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Abstract—In this study an optimized UNET model is used for 

FPGA-based inference in the context of brain tumour 

segmentation using the BraTS dataset. The presented model 

features reduced depth and fewer filters, tailored to enhance 

efficiency on FPGA hardware. The implementation leverages 

High-Level Synthesis for Machine Learning (HLS4ML) to 

optimize and convert a Keras-based UNET model to Hardware 

Description Language (HDL) in the Kintex Ultrascale (xcku085-

flva1517-3-e) FPGA. Resource strategy, First in First out (FIFO) 

depth optimization, and precision adjustment were employed to 

optimize FPGA resource utilization. Resource strategy is 

demonstrated to be effective, with resource utilization reaching a 

saturation point at a 1000-reuse factor. Following FIFO 

optimization, significant reductions are observed, including a 55 

percent decrease in Block RAM (BRAM) usage, a 43 percent 

reduction in Flip-Flops (FF), and a 49 percent reduction in Look-

Up Tables (LUT). In C/RTL co-simulation, the proposed FPGA-

based UNET model achieves an Intersection over Union (IoU) 

score of 74 percent, demonstrating comparable segmentation 

accuracy to the original Keras model. These findings underscore 

the viability of the optimized UNET model for efficient brain 

tumour segmentation on FPGA platforms. 

Keywords—UNET; field programmable gate array; high-level 

synthesis for machine learning; brain tumour segmentation 

I. INTRODUCTION 

Brain tumours are abnormal growths of cells in or around 
the brain and can be cancerous or non-cancerous [1]. 
Mutations in the DNA, radiation exposure and immune system 
problems are the causes of brain tumours which cause a 
noticeable mortality and low recovery rates. Early detection of 
brain tumours is crucial as it increases the possibility of 
successful treatment [2]. Magnetic resonance imaging (MRI) 
and computed tomography (CT) are imaging modalities used 
to diagnose brain tumours, with MRI producing more detailed 
brain scans [3]. Diagnosis of brain tumours from MRI requires 
skilled manpower in the medical field [4]. The expertise 
required for brain tumour diagnosis is insufficient and is 
susceptible to the human error factor, which has resulted in the 
implementation of deep learning (DL) to predict tumours to 
assist doctors [5]. 

Convolutional Neural Networks (CNN) are the deep DL 
model that perform better for feature extraction, but they 
require large datasets for efficient training which is hindrance 
for applications in medical imaging as large dataset are not 
easily accessible. Ronnerberger et al. proposes a UNET 
architecture that requires less image samples for successful 

model learning [6]. The UNET architecture has a drawback of 
consuming a lot of resources and computing inefficiency when 
applied in CPU and GPU [7]. The computational inefficiency 
of existing tumour prediction methods has become a critical 
concern in the medical imaging field. In response to this 
challenge, recent research has focused on areas to apply the 
UNET model for brain tumour detection in field 
programmable gate arrays (FPGA‟s), due to their inherent 
speed advantage over traditional processors. In a related study 
[8], the FPGA implementation of CNN was discussed, 
emphasizing on the necessity of a balanced design that 
considers resource utilization against performance. 

In this work the challenge of balancing computational 
resource against performance in UNET for brain tumour 
prediction is addressed by proposing a modified UNET model 
and a comprehensive optimization of hardware resource 
utilization during FPGA inference. The modifications methods 
used in this work are tailored to enhance efficiency and 
efficacy of the UNET model for brain tumour prediction. The 
UNET model was optimized by reducing the size of original 
UNET model and FPGA hardware optimization strategies 
used entailed resource strategy, FIFO buffer depth 
optimization and precision.  

The rest of this paper is organized as follows: Section II is 
literature review of relevant theory and related work; Section 
III describes materials and methods to carry out the work; 
Section IV is analysis and interpretation of results and 
discussion and conclusion is given in Section V and Section 
VI respectively. 

