gradient descent however uses a
constant learning rate which may need to be tuned manually to
reach optimal performance. A higher learning results in faster
training which require fewer epochs at the cost of
overshooting the minimum. On the contrary a smaller learning
rate will result in slower learning which requires more epochs
for convergence [29]. The most common optimizers derived
from gradient descent are Adaptive Gradient (Adagrad),

Adaptive Delta (AdaDelta), Stochastic Gradient Descent
(SGD), Adaptive Momentum (Adam), Cyclic Learning Rate
(CLR), Adaptive Max Pooling (Adamax), Root Mean Square
Propagation (RMS Prop), Nesterov Adaptive Momentum
(Nadam), and Nesterov accelerated gradient (NAG) for CNN
[30].

Adaptive Moment Estimation Optimizer (Adam
Optimizer)

When training neural networks and machine learning
models, the gradient descent approach is typically employed
for optimization [27].

The Adam optimizer was made for deep neural network
training optimization. It can be described as a combination of
momentum-based stochastic gradient descent and RMSprop.
Adam optimizer delivers computational performance, lower
memory usage, and invariant to diagonal rescaling of
gradients for applications with huge amounts of data or
parameters [31]. Adam optimizer also computes adaptive
learning rate, which entails tuning the learning rate during
back-propagation, a property which gives it a competitive
edge over other gradient descent optimizers. In study [30], ten
common GD based optimizer algorithms were compared and
analysed, and results obtained showed that Adam optimizer
was more competitive with an accuracy of 99.2%.

C. Model Conversion to Hardware Description Language

(HDL)

Workflow of implementing neural network in FPGA
entails building of model architecture by deciding on the
relevant layers and the training of the model using frameworks
such as Tensorflow, Keras or Pytorch in high level language
such as python and then converts the trained model to
hardware description language (HDL). FPGA vendors have
high level synthesis tools which synthesize from C++ to HDL.
Converting a model in python trained to C++ can be a
daunting task. However there are automation tools that bridge
between trained models and C++ representations, such as
LegUp, DNN Weaver, FINN and HLS4ML among others.

A. Conversion Tools

1) LegUp: LegUp is a high-level synthesis tool that uses

C programming to get the system's behavioural description

and creates an RTL netlist in Verilog HDL [32]. LegUp is

compatible C/C++ language program and gives an output of

Verilog HDL. The four major steps in LegUp HLS process are

allocation, scheduling, binding, and RTL generation, which

run consecutively [33]. LegUp supports Microchip PolarFire

FPGA‟s.

2) FINN: FINN is an experimental framework developed

by Xilinix Research Labs that focuses on the use of deep

neural networks on FPGAs. It is designed for Xilinx FPGAS

for converting quantized neural networks (QNNs) to HDL.

FINN supports Brevitas which is a Pytorch package for neural

network quantization that supports post training quantization

(PTQ) and quantization aware training (QAT) [34].

3) DNNWeaver: DNNWeaver is an alternate converter for

trained model to HDL implementation in FPGA, made at the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

625 | P a g e

www.ijacsa.thesai.org

Alternative Computing Technologies (ACT) Laboratory,

University of California [35]. A synthesizable FPGA

accelerator with high efficiency and performance was

achieved in [35]. The tool however only supports Caffe model

which is a limitation for Tensorflow and Pytorch frameworks

applications.

4) HLS4ML: HLS4ML is a tool for machine learning

model implementation in FPGA covering both Vivado, Vitis

and Quartus HLS backend and C++ inference templates [36].

The tool was developed for the CERN Hadron Collider

(LHC), for fast capturing of results from detectors in the LHC.

HLS4ML features Keras, Pytorch and ONNX frameworks,

models C++ equivalent representations conversion, which can

then be transformed to HDL by the backend HLS. Fully

connected NN (multilayer perceptron, MLP), Convolutional

NN, Recurrent NN (LSTM) and Graph NN (GarNet) are

neural network architectures supported by HLS4ML. The

support for different backend, frameworks and neural network

architectures makes HLS4ML a more suitable tool for FPGA

neural network inference.

