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Abstract—The goal of the present research is to better 

understand the need of accurate and ongoing monitoring in the 

complicated chronic metabolic disease known as diabetes. With 

the integration of an intelligent system utilising a hybrid adaptive 

machine learning classifier, the suggested method presents a 

novel way to tracking individuals with diabetes. The system uses 

cutting edge technologies like intelligent tracking and machine 

learning (ML) to improve the efficacy and accuracy of diabetes 

patient monitoring. Integrating smart gadgets, sensors, and 

telephones in key locations to gather full body dimension data 

that is essential for diabetic health forms the architectural basis. 

Using a dataset that includes comprehensive data on the patient's 

characteristics and glucose levels, this investigation looks at sixty-

two diabetic patients who were followed up on a daily basis for 

sixty-seven days. The study presents a hybrid architecture that 

combines a Convolutional Neural Network (CNN) with a Support 

Vector Machine (SVM) in order to optimise system performance. 

To train and optimise the hybrid model, Grey Wolf Optimisation 

(GWO) is utilised, drawing inspiration from collaborative 

optimisation in wolf packs. Thorough assessment, utilising 

standardised performance criteria including recall, F1-Score, 

accuracy, precision, and the Receiver Operating Characteristic 

(ROC) Curve, methodically verifies the suggested solution. The 

results reveal a remarkable 99.6% accuracy rate, which shows a 

considerable increase throughout training epochs. The CNN-

SVM hybrid model achieves a classification accuracy advantage 

of around 4.15% over traditional techniques such as SVM, 

Decision Trees, and Sequential Minimal Optimisation. Python 

software is used to implement the suggested CNN-SVM 

technique. This research advances e-health systems by presenting 

a novel framework for effective diabetic patient monitoring that 

integrates machine learning, intelligent tracking, and 

optimisation techniques. The results point to a great deal of 

promise for the proposed method in the field of medicine, 

especially in the accurate diagnosis and follow-up of diabetic 

patients, which would provide opportunities for tailored and 

adaptable patient care. 

Keywords—Diabetes; machine learning; convolutional neural 

network; support vector machine; grey wolf optimization; e-health 

systems 

I. INTRODUCTION 

Over the past few decades, diabetes mellitus, frequently 
characterized to as diabetes, has become a major worldwide 
health concern due to its constantly rising predominance. 
Increased levels of glucose in the blood are a characteristic of 
this metabolic illness, which is brought on by either 
inadequate insulin synthesis or an inefficient utilization of 
insulin by the body. The World Health Organization (WHO) 
reports, that the rate of diabetes has been rapidly rising 
globally, making it one of the biggest public health issues of 
the twenty-first century. Diabetes affects a wide range of 
individuals worldwide, as evidenced by its epidemiology [1]. 
With approximately 463 million individuals identified with 
diabetes as of 2019, developed nations as well as developing 
ones are struggling with an increase in the number of instances 
of the disease. If current conditions continue, this number is 
expected to rise, reaching an astounding 700 million people by 
2045. Inactive ways of life, inadequate nutrition, and a 
growing elderly population are all contributing participants to 
this trend, which emphasizes the critical requirement for 
efficient management and preventive actions [2]. Diabetes that 
goes untreated has serious repercussions that impact several 
organ systems and cause significant health issues. Long-term 
effects include renal failure, blindness, neuropathy, and 
cardiovascular disorders, all of which significantly decrease 
the standards of life as well as the life expectancies of those 
who are impacted. Furthermore, the financial impact of 
diabetes-related medical expenses and lost productivity is 
significant, creating new difficulties for healthcare systems 
throughout the world [3]. 

There are several interrelated causes that lead to the 
diabetes pandemic. With the introduction of diets excessive in 
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fats that are unhealthy and sugars that are processed and a 
decrease in physical activity, industrialization and 
modifications to lifestyles have created an environment that 
encourages obesity that promotes the development of diabetes. 
An individual's risk to the illness is influenced by both 
environmental and genetic variables, which combine to 
determine the person's susceptibility. Furthermore, the 
growing incidence of diabetes is made worsened by 
differences in the availability of healthcare and education, 
especially for communities with limited resources. Diabetes is 
becoming more and more common, which has serious 
consequences for public health and necessitates an all-
encompassing strategy [4]. The three main strategies for 
reducing the rise in diabetes are prevention via health 
education, lifestyle modifications, as well as early detection. 
In addition, technological developments including the 
development of sophisticated monitoring systems have the 
potential to improve diabetes care while promoting an 
anticipatory approach to healthcare [5]. To reduce the effects 
of diabetes and enhance the physical and mental well-being of 
millions of people globally, the international community needs 
to collaborate together to address the complex interactions 
between hereditary, environmental, and lifestyle variables [6]. 

The complex nature of managing diabetes, characterized 
by the requirement for continual surveillance and 
individualized treatment, highlights the necessity for 
sophisticated monitoring systems. Diabetes, in contrast to 
many other chronic illnesses, requires close monitoring of 
blood sugar levels, dietary habits, activity levels, and 
medication compliance. Diabetes has several facets that 
impose significant stress on patients and healthcare 
professionals equally [7]. As a result, there is a strong demand 
for innovative approaches that may expedite monitoring 
procedures, give real-time information, and enable faster 
treatments. Diabetes is a very unique disorder, with changes in 
medical condition and patient responses to therapy occurring 
on an individual basis. In order to customize treatment plans 
to the particular requirements of each patient, sophisticated 
monitoring systems are now essential [8]. Through the 
integration of adaptive learning technologies and sophisticated 
monitoring mechanisms, these systems are able to evaluate 
large datasets and identify specific trends, offering a more 
detailed knowledge of a patient's health trajectories. 
Enhancing therapeutic efficacy, reducing adverse reactions, 
and ultimately improving patient outcomes are all possible 
with this customized strategy [9]. 