II. LITERATURE REVIEW 

Brain tumour segmentation is the technique of 
automatically detecting and labelling malignant brain tissues 
depending on tumour type [9]. Convolutional Neural Network 
has been successful in image segmentation applications in 
deep learning with applications in the medical field. The use 
of CNN in image segmentation entails deciding on the dataset 
to train the model; CNN architecture to use; loss function and 
the back-propagation weight adjustment algorithm. 

A. Brain Tumour Dataset 

Brain MRI scans is private patient‟s data which require 
confidential handling by health practitioners. However with 
the rise in the use of technology in the medical field, there is a 
need for the data to be made public and anonymous of 
patient‟s identity [10]. International research institutes have 
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made this data available for public use in developing medical 
imaging solutions such as The Cancer Genome Atlas (TCGA) 
dataset, BrainWeb dataset and MICCAI Brain Tumour 
Segmentation (BraTS 2020) Challenge dataset. 

1) The Cancer Genome Atlas (TCGA): TCGA has 

different data such as TCGA Lower Grade Gliomas (LGG) 

and Glioblastoma Multiforme (GBM) which are basically 

grades of gliomas standardized by the World Health 

Organization. LGG are less aggressive while GBM is an 

exceptionally aggressive kind of brain glioma that develops 

from astrocytes or their progenitors [11]. In reserach [12], 

automatic and manual identification of GBM sub-

compartments segmentation was performed and results 

showed that automated segmentation gave the highest area 

under the curve (AUC) as compared to manual segmentation.  

The TCGA dataset was created to identify a causal relation 

between genomic alterations and cancers [13]. TCGA data 

does not have specific pixel segmentation of tumour regions 

which will require additional radiologist expert knowledge to 

label the scans for training a machine learning model [14]. 

2) BrainWeb: Simulated Brain Database (SBD): The SBD 

currently has brain MRI data that has been simulated using 

two anatomical models: normal and multiple sclerosis (MS). 

T1-weighted (spin-lattice relaxation), T2-weighted (spin-spin 

relaxation), and PD-weighted (proton-density) sequences were 

employed to simulate entire three-dimensional data volumes 

for these models [15]. In study [16], the SBD database was 

utilized for improving the magnetic resonance imaging (MRI) 

segmentation using fuzzy C-means method and obtained 

experimental results that were more stable and accurate when 

compared to existing methods. SBD was created for computer 

aided image analysis by providing samples with ground truth. 

The SBD dataset is simulated for general use in computer-

based analysis algorithms which diminishes its appeal when 

compared to other datasets sourced from actual patients. 

3) MICCAI Brain Tumour Segmentation (BraTS 2020) 

challenge dataset: The BraTS 2020 dataset is made up of 

clinically obtained pre-operative multimodal MRI images of 

Glioblastoma (GBM/HGG) and lower grade glioma (LGG) 

that were collected from multiple institutions [17,18]. It 

contains a diagnosis that has been verified pathologically and 

has been divided into training and validation data. The dataset 

has expert manual segmentations that define the boundaries of 

the tumour regions, which include enhancing tumour, the 

peritumoral edema, and the necrotic and non-enhancing 

tumour core. All the scans of BraTS are in Neuroimaging 

Informatics Technology Initiative (NIfTIS) file format and 

they describe native (T1) and post-contrast T1-weighted 

(T1Gd), T2-weighted (T2), and T2-Fluid Attenuated Inversion 

Recovery (FLAIR) volumes, and were acquired using various 

clinical protocols and scanners from numerous institutions. 

The BraTS dataset has been used in several research with [19] 

introducing a residual mobile U-Net (RMU-Net) for MRI 

brain tumour segmentation. The RMU-Net archived dice 

coefficient scores for WT, TC, and ET on the BraTS 2020 

dataset of 91.35%, 88.13%, and 83.26%, respectively, and 

91.76%, 91.23%, and 83.19% on the BraTS 2019 dataset, and 

90.80%, 86.75%, and 79.36% on the BraTS 2018 dataset. 