Neural network implementation consumes a lot of FPGA
resources that would be impossible to implement without
optimization, which has led research work that incorporates
FPGA hardware optimization when using HLS4ML. In study
[37], inference of jet substructure model for particle physics in
FPGA, archived Flip-flop and BRAM utilization below 4% of
budget by employing bit width adjustment. FIFO buffer depth
optimization was applied in [38] by recording buffer
occupancy during the RTL simulation and then re-running the
synthesis with updated FIFO buffer depth reduced resource
utilization BRAM by 81%; LUT by 35% and FF by 37%.

III. METHOD AND MATERIALS

A. 2D UNET Architecture

The original UNET has five blocks in the contraction path
that entail convolution, ReLU and max-pooling operations.
Fig. 1 shows four blocks that perform up-sampling,
convolution and ReLU in the expansion path, that are
connected to their corresponding layers in contracting path. In
this work the UNET architecture was reduced to reduce the
resource requirement of the model [39].

Fig. 1. UNET architecture [39].

B. Reduced UNET Model

The depth of the UNET architecture was reduced and the
numbers of filters per layer were reduced. Filter numbers were
reduced by 93.8% per layer and only one block of filter was
used instead of two per layer. In the contraction path the
feature extraction blocks were reduced from five to two
consisting of 3*3 convolution kernels, 2*2 max-pooling. For
the expansion path feature extraction blocks were reduced to
two from four consisting of 2*2 up-sampling and concatenate
path from the contracting layer as depicted in Fig. 2. The
resulting model reduced model total parameters by 99%.
Decreasing the model however comes with a cost of accuracy
as the features that the model can capture are reduced.
Tensorflow Keras framework was used to train the model.

Fig. 2. Reduced UNET architecture.

C. Data Pre-Processing

Data pre-processing entails formatting dataset images to
match the input size and features of the UNET model
architecture. The BraTS 2020 dataset was used in this work
and was pre-processed by resizing, min-max scaling and
slicing before being used for training and testing of the model.
In order to capture more features T1CE, T2 and FLAIR
modalities were used for training.

Resizing

BraTS 2020 dataset consists of 3D MRI images with
modalities and segmentation masks marked by experts. The
3D-MRI scans were resized from 240*240*155 to
128*128*128 dimension to reduce the unnecessary
background data and for uniformity in the data. Fig 3 shows
the resized image with dimensions 128*128 and background
cropped out.

1) Min-max scaler: The images were scaled using the

min-max scaler for a mean of 0 and max value of 1. Scaling

helps to standardize the data for efficient training of the

model.

2) Slicing: Since the model was defined for 2D

convolution kernels each image was sliced to from 3D to 2D

slices for all the modalities and masks. The modalities for

each sample were converted to numpy array and combined or

stacked into one image which translate to input channels in the

model architecture. Fig. 3 is a plot of a 2D slice from the 127

slices obtained per 3D image slicing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

626 | P a g e

www.ijacsa.thesai.org

Fig. 3. Pre-processed BraTS 2020 2D slice.

3) Data Generator: A data generator was defined for

loading the images and masks during training. The images and

masks were loaded as an (X,Y) tuple. In the tuple method the

X represents the data which was passed through the model for

training and Y is the expected output which was used for

calculating the loss against the model output at each iteration.

D. Adam Optimization

Adam optimizer was used during the training to update the
weights and learning rate to reach lowest possible loss,
through gradient descent method. In order to calculate the
loss, dice score coefficient (DSC) was used to compute the
total loss which was then back-propagated for updating
weights and the learning rate. The optimizer weights were
removed from the model after the training since they are not
required for inference.

E. Tensorflow Keras Model Conversion to C++ and RTL

HLS4ML was used for converting the trained model to
HDL. Adam optimizer Weights added to the model during
training was removed before conversion. This reduced the
memory footprint of the model as optimizer weights are not
required for inference. A script for generating the C++
equivalence of the model was developed. The script describes
the optimization category in terms of resource or latency,
clock, input/output type (io_type) and backend HLS tool that
was used. Fig. 4 illustrates the process flow from model
training to FPGA implementation using HLS4ML.