Patient-centered care is an innovative approach that 
prioritizes giving individuals the tools required to take an 
active role in their own health management. Modern 
monitoring devices are essential to this change because they 
provide patients with immediate information on their lifestyle 
decisions and health parameters. These systems have the 
potential for motivating patients to follow treatment programs, 
make educated decisions, and establish up healthy habits by 
cultivating an environment of ownership and awareness [10]. 
Furthermore, the incorporation of easy-to-use interfaces and 
smartphone applications might promote a proactive and 
cooperative approach to diabetes management by facilitating 
effortless interaction between patients and medical 

professionals. By using sophisticated technologies to monitor 
diabetes proactively, complications may be avoided, and the 
financial strain of the disease may be reduced. Early 
intervention can be used to mitigate the frequency of serious 
illnesses and hospitalizations by promptly detecting 
abnormalities from normal health indicators [11]. 
Sophisticated monitoring systems help healthcare systems 
preserve revenue over the course of time through promoting 
preventative care and supporting continuous maintenance of 
health. In order to effectively manage the numerous obstacles 
presented by this complicated and widespread chronic illness, 
improved monitoring systems are becoming increasingly 
necessary as the number of cases of diabetes rises worldwide 
[12]. 

Significant progress has been made in the field of diabetes 
e-health systems, which use technology to improve the 
treatment of patients and management. These systems usually 
incorporate a range of technologies to monitor and assist 
people with diabetes in everyday activities, such as online 
platforms, wearable technology, and mobile applications. 
Numerous current systems concentrate on monitoring blood 
glucose levels, activity levels, and consumption habits in real-
time. While wearable technology, such continuous glucose 
monitors (CGMs), offer a constant supply of physiological 
information, mobile applications frequently act as a central 
centre for data gathering and processing [13]. e-Health 
technologies have made it possible for diabetes patients to 
take advantage of telehealth services and remote monitoring, 
eliminating the distance between patients and healthcare 
professionals in geographically dispersed areas. Regular 
assessments and treatment plan modifications are made 
possible through telehealth conversations, which eliminate the 
need for several visits to the clinic. By facilitating more 
adaptable and dynamic diabetic treatment, this integration 
lowers the need for frequent visits to the clinic and increases 
patient participation. 

The incompatibility of various e-health technologies and 
systems is one of the main disadvantages. Variations in 
information formats and requirements may prevent the 
effortless transfer of information between healthcare systems 
and devices, which could result in evaluations of an 
individual's health state that are either inaccurate or 
incomplete. Security and confidentiality of information are 
major problems in e-health systems because of the sensitive 
character of health data. Challenges including illegal entry, 
leaks of information, and insufficient encryption protections 
caused patient privacy at risk and might undermine users' 
confidence in these systems. Participation among users and 
commitment over time to monitoring methods remain issues in 
regardless of the capacities of e-health systems [14]. The 
apparent complexities of the systems, unease with wearable 
technology, or a lack of customized input that aligns with their 
specific health objectives can all lead to patients detaching 
from ongoing surveillance. Certain e-health systems could 
depend on standard algorithms that do not adequately take into 
consideration the range of diabetes appearances people with 
the disease can have. An approach that applies to all patients 
may fail to recognize smaller variations in how each patient 
reacts to therapy, which could result in undesirable outcomes 
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for certain groups of patients. e-Health systems are effective at 
collecting physiological data, but they can still do better when 
it comes to incorporating behavioural data, including how 
anxiety or other lifestyle factors affect diabetic treatment [15]. 
Increasing the comprehension of every facet of the patient 
experience can result in more comprehensive and 
individualized treatments. Improving interoperability, 
enhancing privacy and security protocols, boosting user 
engagement with intuitive interfaces, and fine-tuning 
algorithms in order to accommodate a range of patient profiles 
are all necessary to overcome these constraints. The continued 
development of e-health systems shows possibilities for 
improving patient outcomes, optimizing diabetic treatment, 
and expanding the field of electronic health records as 
technology advances. 

The complicated and constantly changing nature of 
diabetes is the motivating factor driving the integration of 
intelligent tracking and a hybrid adaptive machine learning 
classifier in diabetes treatment. Individualized patterns of 
blood glucose levels, choices regarding lifestyle, and 
treatment responses are characteristics of diabetes. The 
complex and changing health trajectories of individuals with 
diabetes are frequently difficult for traditional, static models to 
represent. The system attempts to give patients a more 
comprehensive and individualized approach to diabetes 
management by combining intelligent tracking, which 
continually records and customizes to changing patient 
behaviours, and a hybrid adaptive machine learning classifier, 
which can learn complicated patterns in large datasets [16]. 
The traditional standardized method of managing diabetes 
may not be able to adequately satisfy each patient's specific 
demands. The device can collect instantaneous information on 
a patient's activities, eating habits, and physiological reactions 
because of intelligent tracking systems. This is enhanced by 
the hybrid adaptive machine learning classifier, which gains 
knowledge from the recorded information, customizes its 
model to account for individual differences, and offers 
individualized recommendations. This combination 
maximizes the effectiveness of therapies and improves patient 
outcomes by facilitating the transition towards more 
individualized and focused treatment techniques. 