The BraTS dataset is more versatile than the TCGA as it 
has manual segmentation that has been done by experts, which 
is essential for the training of a prediction model. In 
comparison to the SBD, BraTS dataset is more competitive as 
it has been sourced from real MRI scans that represents the 
real life cases as compared to simulated SBD. BraTS dataset is 
also specialized for segmentation with UNET as it has ground 
truth that has multiclass labels [20]. 

B. U-NET 

U-NET is a convolutional neural network that was 
proposed by [6] for biomedical image segmentation 
applications. It was optimized to archive accurate prediction 
with few training images, as they are normally few sample 
images in the medical field. The original model constitutes of 
a contraction path which records context and expansion path 
which enables accurate localization. The UNET model is 
computationally demanding which translates into high 
resource utilization on hardware. There have been proposed 
methods to reduce the high resource demand by the UNET. 

In study [21] a reduced UNET model architecture for 
classification of weeds and crops using segmentation was 
proposed.  Reduction of the model was archived by reducing 
the number of filters per convolution layer. The proposed 
model in [21] has parameters that are 27% smaller while 
maintaining accuracy of 95% and an error rate that is 7% 
lower than the original UNET model. The reduction is 
however done on the number of filter per layer, and maintains 
the UNET architecture in terms of layers. In [22], the reduced 
depth UNET architecture with three down-sampling and two 
up-sampling sections is proposed, replacing the five down-
sampling and four up-sampling sections of the original UNET 
architecture. Results obtained showed that the approach 
produced more accurate results [22]. There is gap in the 
existing work to combine reduction in number of filters and 
model depth as proposed by [21, 22]. 

1) Evaluation criteria: In order to evaluate segmentation 

there are metrics in image processing that can be used for 

quality assurance. The output image pixels are compared 

against those of the ground truth to establish the extent of 

accuracy. Intersection over union (IoU) and dice similarity 

coefficient (DSC) are the most common used metrics in 

medical imaging. 

a) Intersection over union (Iou): Intersection over union 

is an evaluation metric that measures the intersection between 

the predicted mask and the actual mask, also known as the 

Jaccard index [23]. IoU calculation incorporates two 

indicators of false positive (FP) and true positive (TP) results. 

A true positive occurs when the model accurately predicts that 

a pixel is a component of an object when in fact it is. If the 

model forecasts a pixel as belonging to an item when in fact it 

belongs to the background, this is known as a false positive. 

The intersection of the anticipated segmentation mask and the 

ground truth mask, when compared to the union of the two 
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masks, is known as the IoU. IoU is particularly useful in 

multiclass segmentation where there is an imbalance in 

classes. 

IoU = TP / (TP + FP + FN)  (1) 

where, TP is the number of true positives, FP is the 
number of false positives, and FN is the number of false 
negatives. 

b) Dice similarity coefficient: The Dice similarity 

coefficient also termed as Srensen-Dice index or simply the 

Dice coefficient is a statistical instrument used to determine 

the similarity of two sets of data [24, 25]. The dice similarity 

coefficient is both a spatial overlap indicator and a tool for 

validating reproducibility. The proportion of specific 

agreement was another name for it. A DSC value ranges from 

0 to 1, with 0 indicating no spatial overlap and 1 representing 

total overlap. DSC examines the agreement between a 

predicted segmentation and its ground truth at a pixel level. 

The equation for the DSC metric is: 

DSC=2 * |X ∩ Y| / (|X| + |Y|)  (2) 

 Where X and Y are two sets. 

 A set with vertical bars on either side denotes the set's       
cardinality, or the number of elements in that set, e.g. 
|X| denotes the number of elements in set X. 

 ∩ is used to express the intersection of two sets and 

refers to the items that are shared by both. 

2) Model Training Optimization Algorithm 

Cost Function 

The error between real y and predicted y at its present 
position is measured by the cost (or loss) function [26]. A loss 
function can be used to increase the effectiveness of the 
machine learning model by giving it feedback in order to 
change the parameters reducing the error, and ultimately 
locating the local or global minimum. Until the cost function 
is near to or equal to zero, it iterates repeatedly, moving in the 
direction of steepest descent. Learning in the model stops at 
the steepest descent. A cost function determines the average 
error across the whole training set, whereas a loss function just 
considers the error of one training sample [27]. 