Fig. 4. HLS4ML conversion process.

Conversion to RTL

Table I illustrates the configuration used to convert the
reduced model to HDL. The C++ generated representation of
the model was obtained from the templates in hls4ml that
define CONV2D, MAXPOOL and other layers defined in the
model. Vivado HLS supports converting C++ model
representation to HDL. In this work the C++ model was
converted to Verilog, System-C and VHDL. The main files

generated from the conversion are the HDL, data and
constraints. HDL files describe various layers of the model;
data files contain the weights and biases and the constraint
files define the timing and layer interconnections.

TABLE I. REDUCED UNET CONVERSION TO HDL CONFIGURATION

Configuration Parameter

Backend Vivado HLS

FPGA
Kintex Ultrascale
Part- xcku085-flva1517-3-e

Strategy Resource (Reuse Factor)

FIFO Depth (Initial) 100_000

Precision Fixed point arithmetic(ap<>)

F. HDL Optimization

In order to optimize the FPGA resource utilization the
precision, resource strategy and FIFO buffer depth
optimization techniques were used.

1) Precision: Floating point numbers due to their limitless

precision in computation leads to an increased utilization of

resources. Arbitrary fixed point type was used in this work

which is defined by „ap_fixed<a,b>‟, where „a‟ is the total bit

width and „b‟ is the fractional part from the total size of „b‟.

Fixed-point arithmetic is more efficient in reducing resource

utilization when compared to floating-point arithmetic.

2) Resource strategy: In multilayer neural networks, each

neuron in a layer (consisting of n neurons) produces an output

computed by the weighted sum of the output from the

previous layer. The weights associated with these connections

are represented as a matrix W of size n*m, where m is the

number of neurons in the previous layer. Each neuron has a

bias that is independent and represented by vector b. The

weighted sums and the biases are summed and added non

linearity by activation function denoted by f, resulting in the

final output of the neuron. This process of weights, biases and

activation function is expressed as:

y=f(W*previous layer output + b) (3)

The multiplications in neural networks are computed by
multipliers in FPGA, which result in high resource utilization
if each multiplication was to represent a physical multiplier.
Resource strategy was used to optimize the design by reusing
of multipliers as demonstrated in Fig. 5.

Fig. 5. Multiplier reuse reduces number of multipliers at the expense of

parallel processing.

Multiplier Limit

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

627 | P a g e

www.ijacsa.thesai.org

Processing elements are a functional block that preforms
specific operations such as multiplication and addition. In the
FPGA, operations are efficiently conducted in parallel across
multiple PE‟s, thereby improving computational efficiency.
For resource strategy multiplier_limit variable was defined to
represent the maximum number of multiplications that can be
done in parallel for the available resources. The calculation is
based on the number of input values (mult_n_in), the number
of output values (mult_n_out) and the reuse factor. A higher
reuse factor will mean a lower value of multiplier_limit which
translates to actual multipliers used in the FPGA
implementation, however the universal time of operation will
increase as the multipliers will be shared by a number of
operations.

Mult_n_in = filt_height * filt_width * n_chan (4)

Mult_n_out =n_filt (5)

Multiplier_limit = DIV_ROUNDUP(mult_n_in * mult_n_out,

reuse_factor) (6)

3) First In First Out (FIFO) Buffer Depth Optimization:

FIFO buffers store data in between layers. In the initial C++

conversion the size of the buffers is estimated, however the

estimated size is above the utilization during simulation. This

results in a BRAM and LUT usage that is higher than what the

design requires. In FIFO depth optimization method the buffer

size for each layer was set to 100_000, which is a value above

what is required by the design. The design was then

synthesized and during RTL co-simulation the buffer

occupation was recorded and used to update the FIFO buffer

sizes which translated to a 71% reduction in buffer size. Fig. 6

is an overview of the buffer method capturing of buffer

utilization during simulation to the updating of the new buffer

size.

Fig. 6. FIFO buffer depth optimization overview.