Continuous monitoring helps significantly in the treatment 
of diabetes since it makes it possible to identify small 
variations in health indicators that might signal impending 
emergencies. Intelligent tracking is integrated to provide an 
uninterrupted supply of pertinent data, and the hybrid adaptive 
machine learning classifier is extremely skilled at identifying 
complex patterns linked to early indicators of health decline. 
For those with diabetes, this continuous surveillance and early 
intervention strategy may help avoid complications, lessen the 
need for emergency interventions, and enhance their general 
quality of life. The hybrid adaptive machine learning classifier 
is intended to address the difficulties caused by the intrinsic 
unpredictability in the initial responses of individuals with 
diabetes to dietary and medication modifications [17]. 
Conventional classifiers could have trouble adjusting to these 
differences, which would result in less than ideal efficiency. 
Because of its adaptive characteristics, the suggested classifier 
can adapt over time to the intrinsic variety in diabetes 

presentations. This flexibility is especially important for 
patients with chronic conditions like diabetes, whose health 
can be affected by a wide range of variables. In the area of e-
health and diabetes care, the combination of intelligent 
tracking with a hybrid adaptive machine learning classifier is a 
newly developed and creative method. While discrete 
components like machine learning and intelligent tracking 
have been studied independently, integrating them into a 
unified framework which functions effectively when 
combined is a novel contribution. The system's capacity to 
dynamically adjust to each patient's unique profile, learn from 
changing information over time, and offer customized 
suggestions for successful diabetes control essentially makes 
this system exceptional. This strategy might contribute to the 
expanding area of customized medicine and raise the 
standards for digital health interventions for chronic illnesses. 

The Key Contribution of the paper is given as follows: 

 The research presents a unique hybrid architecture that 
combines a SVM with a CNN to monitor diabetic 
patients. By combining the attributes of both models 
which is SVM's outstanding binary categorization and 
CNN's feature extraction capabilities, improves 
diabetes prediction accuracy. 

 An intelligent tracking mechanism is utilized to 
collects detailed body dimension information from 
diabetes patients using cellphones, sensors, and smart 
devices. Beyond typical monitoring techniques, this 
integrated strategy ensures a more comprehensive 
awareness of the patient's health and contributes to a 
more individualized approach to treatment. 

 The employed Grey Wolf Optimization is based on 
cooperative optimization observed among wolf packs, 
to fine-tune the hybrid model. This optimization 
method improves the efficacy and effectiveness of the 
model, offering an innovative approach for fine-tuning 
parameters in machine learning systems that are 
inspired by nature. 

 The suggested approach shows a significant increase in 
accuracy. CNN-SVM hybrid model exhibits improved 
classification accuracy when compared to established 
approaches such as SVM, Decision Trees, and 
Sequential Minimal Optimization. This indicates the 
model's potential for dependable diabetic patient 
monitoring. 

 Machine Learning, optimization, and intelligent 
tracking approaches, contributed to the improvement of 
e-health systems. This strategy has a lot of potential to 
improve the accuracy and efficiency of diabetes patient 
monitoring. Modern technology combined with the 
enhanced performance of the suggested hybrid model 
is a significant addition to the field of healthcare 
informatics. 

The rest of the section is organised as shown below. 
Section II illustrates literature works on e-health Systems. 
Section III gives the Problem Statement. Section IV covers the 
proposed technique for Monitoring and Tracking the Patients 
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with Diabetes. Section V illustrates the performance measures 
and summarises the findings and compares the method's 
performance to previous techniques. Section VI summarises 
the conclusion and paves the way for future works. 

II. RELATED WORKS 

Individuals with diabetes who receive continuous medical 
attention often have a greater standard lifestyle than those who 
do not. Due to technology improvements, healthcare costs can 
be reduced by utilizing the Internet of Things. Both the 
advancement of intelligent devices and a growth in the total 
amount of software linked to the networks are necessary for 
addressing the demands of e-health applications. Therefore, 
the cellular network must be able to accommodate 
sophisticated medical applications which require outstanding 
energy consumption in order to accomplish these objectives. 
The study develops combined voting classifier that utilizes 
neural networks to effectively forecast patients' diabetes 
through online monitoring. Internet of Things gadgets is used 
in the study to track patient cases. IoT devices provide their 
information for smartphones during evaluating, and those 
devices transmit the information to the cloud, where 
categorization is done. The Python tool is used to run the 
simulation on the gathered observations. The results from the 
simulation demonstrate that, in comparison to current the most 
advanced combination models, the suggested strategy 
provides a higher prediction rate, precision, recall, and f-
measure. However, for information to be provided from 
connected devices to the cloud, the suggested solution 
depends on the Internet operating without interruptions. 
Restrictions in internet access might possibly undermine the 
dependability of the projections by affecting the continuous 
monitoring capability [18]. 