Gradient Descent (Gd) 

Optimizers update the model in response to the output of 
the loss function, consequently reducing the loss function. To 
locate a local minimum or maximum of a given function, 
gradient descent (GD), an iterative first-order optimization 
technique, is utilized. This method reduces the cost function 
and is mostly used as an entry level optimization in machine 
learning application [28]. Gradient descent however uses a 
constant learning rate which may need to be tuned manually to 
reach optimal performance. A higher learning results in faster 
training which require fewer epochs at the cost of 
overshooting the minimum. On the contrary a smaller learning 
rate will result in slower learning which requires more epochs 
for convergence [29]. The most common optimizers derived 
from gradient descent are Adaptive Gradient (Adagrad), 

Adaptive Delta (AdaDelta), Stochastic Gradient Descent 
(SGD), Adaptive Momentum (Adam), Cyclic Learning Rate 
(CLR), Adaptive Max Pooling (Adamax), Root Mean Square 
Propagation (RMS Prop), Nesterov Adaptive Momentum 
(Nadam), and Nesterov accelerated gradient (NAG) for CNN 
[30]. 

Adaptive Moment Estimation Optimizer (Adam 
Optimizer) 

When training neural networks and machine learning 
models, the gradient descent approach is typically employed 
for optimization [27]. 

The Adam optimizer was made for deep neural network 
training optimization. It can be described as a combination of 
momentum-based stochastic gradient descent and RMSprop. 
Adam optimizer delivers computational performance, lower 
memory usage, and invariant to diagonal rescaling of 
gradients for applications with huge amounts of data or 
parameters [31]. Adam optimizer also computes adaptive 
learning rate, which entails tuning the learning rate during 
back-propagation, a property which gives it a competitive 
edge over other gradient descent optimizers. In study [30], ten 
common GD based optimizer algorithms were compared and 
analysed, and results obtained showed that Adam optimizer 
was more competitive with an accuracy of 99.2%. 

C. Model Conversion to Hardware Description Language 

(HDL) 

Workflow of implementing neural network in FPGA 
entails building of model architecture by deciding on the 
relevant layers and the training of the model using frameworks 
such as Tensorflow, Keras or Pytorch in high level language 
such as python and then converts the trained model to 
hardware description language (HDL). FPGA vendors have 
high level synthesis tools which synthesize from C++ to HDL. 
Converting a model in python trained to C++ can be a 
daunting task. However there are automation tools that bridge 
between trained models and C++ representations, such as 
LegUp, DNN Weaver, FINN and HLS4ML among others. 

A. Conversion Tools 

1) LegUp: LegUp is a high-level synthesis tool that uses 

C programming to get the system's behavioural description 

and creates an RTL netlist in Verilog HDL [32]. LegUp is 

compatible C/C++ language program and gives an output of 

Verilog HDL. The four major steps in LegUp HLS process are 

allocation, scheduling, binding, and RTL generation, which 

run consecutively [33]. LegUp supports Microchip PolarFire 

FPGA‟s. 

2) FINN: FINN is an experimental framework developed 

by Xilinix Research Labs that focuses on the use of deep 

neural networks on FPGAs. It is designed for Xilinx FPGAS 

for converting quantized neural networks (QNNs) to HDL. 

FINN supports Brevitas which is a Pytorch package for neural 

network quantization that supports post training quantization 

(PTQ) and quantization aware training (QAT) [34]. 

3) DNNWeaver: DNNWeaver is an alternate converter for 

trained model to HDL implementation in FPGA, made at the 
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Alternative Computing Technologies (ACT) Laboratory, 

University of California [35]. A synthesizable FPGA 

accelerator with high efficiency and performance was 

achieved in [35]. The tool however only supports Caffe model 

which is a limitation for Tensorflow and Pytorch frameworks 

applications. 