G. C++ /Register Transfer Level (C/RTL) CO-SIMULATION

C/RTL co-simulation was used to verify the functional
preservation of the HDL converted model. The test images
were converted to a 1D array and saved as data files with pixel
values saved as strings for compatibility with simulator.
C/RTL co-simulation was done using test-bench and test data.
The comparison of C-Simulation and RTL simulation passed

validation and output for inference was a 1D array that was
converted to 2D numpy array.

IV. RESULTS

A. Precision

The increase in configured precision for the reduced
UNET model during conversion to HDL was directly
proportional to the increase in resource utilization as shown in
Table II.

TABLE II. INCREASING AP PRECISION INCREASES RESOURCE

UTILIZATION FOR THE REDUCED UNET MODEL CONVERSION IN HLS4ML

PRECISION BRAM_18K DSP48E FF LUT

<16,6> 2118 5 67033 149764

<32,6> 3978 13 97408 188001

<64,6> 7845 65 155388 219201

B. Resource Strategy

Multiplier reuse reduced the resources used as multipliers
were shared among operations at the expense of performance.
Maximum possible reuse factor is 1152 hence beyond 1500
reuse factor the performance and resource utilization is not
affected, as shown by Fig. 7 graph of resource utilization. This
is because there is an upper-limit to optimization of resource
utilization against performance.

Fig. 7. Increase in reuse factor is directly proportional to resource utilization

and reach roofline at 1000 reuse factor.

C. First In First Out (FIFO) Buffer Depth Optimization

New FIFO buffer depth values were inserted in the C++
firmware as pragma directives to guide synthesis. Resource
utilization after FIFO optimization showed 54.8% reduction in
BRAM‟s, 29% reduction in FF‟s and 44% reduction in LUT‟s.
The new FIFO buffer depth was the occupancy increased by
value of 1. Table III shows the reduction in resource
utilization pre and post buffer size reduction. Table IV
illustrates how the buffer size was reduced using pragma
directives during synthesis.

TABLE III. FIFO DEPTH OPTIMIZATION REDUCTION IN RESOURCES

Optimization BRAM_18K DSP48E FF LUT LATENCY(ms)

No 1634 8 52679 120583 9.8

Yes 739 5 29811 62059 9.8

% Change -54.8 -37.5 -43.4 -48.5 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

628 | P a g e

www.ijacsa.thesai.org

TABLE IV. FIFO BUFFER DEPTH SIMULATION OCCUPANCY RESULTS AND OPTIMIZATION PRAGMAS TO REDUCE BUFFER DEPTH

Layer Occupancy New FIFO BUFFER DEPTH PRAGMA DIRECTIVE

layer20_out_V_data_0_V_U 33348 33349 #pragma HLS STREAM variable=layer20_out depth=33349

layer21_out_V_data_0_V_U 16608 16609 #pragma HLS STREAM variable=layer21_out depth=16609

layer19_cpy2_V_data_0_V_U 819 820 #pragma HLS STREAM variable=layer19_cpy2 depth=820

layer22_out_V_data_0_V_U 134 135 #pragma HLS STREAM variable=layer22_out depth=135

layer23_out_V_data_0_V_U 199 200 #pragma HLS STREAM variable=layer23_out depth=200

layer12_out_V_data_0_V_U 3 4 #pragma HLS STREAM variable=layer12_out depth=4

layer24_out_V_data_0_V_U 37372 37373 #pragma HLS STREAM variable=layer24_out depth=37373

layer25_out_V_data_0_V_U 261 262 #pragma HLS STREAM variable=layer25_out depth=262

layer26_out_V_data_0_V_U 1 2 #pragma HLS STREAM variable=layer26_out depth=2

TABLE V. SHOWING THE REDUCED MODEL COMPARISON WITH EXISTING WORK

Ref Model Dataset Parameters IoU Score Accuracy Execution Time(ms)

UNET MODEL UNET BraTS 2020 1.9 M 0.60 0.97 132

[40]Ercüment GÜVENÇ

(2023)
FLAIR MR IMAGES WITH U-NET BraTS 2018 - 0.59 0.99 -

[41]Jwaid (2021) 3D U-Net CNN BraTS 2017 - 0.69 0.99 -

Proposed Reduced UNET BraTS 2020 864 0.74 0.95 38

D. Reduced Model Result Comparison with Existing Work

A full UNET model with original architecture was
developed to compare with the reduced UNET proposed in
this work. Model parameters were reduced from 1.9 million in
original 2D-UNET model to 864 in proposed reduced UNET
model.