Because type 2 diabetes has a significant condition of 
disease and significantly lowers the patient's standard of 
existence, using computerized instruments and data 
technologies to control illness has become common place due 
to the close connection between healthcare and the worldwide 
web. The study attempted to determine how well several e-
health treatments, varying in length, may help individuals who 
have type 2 diabetes achieve controlling their glycemic levels. 
Researchers investigated for randomization managed studies 
describing various e-health interventions for glycemic 
management in individuals with type 2 diabetes. Individuals 
with type 2 diabetes mellitus satisfied the following 
participation requirements: (1) interventional duration ≥1 
month; (2) findings HbA1c (%); and (4) randomization 
management using e-health based techniques. Cochrane 
techniques were employed to evaluate potential biases. 
Researchers performed the Bayesian network a meta- 
examination using R 4.1.2. The most efficient intervention 
periods were found to be ≤6 months, according to subgroup 
evaluations. Individuals with diabetes who have type 2 
diabetes can benefit from improved glycemic management 
through all forms of e-health-based interventions. With an 
ideal intervention length of ≤6 months, SMS is a high-
frequency signal, low-barrier technique that delivers the 
highest benefit in decreasing HbA1c. The research concepts 
administration procedures and characteristics of participants 
may add variability due to the numerous types and timings of 

e-health treatments included in the inclusion. The variety of 
approaches may make it more difficult to reach firm 
judgments on the efficacy of particular therapies [19]. 

Many of the advances that technology has enabled about 
for humankind have made even the most difficult things 
simpler. The development of science and technology has led 
to the widespread deployment of intelligent machines. 
Numerous sectors, including health care for the public, 
medicine, and healthcare, have seen advancements. The 
monitoring of wellness and various other tasks may now be 
done effectively, economically, and intelligently thanks to 
recent advancements in healthcare. This is made feasible in 
large part by wearables. Despite their compact design, these 
gadgets are equipped with potent medical sensors that enable 
the monitoring of users' health problems. As technology and 
medical science have advanced, wearables have been 
equipped with an increasing number of sensors for tracking a 
wide range of activities, such as blood oxygen levels, body 
temperatures, cardiovascular disease, and activity monitoring 
systems, among many others. These gadgets allow users to 
store the outcomes for future usage and can be linked to 
smartphones. The necessity of wearables in healthcare and 
their potential to transform medical systems in the future were 
covered in this study. A case study is given illustrating how 
wearables may benefit both physicians and patients. Potential 
applications and research problems are also included in this 
publication. However, because patient groups vary and 
wearable devices are different, the report may have difficulty 
generalizing its results. The general application of the offered 
findings is limited by the realization that wearable device 
performance and utilization could differ across various 
populations, medical conditions, and geographical areas [20]. 

Globally, an advancing population is one of the biggest 
healthcare challenges. Due to their increased risk of chronic 
illnesses, which raise healthcare costs, older individuals 
demand greater resources from the healthcare system. One of 
the major developments within healthcare technological 
advances is the creation and ongoing operation of e-health 
solutions, which provide patients with mobile services to 
support and improve their treatment according to monitoring 
certain physiological information. Healthcare technology has 
advanced greatly in the previous few decades in terms of size, 
velocity, accessibility, and connectivity. The fact that 
individuals are restricted to smart rooms and a bed equipped 
with monitoring devices is a significant disadvantage of 
contemporary e-health monitoring systems. Because chronic 
patients have accessibility, security, and adaptability 
difficulties, such surveillance is not common. Furthermore, 
attached to a patient's body health monitoring gadgets provide 
no evaluations or recommendations. This work presents a 
multi-agent-based approach to tracking health conditions that 
aims to enhance the procedure by gathering patient 
information, reasoning collectively, and suggesting actions to 
patients as well as physicians in a mobile setting. The paper 
presents a multi-agent-based system that is assessed using a 
case study. The findings demonstrate that the suggested 
approach offers elderly, chronic, and distant patients an 
effective way to monitor their health. Furthermore, by 
employing 5G technology, the suggested method works better 
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than the current health system and enables prompt medical 
services for patients who live far away. However, when the 
suggested agent-based system is expanded to support 
enormous user bases or extensive medical networks, its 
efficacy can encounter difficulties. As the size grows, 
problems with resource use, communication costs, and system 
efficiency could become increasingly noticeable [21]. 

Diabetes is a chronic illness caused by the pancreas' 
inability to produce enough insulin or to shield the body from 
non-consumable substances. Diabetes patient health 
monitoring is a methodical approach that provides us with 
comprehensive health information on individuals with 
diabetes. Health observation platforms for diabetic patients are 
essential for monitoring their state, especially when using 
Internet of Things connected devices. In simple terms, diabetic 
patient monitoring platforms may screen individuals with 
diabetes and save certain health data, such as body 
temperature, blood pressure, and blood glucose levels. 
Because predictive analysis may assist diabetic individuals, 
their relatives, medical professionals, and clinical researchers 
in making decisions about the patient's medication considering 
the circumstances of their state, it is necessary for diabetes 
patients. The study explores future research using Artificial 
Intelligence algorithms and presents a novel framework for 
monitoring the health of diabetes patients. However, 
technological problems and fluctuations may affect the 
accuracy of the information gathered by IoT devices, such 
wearables and sensors. The dependability of health 
information may be impacted by variables such as sensor 
reliability, measurement, and possible interference with the 
signal, which might have an effect on the monitoring system's 
general reliability [22]. 