4) HLS4ML: HLS4ML is a tool for machine learning 

model implementation in FPGA covering both Vivado, Vitis 

and Quartus HLS backend and C++ inference templates [36]. 

The tool was developed for the CERN Hadron Collider 

(LHC), for fast capturing of results from detectors in the LHC. 

HLS4ML features Keras, Pytorch and ONNX frameworks, 

models C++ equivalent representations conversion, which can 

then be transformed to HDL by the backend HLS. Fully 

connected NN (multilayer perceptron, MLP), Convolutional 

NN, Recurrent NN (LSTM) and Graph NN (GarNet) are 

neural network architectures supported by HLS4ML. The 

support for different backend, frameworks and neural network 

architectures makes HLS4ML a more suitable tool for FPGA 

neural network inference.  

Neural network implementation consumes a lot of FPGA 
resources that would be impossible to implement without 
optimization, which has led research work that incorporates 
FPGA hardware optimization when using HLS4ML. In study 
[37], inference of jet substructure model for particle physics in 
FPGA, archived Flip-flop and BRAM utilization below 4% of 
budget by employing bit width adjustment. FIFO buffer depth 
optimization was applied in [38] by recording buffer 
occupancy during the RTL simulation and then re-running the 
synthesis with updated FIFO buffer depth reduced resource 
utilization BRAM by 81%; LUT by 35% and FF by 37%. 

III. METHOD AND MATERIALS 

A. 2D UNET Architecture 

The original UNET has five blocks in the contraction path 
that entail convolution, ReLU and max-pooling operations. 
Fig. 1 shows four blocks that perform up-sampling, 
convolution and ReLU in the expansion path, that are 
connected to their corresponding layers in contracting path. In 
this work the UNET architecture was reduced to reduce the 
resource requirement of the model [39]. 

 

Fig. 1. UNET architecture [39]. 

B. Reduced UNET Model 

The depth of the UNET architecture was reduced and the 
numbers of filters per layer were reduced. Filter numbers were 
reduced by 93.8% per layer and only one block of filter was 
used instead of two per layer. In the contraction path the 
feature extraction blocks were reduced from five to two 
consisting of 3*3 convolution kernels, 2*2 max-pooling.  For 
the expansion path feature extraction blocks were reduced to 
two from four consisting of 2*2 up-sampling and concatenate 
path from the contracting layer as depicted in Fig. 2. The 
resulting model reduced model total parameters by 99%. 
Decreasing the model however comes with a cost of accuracy 
as the features that the model can capture are reduced. 
Tensorflow Keras framework was used to train the model. 

 

Fig. 2. Reduced UNET architecture. 

C. Data Pre-Processing 

Data pre-processing entails formatting dataset images to 
match the input size and features of the UNET model 
architecture. The BraTS 2020 dataset was used in this work 
and was pre-processed by resizing, min-max scaling and 
slicing before being used for training and testing of the model. 
In order to capture more features T1CE, T2 and FLAIR 
modalities were used for training. 

Resizing 

BraTS 2020 dataset consists of 3D MRI images with 
modalities and segmentation masks marked by experts. The 
3D-MRI scans were resized from 240*240*155 to 
128*128*128 dimension to reduce the unnecessary 
background data and for uniformity in the data. Fig 3 shows 
the resized image with dimensions 128*128 and background 
cropped out. 

1) Min-max scaler: The images were scaled using the 

min-max scaler for a mean of 0 and max value of 1. Scaling 

helps to standardize the data for efficient training of the 

model. 

2) Slicing: Since the model was defined for 2D 

convolution kernels each image was sliced to from 3D to 2D 

slices for all the modalities and masks. The modalities for 

each sample were converted to numpy array and combined or 

stacked into one image which translate to input channels in the 

model architecture. Fig. 3 is a plot of a 2D slice from the 127 

slices obtained per 3D image slicing. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

626 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 3. Pre-processed BraTS 2020 2D slice. 

3) Data Generator: A data generator was defined for 

loading the images and masks during training. The images and 

masks were loaded as an (X,Y) tuple. In the tuple method the 

X represents the data which was passed through the model for 

training and Y is the expected output which was used for 

calculating the loss against the model output at each iteration. 