E. Intellectual Property (IP) Core

Fig. 8 is the graphical representation of the intellectual
property core that was generated from the RTL design. The
generate IP core has 3-inputs which correspond to the three
input channels in the model architecture and there are four
output channels which are aligned to the number of classes for
type of tumour and background. IP cores introduce modular
design which can then be interfaced with input and output IP
cores such as Ethernet.

Fig. 8. BraTS 2D UNET tumour segmentation IP core.

F. C/RTL Co-simulation Results

The co-simulation results presented in Fig. 9, visually
demonstrate the similarity between prediction output masks of
the python model and RTL simulation. Quantitative analysis,
computing the IoU score output a comparable value of 74%
between the original python model and the RTL simulation,
validating the fidelity of the FPGA-based implementation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

629 | P a g e

www.ijacsa.thesai.org

Fig. 9. Reduced UNET python model and C/RTL co-simulation brain

tumour prediction masks.

V. DISCUSSION

Table V shows that the proposed model has a higher IoU
score over the existing work in [40, 41]. In study [40], only
FLAIR images modality which limited the amount of features
that can be learned by the model as compared to T1CE, T2
and FLAIR modalities which were used in the proposed model
to learn more features from the dataset. The proposed model
however has limitations in terms of accurately predicting
tumour class. Future work can be focused on improving
multiclass prediction of the proposed model.

VI. CONCLUSION

In this work a reduced UNET model was built and trained
in Tensorflow Keras for brain tumour segmentation
applications and archived an IoU score of 74%. The reduced
model significantly reduced the model parameters by 99%
which translates into reduced computational requirements.
Converting the reduced model into C++ and HDL equivalent
representations using HLS4ML, FPGA resources were used
economically while preserving the original model
segmentation output mask accuracy. Resource strategy, FIFO
buffer depth and precision methods significantly reduced
FPGA resource usage. The reduced model segmentation
performs well in predicting tumour region, however the
tumour classes are still poorly predicted. Further work on
choosing the right loss function suitable for unbalanced multi-
class segmentation for the reduced model can be done to
improve inference accuracy while reducing FPGA resource
utilization

ACKNOWLEDGMENT

Authors are thankful to PAUSTI University for the
funding of this research work and the department of Electrical
and Electronic Engineering for the unwavering support in
completion of this work.

REFERENCES

[1] Clinic, Mayo, "Brain tumor," Mayo Clinic, 2023. [Online]. Available:
https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-
causes/syc-20350084. [Accessed 20 November 2023].

[2] S. R. H. K. S. R. N. K. Soheila Saeedi, "MRI-based brain tumor
detection using convolutional deep learning methods and chosen

machine learning techniques," BMC Medical Informatics and Decision
Making, vol. 23, no. 16, 2023.

[3] Cancer.Net, "Brain Tumor: Diagnosis," Cancer.Net, March 2023.
[Online]. Available: https://www.cancer.net/cancer-types/brain-
tumor/diagnosis. [Accessed 21 November 2023].

[4] A. Abdullah Asiri et al, "Brain Tumor Detection and Classification
Using Fine-Tuned CNN with ResNet50 and U-Net Model: A Study on
TCGA-LGG and TCIA Dataset for MRI Applications," Artificial
Intelligence Applications in Medical Imaging, vol. 13, no. 7, 2023.

[5] A. K. T. M. P. S. A. B. Mukul Aggarwal, "An early detection and
segmentation of Brain Tumor using Deep Neural Network," BMC
Medical Informatics and Decision Making, vol. 23, no. 78, 2023.

[6] P. F. T. B. Olaf Ronneberger, "U-Net: Convolutional Networks for
Biomedical," in International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2015.