In anticipation of the coronavirus disease-19 epidemic, 
audio-based telemedicine services for consultations and 
prescription medications were initially implemented in Korea. 
This study looked at how telehealth services affected health-
care usage and drug prescription trends in hypertensive and 
diabetic individuals. The claims information from the Health 
Insurance Evaluation and Assessment Services for 2019 to 
2021 were utilized. The difference-in-difference technique 
was utilized to compare the impact of telehealth treatments on 
the subjects as well as control groups before and following the 
period of intervention. Individuals in the untreated category 
employed in-person outpatient treatment, whereas those in the 
actual category received combined telemedicine and in-person 
treatments. The study comprised hypertensive individuals and 
diabetic patients. Telehealth services were linked to a rise in 
appointments with physicians among hypertensive. Patients 
with hypertension had a reduction in hospitals and visits to 
emergency rooms. In addition, policy execution has led to a 
rise in the medication possession ratio and the percentage of 
suitable prescriptions among patients with diabetes and high 
blood pressure. The data indicate a link between telemedicine 
service implementation and enhanced habits in health care 
usage and drug prescription, indicating telemedicine's 
potential utility in chronic illness management. However, the 
results of the investigation may be unique to the Korean health 
care system and not immediately relevant to other nations with 
differing healthcare facilities, laws, and cultural settings. 

Factors such as regulations, consumer preferences, and 
healthcare professional practices might differ greatly between 
nations [23]. 

The literature review includes a range of subjects related to 
health monitoring systems, with a special emphasis on the 
treatment of diabetes patients and the use of technology to 
deliver healthcare more effectively. The first study uses 
Internet of Things devices to follow patient cases and offers an 
integrated voting classifier using neural networks for online 
diabetes monitoring. Although it shows better prediction rates, 
accuracy, recall, and F-measure than previous models, it also 
emphasizes possible limits by pointing out that data transfer to 
the cloud depends on continuous internet availability. The 
efficacy of E-Health treatments for glycaemic control in type 
2 diabetes is investigated in the second research, which 
highlights the advantages of brief intervention durations 
particularly less than six months and the usefulness of SMS in 
lowering HbA1c levels. In discussing wearables' revolutionary 
potential in the healthcare industry, the third piece of literature 
focuses on how intelligently they can monitor a range of 
health indicators. The study does, however, recognize that 
demographic heterogeneity and device variety make it 
difficult to generalize outcomes. The fourth research addresses 
the healthcare requirements of the aging population by 
suggesting a multi-agent-based health monitoring system that 
provides enhanced services and mobility for chronic patients. 
Finally, the fifth research highlights the use of artificial 
intelligence algorithms for predictive modelling in the 
introduction of an Internet of Things-based health monitoring 
system for patients with diabetes. There are still issues with 
scalability and data dependability, despite encouraging 
developments. Together, these studies demonstrate the 
potential advantages of integrating technology into healthcare, 
but they also emphasize the necessity of resolving related 
issues in order to achieve widespread acceptance and 
effectiveness. 

III. PROBLEM STATEMENT 

The present techniques used to monitor diabetic patients in 
electronic health systems frequently encounter issues such 
imprecise data analysis, restricted flexibility to accommodate 
different patient profiles, and inadequate real-time tracking 
capacity. By creating an advanced e-health System with an 
Integrated Intelligent Tracking Mechanism utilizing a Hybrid 
adaptive machine learning Classifier—more precisely, the 
suggested CNN-SVM model—this research seeks to address 
these problems. Accurate and individualized monitoring has 
been impeded by the present limitations in conventional 
approaches, which include their reliance on static thresholds 
and unsophisticated machine learning algorithms [6]. By 
combining the advantages of SVM for classification and CNN 
for feature extraction, the suggested CNN-SVM model 
outperforms other approaches in terms of robustness and 
efficiency when handling dynamic, complex patient 
information. 

IV. PROPOSED HYBRID ADAPTIVE MACHINE LEARNING 

CLASSIFIER 

The methodology used in the research is an exhaustive 
approach to creating a sophisticated e-health system for 
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tracking diabetic patients, combining sophisticated 
surveillance techniques with an integrated adaptable machine 
learning classifier. The dataset includes information from 
sixty-seven consecutive days of exams for sixty-two diabetic 
patients, of which forty-four were male and eighteen were 
female. Using Min-Max normalization as a preprocessing 
step, the 13,173 concentrations of glucose information points 
and five attributes are scaled uniformly. PCA is used in 
feature extraction to reduce dimensionality and find important 
factors that influence patient features and fluctuations in 
glucose levels. The categorization and tracking mechanism, 
which uses a hybrid convolutional neural network integrated 
with a support vector machine, is the central component of the 
suggested system. Seven layers of CNN automatically identify 
important characteristics, while SVM guarantees robust 
categorization. The paper presents an innovative Hybrid CNN-
SVM framework and demonstrates how SVM's competence in 
binary categorization and CNN's extraction of characteristics 
capabilities complement each other. Modelling parameter 
tuning is done using the Grey Wolf Optimization framework, 
which takes its information from the cooperative optimization 
procedure utilized by wolf packs. This optimization, inspired 
by nature, improves the model's efficiency. Fig. 1 depicts the 
general architecture of the suggested model. 

 
Fig. 1. Overall structure of the proposed model. 

A. Data Collection 

The sixty-two diabetic patients (forty-four men and 
eighteen women) whose medical histories required an average 
of sixty-seven days of testing were added to the database for 
this study. There are five characteristics and 13,173 glucose 
concentration information points in the glucose concentration 
sets [24]. 

B. Preprocessing using Min-Max Normalization 

Standardized scaling of characteristics was ensured by 
applying Min-Max normalization throughout the preparation 
of the dataset. 13,173 glucose concentration information 
points and five attributes are included in the collection of data. 
The level of glucose and other features were subjected to Min-
Max normalization in order to scale the data within an 
acceptable range, usually [0, 1]. In order to enable more 
accurate and efficient modelling of diabetes-related variations 
and patterns within the information set, normalization is a 
crucial step in removing scale-related inefficiencies and 
verifying that each characteristic contributes proportionately 
to the study. 