D. Adam Optimization 

Adam optimizer was used during the training to update the 
weights and learning rate to reach lowest possible loss, 
through gradient descent method. In order to calculate the 
loss, dice score coefficient (DSC) was used to compute the 
total loss which was then back-propagated for updating 
weights and the learning rate. The optimizer weights were 
removed from the model after the training since they are not 
required for inference. 

E. Tensorflow Keras Model Conversion to C++ and RTL 

HLS4ML was used for converting the trained model to 
HDL. Adam optimizer Weights added to the model during 
training was removed before conversion. This reduced the 
memory footprint of the model as optimizer weights are not 
required for inference. A script for generating the C++ 
equivalence of the model was developed. The script describes 
the optimization category in terms of resource or latency, 
clock, input/output type (io_type) and backend HLS tool that 
was used. Fig. 4 illustrates the process flow from model 
training to FPGA implementation using HLS4ML. 

 

Fig. 4. HLS4ML conversion process. 

Conversion to RTL 

Table I illustrates the configuration used to convert the 
reduced model to HDL. The C++ generated representation of 
the model was obtained from the templates in hls4ml that 
define CONV2D, MAXPOOL and other layers defined in the 
model. Vivado HLS supports converting C++ model 
representation to HDL. In this work the C++ model was 
converted to Verilog, System-C and VHDL. The main files 

generated from the conversion are the HDL, data and 
constraints. HDL files describe various layers of the model; 
data files contain the weights and biases and the constraint 
files define the timing and layer interconnections. 

TABLE I. REDUCED UNET CONVERSION TO HDL CONFIGURATION 

Configuration Parameter 

Backend Vivado HLS 

FPGA 
Kintex Ultrascale 
Part- xcku085-flva1517-3-e 

Strategy Resource (Reuse Factor) 

FIFO Depth (Initial) 100_000 

Precision Fixed point arithmetic(ap<>) 

F. HDL Optimization 

In order to optimize the FPGA resource utilization the 
precision, resource strategy and FIFO buffer depth 
optimization techniques were used. 

1) Precision: Floating point numbers due to their limitless 

precision in computation leads to an increased utilization of 

resources. Arbitrary fixed point type was used in this work 

which is defined by „ap_fixed<a,b>‟, where „a‟ is the total bit 

width and „b‟ is the fractional part from the total size of „b‟.  

Fixed-point arithmetic is more efficient in reducing resource 

utilization when compared to floating-point arithmetic. 

2) Resource strategy: In multilayer neural networks, each 

neuron in a layer (consisting of n neurons) produces an output 

computed by the weighted sum of the output from the 

previous layer. The weights associated with these connections 

are represented as a matrix W of size n*m, where m is the 

number of neurons in the previous layer. Each neuron has a 

bias that is independent and represented by vector b. The 

weighted sums and the biases are summed and added non 

linearity by activation function denoted by f, resulting in the 

final output of the neuron. This process of weights, biases and 

activation function is expressed as: 

y=f(W*previous layer output + b)  (3)  

The multiplications in neural networks are computed by 
multipliers in FPGA, which result in high resource utilization 
if each multiplication was to represent a physical multiplier. 
Resource strategy was used to optimize the design by reusing 
of multipliers as demonstrated in Fig. 5. 

 

Fig. 5. Multiplier reuse reduces number of multipliers at the expense of 

parallel processing. 

Multiplier Limit 
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Processing elements are a functional block that preforms 
specific operations such as multiplication and addition. In the 
FPGA, operations are efficiently conducted in parallel across 
multiple PE‟s, thereby improving computational efficiency. 
For resource strategy multiplier_limit variable was defined to 
represent the maximum number of multiplications that can be 
done in parallel for the available resources. The calculation is 
based on the number of input values (mult_n_in), the number 
of output values ( mult_n_out) and the reuse factor. A higher 
reuse factor will mean a lower value of multiplier_limit which 
translates to actual multipliers used in the FPGA 
implementation, however the universal time of operation will 
increase as the multipliers will be shared by a number of 
operations. 