[7] Xuan Cheng et al, "Efficient hardware design of a deep U-net model for
pixel-level ECG classification in healthcare device," Microelectronics
Journal, vol. 126, 2022.

[8] Z. L. Chenghao Wang, "A Review of the Optimal Design of Neural
Networks Based on FPGA," MDPI, p. 44, 2022.

[9] M. B. B. K. A. K. Dinthisrang Daimary, "Brain Tumor Segmentation
from MRI Images using Hybrid Convolutional Neural Networks," in
International Conference on Computational Intelligence and Data
Science (ICCIDS 2019), 2020.

[10] E. B. V. D. C. Tonya White, "Data sharing and privacy issues in
neuroimaging research: Opportunities, obstacles, challenges, and
monsters under the bed," Hum Brain Mapping, vol. 43, no. 1, pp. 278-
291, 2020.

[11] K. T. K. A. Keiko Sato, "Five Genes Associated With Survival in
Patients With Lower-grade Gliomas Were Identified by Information-
theoretical Analysis," Anticancer, pp. 2777-2785, 2020.

[12] Emmanuel Rios Velazquez et al, "Fully automatic GBM segmentation in
the TCGA-GBM dataset: Prognosis and correlation with VASARI
features," Scientific Reports, vol. 5, no. 16822, 2015.

[13] P. C. W. Katarzyna Tomczak, "The Cancer Genome Atlas (TCGA): an
immeasurable source of knowledge," Contemporary Oncology, vol. 19,
no. 1A/2015, pp. A68-A77, 2015.

[14] Spyridon Bakas et al, "Advancing The Cancer Genome Atlas glioma
MRI collections with expert segmentation labels and radiomic features,"
Scientific Data, vol. 4, no. 1, 2017.

[15] BrainWeb, "BrainWeb: Simulated Brain Database," McGil University,
[Online]. Available: https://brainweb.bic.mni.mcgill.ca/. [Accessed 22
May 2023].

[16] A. Z. Elnomery, "An Adaptive Fuzzy C-Means Algorithm for Improving
MRI Segmentation," Open Journal of Medical Imaging, vol. 3, pp. 125-
135, 2013.

[17] S. Bakas, "Multimodal Brain Tumor Segmentation Challenge 2020:
Data," Perelman School of Medicine, University of Pennsylvania, 2020.
[Online]. Available:
https://www.med.upenn.edu/cbica/brats2020/data.html. [Accessed 22
May 2023].

[18] Bjoern H. Menze et al, "The Multimodal Brain Tumor Image
Segmentation Benchmark (BRATS)," IEEE Transactions on Medical
Imaging, vol. 34, no. 10, pp. 1993-2024, 2015.

[19] Muhammad Usman Saeed et al, "RMU-Net: A Novel Residual Mobile
U-Net Model for Brain Tumor Segmentation from MR Images,"
Electronics, vol. 10, no. 16, 2021.

[20] Spyridon Bakas et al, "Identifying the Best Machine Learning
Algorithms for Brain Tumor Segmentation, Progression Assessment,
and Overall Survival Prediction in the BRATS Challenge," arXiv
preprint arXiv:1811.02629, 2019.

[21] S. U. A. V. J. R. Arumuga Arun, "Reduced U-Net Architecture for
Classifying Crop and Weed using Pixel-wise Segemntation," in 2020
IEEE International Conference for Innovation in Technology (INOCON)
, Bengaluru, India, 2020.

[22] M. S. R. Rupal R. Agravat, "Prediction of Overall Survival of Brain
Tumor Patients," in TENCON , Kochi India, 2019.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

630 | P a g e

www.ijacsa.thesai.org

[23] O. Sheremet, "Intersection over union (IoU) calculation for evaluating
an image segmentation model," Towards Data Science, 25 July 2020.
[Online]. Available: https://towardsdatascience.com/intersection-over-
union-iou-calculation-for-evaluating-an-image-segmentation-model-
8b22e2e84686. [Accessed 02 July 2023].

[24] B. D. J, "Dice similarity coefficient," Radiopaedia, 02 08 2021. [Online].
Available: https://radiopaedia.org/articles/dice-similarity-coefficient.
[Accessed 10 02 2023].