The research may scale the input information into an 
appropriate range by using Min-Max normalization, enabling 
a more rapid and precise evaluation. The relationships 
between the data sources are preserved without affecting the 
original information by making effort that all of the variables 
that are entered are transformed into a similar interval utilizing 
the normalization approach. The capacity of Min-Max 
normalization to maintain that connect between information 
points is one of its main advantages. This demonstrates that 
following normalization, the information's relative distribution 
and structure are still maintained. Preserving the fundamental 
patterns and correlations in the information is essential to 
accurately manage the elements influencing the projected 
values. Utilize Eq. (1) to illustrate the Min-Max normalizing 
method. 

         (             )  (
      

         
) (1) 

The starting measurement point is represented by "k” in 
this equation, the requisite values for the standardized data are 
denoted by        and      , and the maximum and 
minimum values are indicated by      and    , 
respectively. The speed and effectiveness of Min-Max 
normalization are its key benefits when handling an extensive 
amount of information points. 

C. Feature Extraction using Principal Component Analysis 

An essential first step in evaluating high-dimensional 
datasets, like the diabetic patient monitoring dataset, is feature 
extraction. A common method for reducing dimensionality in 
information includes Principal Component Analysis, which 
tries to extract the most crucial information from the data 
being analyzed while removing less significant aspects. PCA 
can assist in determining the major factors that most influence 
changes in individual characteristics and glucose levels within 
the framework of diabetes surveillance. 

The main elements, or eigenvectors of the initial 
information's covariance matrix, are the key idea that supports 
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principal component analysis. Let Z represent the initial 
information matrix, which has m characteristics and    
observations. Eq. (2) calculates the covariance matrices D. 

  
 

 
(   ̅) (   ̅)    (2) 

where, the mean-centered matrices is denoted by ̅. 

Eq. (3) corresponds to D's eigenvalues λ and eigenvectors 
w. 

    λw    (3) 

The primary elements are represented by these 
eigenvectors, and the quantity of variation they contain is 
shown by the associated eigenvalues. The primary elements 
are obtained in order of importance by categorizing the 
eigenvectors in decreasing order of eigenvalues. 

Choose the highest h eigenvectors that correlate to the h 
greatest eigenvalues in order to minimize dimensionality. The 
most significant data in the information is captured by these h 
main elements. Calculating the initial information Z onto the 
chosen primary elements yields an updated characteristic 
matrix X, which is shown in Eq. (4). 

         (4) 

And the matrix containing the initial h eigenvectors is 
denoted by   . 

PCA makes dimensionality reduction simpler by 
maintaining the most crucial characteristics that have a 
substantial impact on the information's variance. As in the 
case of diabetes patients being monitored with various features 
and glucose concentration measurements, this reduction is 
especially useful in situations when the initial data set contains 
a large number of attributes. Because each principal 
component of the reduced-dimensional space produced by 
PCA maintains a mix of initial characteristics, interpretability 
is improved. Finding appropriate data for diabetes 
management is made easier by the more intuitively 
comprehension of patterns and linkages made possible by the 
information's decreased spatial visualization. PCA can identify 
the main factors that account for the majority of the variation 
in patient information when it comes to diabetes. For example, 
it might identify a variety of behavioural and physical 
characteristics that are essential to comprehending and 
tracking the course of the illness. More effective modelling 
and predictive evaluation may also benefit from the changed 
information in the reduced space. Comprehensive validation 
and efficacy assessment are essential to determine the 
effectiveness of PCA in the diabetic patient monitoring 
systems. This involves evaluating how well models 
constructed using the initial information performs in 
comparison to those developed using the PCA-transformed 
information, while taking consideration factors including 
computational effectiveness, interpretability of the models, 
and categorization accuracy. The evaluation's findings will 
provide information regarding the value and contribution of 
PCA to improving the efficiency of the system across all 
components. 

D. Classification and Tracking Mechanism using Hybrid 

CNN Networks with SVM 

Hybrid CNN-SVM integration is used in the suggested 
Categorization and Tracking procedure, providing a 
comprehensive method of categorization and tracking. By 
utilizing two maximum-pooling layers, a pair of convolutional 
layers, and three layers that are interconnected for obtaining 
complex patterns from the input information, the combined 
approach builds on CNNs' advantages for automatic 
characteristic identification. The array of features is then 
loaded into an SVM to achieve reliable categorization. The 
predicted accuracy and flexibility of the model are improved 
by the collaboration. A thorough and precise categorization 
and tracking system is ensured by the CNN's automated 
identification of important characteristics and SVM's skill 
with high-dimensional spaces and intricate decision limits. 
The combination of these two effective algorithms operates in 
conjunction to effectively manage the dataset's complexities, 
creating a hybrid model that specializes at tasks including 
patient monitoring and illness prediction. Through exhaustive 
instruction, validation, and fine-tuning procedures, the 
efficacy of this hybrid technique is assessed, displaying its 
capacity as an innovative approach for difficult categorization 
problems. 