Mult_n_in = filt_height * filt_width * n_chan (4) 

Mult_n_out =n_filt  (5) 

Multiplier_limit = DIV_ROUNDUP(mult_n_in * mult_n_out, 

reuse_factor)   (6) 

3) First In First Out (FIFO) Buffer Depth Optimization: 

FIFO buffers store data in between layers. In the initial C++ 

conversion the size of the buffers is estimated, however the 

estimated size is above the utilization during simulation. This 

results in a BRAM and LUT usage that is higher than what the 

design requires. In FIFO depth optimization method the buffer 

size for each layer was set to 100_000, which is a value above 

what is required by the design. The design was then 

synthesized and during RTL co-simulation the buffer 

occupation was recorded and used to update the FIFO buffer 

sizes which translated to a 71% reduction in buffer size. Fig. 6 

is an overview of the buffer method capturing of buffer 

utilization during simulation to the updating of the new buffer 

size. 

 

Fig. 6. FIFO buffer depth optimization overview. 

G. C++ /Register Transfer Level (C/RTL) CO-SIMULATION 

C/RTL co-simulation was used to verify the functional 
preservation of the HDL converted model. The test images 
were converted to a 1D array and saved as data files with pixel 
values saved as strings for compatibility with simulator. 
C/RTL co-simulation was done using test-bench and test data. 
The comparison of C-Simulation and RTL simulation passed 

validation and output for inference was a 1D array that was 
converted to 2D numpy array. 

IV. RESULTS  

A. Precision 

The increase in configured precision for the reduced 
UNET model during conversion to HDL was directly 
proportional to the increase in resource utilization as shown in 
Table II. 

TABLE II. INCREASING AP PRECISION INCREASES RESOURCE 

UTILIZATION FOR THE REDUCED UNET MODEL CONVERSION IN HLS4ML 

PRECISION BRAM_18K DSP48E FF LUT 

<16,6> 2118 5 67033 149764 

<32,6> 3978 13 97408 188001 

<64,6> 7845 65 155388 219201 

B. Resource Strategy 

Multiplier reuse reduced the resources used as multipliers 
were shared among operations at the expense of performance. 
Maximum possible reuse factor is 1152 hence beyond 1500 
reuse factor the performance and resource utilization is not 
affected, as shown by Fig. 7 graph of resource utilization. This 
is because there is an upper-limit to optimization of resource 
utilization against performance. 

 

Fig. 7. Increase in reuse factor is directly proportional to resource utilization 

and reach roofline at 1000 reuse factor. 

C. First In First Out (FIFO) Buffer Depth Optimization 

New FIFO buffer depth values were inserted in the C++ 
firmware as pragma directives to guide synthesis. Resource 
utilization after FIFO optimization showed 54.8% reduction in 
BRAM‟s, 29% reduction in FF‟s and 44% reduction in LUT‟s. 
The new FIFO buffer depth was the occupancy increased by 
value of 1. Table III shows the reduction in resource 
utilization pre and post buffer size reduction. Table IV 
illustrates how the buffer size was reduced using pragma 
directives during synthesis. 

TABLE III. FIFO DEPTH OPTIMIZATION REDUCTION IN RESOURCES 

Optimization BRAM_18K DSP48E FF LUT LATENCY(ms) 

No 1634 8 52679 120583 9.8 

Yes 739 5 29811 62059 9.8 

% Change -54.8 -37.5 -43.4 -48.5 0 
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TABLE IV. FIFO BUFFER DEPTH SIMULATION OCCUPANCY RESULTS AND OPTIMIZATION PRAGMAS TO REDUCE BUFFER DEPTH 