[25] D. L. C. I. P. F. K. Anthony D. Yao, "Deep Learning in Neuroradiology:
A Systematic Review of Current Algorithms and Approaches for the
New Wave of Imaging Technology," Radiology: Artificial Intelligence,
vol. 2, no. 2, pp. 1-6, 2020.

[26] D. S. S. L. X. L. Yingjie Tian, "Recent advances on loss functions in
deep learning for computer vision," Neurocomputing, vol. 497, pp. 129-
158, 2022.

[27] IBM, "What is gradient descent?," IBM, 2023. [Online]. Available:
https://www.ibm.com/topics/gradient-descent. [Accessed 01 July 2023].

[28] R. Kwiatkowski, "Gradient Descent Algorithm — a deep dive," Towards
Data Science, 22 May 2021. [Online]. Available:
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-
cf04e8115f21. [Accessed 01 July 2023].

[29] J. Brownlee, "Understand the Impact of Learning Rate on Neural
Network Performance," MACHINE LEARNING MASTERY, 25
January 2019. [Online]. Available:
https://machinelearningmastery.com/understand-the-dynamics-of-
learning-rate-on-deep-learning-neural-networks/. [Accessed 01 July
2023].

[30] Muhammad Yaqub et al, "State-of-the-Art CNN Optimizer for Brain
Tumor Segmentation in Magnetic Resonance Images," Brain Sciences,
vol. 10, no. 7, p. 427, 2020.

[31] J. L. B. Dlederlk P.Kingma, "ADAM: A METHOD FOR
STOCHASTIC OPTIMIZATION," in 3rd International Conference for
Learning Representations, San Diego, 2015.

[32] S. R. a. M. Joseph, "Open source HLS tools: A stepping stone for
modern electronic CAD," in 2016 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC), Chennai,
India, 2016.

[33] Inc, Microchip Technology, "2User Guide: 2.1 Introduction to High-
Level Synthesis," Microchip Technology Inc, 2021. [Online]. Available:
https://download-soc.microsemi.com/FPGA/HLS-EAP/docs/legup-
2021.1-docs/userguide.html. [Accessed 30 May 2023].

[34] pypi, "Quantization-aware training in PyTorch," pypi, 28 April 2023.
[Online]. Available:
https://pypi.org/project/brevitas/#:~:text=Brevitas%20is%20a%20PyTor
ch%20library,not%20an%20official%20Xilinx%20product.. [Accessed
27 May 2023].

[35] Hardick Sharma et al, "From High-Level Deep Neural Models to
FPGAs," in The 49th Annual IEEE/ACM International Symposium on
Microarchitecture, Taipei, Taiwan, 2016.

[36] Team, FastML, "fastmachinelearning/hls4ml," FastML Team, 2023.
[Online]. Available: https://github.com/fastmachinelearning/hls4ml.
[Accessed 27 October 2023].

[37] Javier Duartea et al, "Fast inference of deep neural networks in FPGAs
for particle physics," Journal of Instrumentation, vol. 13, no. 07, p.
P07027, 2018.

[38] Nicolò Ghielmetti et al, "REAL-TIME SEMANTIC SEGMENTATION
ON FPGAS FOR AUTONOMOUS VEHICLES WITH HLS4ML,"
Machine Learning: Science and Technology, vol. 3, no. 4, 2022.

[39] J. Zhang, "UNET- Line by Line Explanation," Towards Data Science, 4
October 2019. [Online]. Available: https://towardsdatascience.com/unet-
line-by-line-explanation-9b191c76baf5. [Accessed 05 November 2023].

[40] M. E. G. Ç. Ercüment GÜVENÇ, “BRAIN TUMOR SEGMENTATION
ON FLAIR MR IMAGES WITH U-NET,” Mugla Journal of Science
and Technology, vol. 9, no. 1, pp. 34-41, 2023.

[41] W. M. Jwaid et al, “Development of Brain Tumor Segmentation of,”
Eastern-European Journal of, vol. 4, no. 9, pp. 23-31, 2021.