1) The CNN model: The first classifier that this study 

suggests is a seven-layer CNN. The architecture consists of a 

pair of maximum-pooling layers, a pair of convolution layers, 

and three fully linked layers. Using a CNN instead of more 

traditional machine learning techniques has the main 

advantage that it can track and categorize important features 

without requiring human intervention. Its higher capacities 

need less human involvement due to its independence from 

pre-processing. Indeed, the different stages of convolution, 

that include a fixed number of filters, are used for 

autonomously obtaining the maps of attributes.    is the 

vectors' dimensions r,   and k represent the vector's 

indicators, and   ( (  ))   is the result of the kernel's 

convolution of the input data   ( ( )) As per Eq. (5), the 

stages of convolution integrate their vector inputs employing 

different filters. The maximum pooling layer reduces the 

complexity of networks by collecting the maximum values 

within a particular filter region. The complete classification is 

generated by the completely connected layer, which gathers 

data from the entire characteristic map. It frequently appears 

in the centre of the output layer. 

 (  )  ∑  ( )  (    )    
      (5) 

The initial layer receives as input a subsection with 500 
points. This convolutional layer uses five 1×13 filters with a 
duration of 1 to convolve the various filters with the five-
hundred-point values in accordance with Eq. (5). The result is 
five characteristic maps. The second layer is a maximal 
pooling layer with an initial pool size of 2 and a position offset 
of four. This layer reduces the size of the distinctive maps by 
combining a 1×2 filtering onto each of the previously created 
feature maps. As a result, the network must analyse less 
information and acquire fewer variables. Consequently, a 
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simulation is better able to manage variations in the location 
of input features. Applying a second layer of convolution with 
10 filters that are each 1×9 in size and an advance of only one 
occurs next. This set of filters is used to extract higher-level 
features from dimensionally condensed maps of features. The 
fourth layer, which promotes pooling, carries out the 
characteristics and responsibilities of the initial layer. There 
are then three completely connected surfaces totalling 40, 20, 
and 2 properties. After being flattened, the output from the 
previous layer was utilized as the initial layer's input. With the 
exception for the highest layer, which employs the softmax 
activation function, other layers utilize the Leaky ReLU 
stimulating function. 

Glorot uniform initialization is used for establishing the 
structure's weights, and backpropagation is employed for 
updating them over a maximum of sixty-four batches. The 
simulation is constructed throughout thirty epochs. Consider 
 ̂  as the estimated probability that the section u has diabetes, 
as found at the system's output. Eq. (6) shows how the binary 
cross-entropy function is used to quantify the simulation's loss 
in detecting the binary problem. 

 ( )  
  

 
∑       (    

  ̂ )  (    )    (    ̂ ) (6) 

When M is the total number of these sections, q is the 
epoch's indicators, and    is the set of fragment indexes used 
for developing the system, then M is the greatest number 
of  . The score that is calculated employing the cross-entropy 
represents the average deviation among the actual and 
projected values. The objective is to lower the score, where 0 
represents the ideal cross-entropy. 

The framework's range of variables can be modified 
through the use of grid-based searches and trial-and-error 
techniques. The tuning strategy grid search is used to find the 
optimal hyperparameter variables. It is a process that traverses 
over a manually selected subset of the targeted algorithm's 
hyperparameter space in detail. In this study, grid search is 
used to adjust the total amount of batches and epochs, and trial 
and error is used to determine the filter dimensions and 
durations. 

 

Fig. 2. Structure of the suggested hybrid adaptive deep classifiers. 

2) The CNN-SVM model: This section illustrates the 

recommended network's evolution. Instead of preserving the 

CNN network's last segment, which is responsible for 

classification, the study replaces it with an SVM classifier. 

Fig. 2 depicts the construction of the proposed hybrid CNN-

SVM method. Algorithms that combine the outcomes of two 

or more distinct techniques are referred to as ensemble 

learning. Diabetes classification, monitoring, and early 

detection have all benefited from the use of collaborative 

learning in the field of healthcare. In short, a reduced CNN 

network is kept to extract attributes, and then the classification 

is done employing SVM. Consequently, a hybrid CNN-SVM 

technique is proposed for the diabetes tracking and 

classification datasets. The best features of CNN and SVM 

classifiers are combined in the proposed method. The trained 

CNN uses self-learning algorithms to identify the distinctive 

maps that are transmitted to the SVM for binary detection. 

CNN acts similarly to individuals and is particularly adept at 

remembering invariant local properties. It could extract the 

most unique information from the initial information. Support 

vector machines are classification techniques that learn to 

differentiate between input data's binary labels. Instances are 

used by a learning algorithm to educate it how to label objects. 

An SVM is simply a statistical approach that maximizes a 

particular statistical function with respect to a set of 

information. It finds a distinct hyperplane that divides 

information by extending a dataset's margins. The margin is 

the lowest length, split by a hyperplane, between two pieces of 
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data. The linear SVM technique has been extended to consider 

non-linear problems by projecting the data onto a higher-

dimensional space. This method has proven to be quite 

successful because of how easily high-dimensional data can be 

handled and since linear strategies are simple to comprehend. 

The findings demonstrate that SVM responds well for binary 

tracking and categorization but inadequately for information 

with noise. Because of its basic architecture, SVM presents 

difficulties when learning deep properties. The hybrid CNN-

SVM model proposed in this paper replaces the SoftMax layer 

of CNN with a non-linear SVM functioning as a binary 

classification algorithm. 