Layer Occupancy New FIFO BUFFER DEPTH PRAGMA DIRECTIVE 

layer20_out_V_data_0_V_U 33348 33349 #pragma HLS STREAM variable=layer20_out depth=33349 

layer21_out_V_data_0_V_U 16608 16609 #pragma HLS STREAM variable=layer21_out depth=16609 

layer19_cpy2_V_data_0_V_U 819 820 #pragma HLS STREAM variable=layer19_cpy2 depth=820 

layer22_out_V_data_0_V_U 134 135 #pragma HLS STREAM variable=layer22_out depth=135 

layer23_out_V_data_0_V_U 199 200 #pragma HLS STREAM variable=layer23_out depth=200 

layer12_out_V_data_0_V_U 3 4 #pragma HLS STREAM variable=layer12_out depth=4 

layer24_out_V_data_0_V_U 37372 37373 #pragma HLS STREAM variable=layer24_out depth=37373 

layer25_out_V_data_0_V_U 261 262 #pragma HLS STREAM variable=layer25_out depth=262 

layer26_out_V_data_0_V_U 1 2 #pragma HLS STREAM variable=layer26_out depth=2 

TABLE V. SHOWING THE REDUCED MODEL COMPARISON WITH EXISTING WORK 

Ref Model Dataset Parameters IoU Score Accuracy Execution Time(ms) 

UNET MODEL UNET BraTS 2020 1.9 M 0.60 0.97 132 

[40]Ercüment GÜVENÇ 

(2023) 
FLAIR MR IMAGES WITH U-NET BraTS 2018 - 0.59 0.99 - 

[41]Jwaid (2021) 3D U-Net CNN BraTS 2017 - 0.69 0.99 - 

Proposed Reduced UNET BraTS 2020 864 0.74 0.95 38 

D. Reduced Model Result Comparison with Existing Work 

A full UNET model with original architecture was 
developed to compare with the reduced UNET proposed in 
this work. Model parameters were reduced from 1.9 million in 
original 2D-UNET model to 864 in proposed reduced UNET 
model. 

E. Intellectual Property (IP) Core 

Fig. 8 is the graphical representation of the intellectual 
property core that was generated from the RTL design. The 
generate IP core has 3-inputs which correspond to the three 
input channels in the model architecture and there are four 
output channels which are aligned to the number of classes for 
type of tumour and background. IP cores introduce modular 
design which can then be interfaced with input and output IP 
cores such as Ethernet. 

 

Fig. 8. BraTS 2D UNET tumour segmentation IP core.  

F. C/RTL Co-simulation Results 

The co-simulation results presented in Fig. 9, visually 
demonstrate the similarity between prediction output masks of 
the python model and RTL simulation. Quantitative analysis, 
computing the IoU score output a comparable value of 74% 
between the original python model and the RTL simulation, 
validating the fidelity of the FPGA-based implementation. 
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Fig. 9. Reduced UNET python model and C/RTL co-simulation brain 

tumour prediction masks. 

V. DISCUSSION 

Table V shows that the proposed model has a higher IoU 
score over the existing work in [40, 41]. In study [40], only 
FLAIR images modality which limited the amount of features 
that can be learned by the model as compared to T1CE, T2 
and FLAIR modalities which were used in the proposed model 
to learn more features from the dataset. The proposed model 
however has limitations in terms of accurately predicting 
tumour class. Future work can be focused on improving 
multiclass prediction of the proposed model.  

VI. CONCLUSION  

In this work a reduced UNET model was built and trained 
in Tensorflow Keras for brain tumour segmentation 
applications and archived an IoU score of 74%. The reduced 
model significantly reduced the model parameters by 99% 
which translates into reduced computational requirements. 
Converting the reduced model into C++ and HDL equivalent 
representations using HLS4ML, FPGA resources were used 
economically while preserving the original model 
segmentation output mask accuracy. Resource strategy, FIFO 
buffer depth and precision methods significantly reduced 
FPGA resource usage. The reduced model segmentation 
performs well in predicting tumour region, however the 
tumour classes are still poorly predicted. Further work on 
choosing the right loss function suitable for unbalanced multi-
class segmentation for the reduced model can be done to 
improve inference accuracy while reducing FPGA resource 
utilization 
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