E. Grey Wolf Optimization Framework for Fine-tuning the 

Parameters 

The novel method for adjusting parameters in this study is 
the Grey Wolf Optimization framework. GWO imitates the 
cooperative optimization process that occurs inside a wolf 
pack and is inspired by the social structure and hunting habits 
of grey wolves. By distributing the responsibilities of alpha, 
beta, and delta wolves in the framework of variable 
optimization, GWO dynamically modifies the stages of 
exploration and exploitation. While beta wolves investigate 
the areas within the findings made by alpha wolves, delta 
wolves concentrate on local research, while alpha wolves take 
the initiative in global exploration. The convergence towards 
the ideal values for parameters for the given position is 
facilitated by the collaborative and hierarchy optimization 
technique. The fundamental model's parameters are adjusted 
using the GWO structure, providing that the algorithm is 
sensitive to the unique features of the dataset as well as 
optimized for efficiency. By adding GWO, the fine-tuning 
procedure gains a sophisticated and nature-inspired 
component that increases the efficacy and efficiency of 
optimization of parameters for the intended application. 

A suggested meta heuristic method is called GWO [25]. 
The method was influenced by the grey wolf killing strategy 
and pack structure. Grey wolves have a very hierarchical 
structure and socialize in packs. The leaders of the wolves, the 
alphas (α), now make all the decisions. Beta (β) wolves, which 
belong to the next level, help alpha wolves with their tasks. 
The final person, Omega (ω), is victimized in this system. A 
wolf is also known to as a delta (δ) wolf if it does not fall into 
any of the aforementioned classes. Grey wolves attempt to 
encompass a food source, assault, and kill, then explore for 
additional prey in accordance with this well-established 
structure. Wolves use hunting as a means of enclosing their 
prey, locating and killing animals, and engaging in conflict 
with their prey. Grey wolves on a hunting excursion circle 
their prey according to Eq. (7) and Eq. (8). 

 ⃗  |   (  
⃗⃗⃗⃗ ( )   ⃗⃗ ( )|              (7) 

 ⃗⃗ (   )     
⃗⃗⃗⃗ ( )   ⃗   ⃗    (8) 

 ⃗  and  ⃗  constitute efficient vectors with the subsequent 
definitions, which are presented in Eq. (9) and Eq. (10). 

Where  ⃗⃗  represents the location of the wolf in a circular 

configuration,   
⃗⃗⃗⃗  is the vector position of the prey, and mis is 

the current time. 

The wolf's position in a circular arrangement is 

represented by  ⃗⃗  in Eq. (9) and Eq. (10), while the prey's 

vectors position is represented by   
⃗⃗⃗⃗  in equations, and the 

present time is indicated by m, and the efficient vectors with 

matching definitions are  ⃗  and  ⃗ . 

 ⃗        
⃗⃗⃗⃗        (9) 

        
⃗⃗ ⃗⃗           (10) 

The elements    and  
⃗⃗⃗⃗ , where the component d is 

continuously decreasing from 2 to 0, contain random vectors 
evenly dispersed between 0 and 1. It has been suggested that 
the α, β, and δ wolves understand it easier since the exact spot 
of the food is never known in advance. Eq. (11), Eq. (12), and 
Eq. (13) are utilized to find the victim's location based on the 
locations of the wolves. 

 ⃗   |     ⃗⃗    ⃗⃗ |  ⃗   |     ⃗⃗    ⃗⃗ |  ⃗   |     ⃗⃗    ⃗⃗ | 

 (11) 

 ⃗⃗     ⃗⃗     ⃗     ⃗⃗    ⃗⃗     ⃗⃗     ⃗     ⃗    ⃗⃗     ⃗⃗     ⃗   

  ⃗     (12) 

 ⃗⃗ (   )  
 ⃗⃗    ⃗⃗     ⃗⃗  

 
      (13) 

The next stage is to follow the victim (exploitation), if the 

study has an approximate position. The vector  ⃗  may be used 
to do this as the circumstance of wolves becomes nearer to the 
prey's location as p in Eq. (11) decreases from 2 to 0. 
Moreover, by removing the requirement for local averages, 
variables f and Q also contribute to maintaining the method's 
exploring capabilities. The accessibility of food and the 
difficulty of foraging may be altered by the variable f, but it 
can also affect a Q value larger than one, or |Q| > 1, which 
pushes the wolves to depart from their diet and search it out. 
Once the method is applied to a group of wolves for a set 
number of iterations, Eq. (13) will finally display the prey's 
position or the optimal region on Globe. 

Algorithm 1: SVM-CNN with GWO 
// Input Data 

// Assume patient data is a matrix where each row represents a 

patient's information 

// Columns include glucose concentration data and other relevant 

attributes 

patient_data = load_patient_data() 
// Preprocessing 

Normalized_data = min_max_normalization(patient_data) 

// Feature Extraction using PCA 

extracted_features = 

principal_component_analysis(normalized_data) 

// Split data into training and testing sets 

train_data, test_data = split_data(extracted_features) 

// Build and Train CNN Model 

cnn_model = build_and_train_cnn(train_data) 

// Obtain CNN Output 

cnn_output = get_cnn_output(cnn_model, extracted_features) 

// Initialize SVM Parameters 
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svm_parameters = initialize_svm_parameters() 
// Build and Train Hybrid CNN-SVM Model 

hybrid_model = build_and_train_hybrid_model(cnn_output, 

svm_parameters, train_data) 

 

// Grey Wolf Optimization for Parameter Fine-tuning 

optimized_parameters = 

grey_wolf_optimization(hybrid_model.parameters, iterations=100) 

// Build Final Model with Optimized Parameters 

final_model = build_and_train_hybrid_model(cnn_output, 

optimized_parameters, train_data) 
// Evaluate Final Model 

accuracy, precision, recall, f1_score = evaluate_model(final_model, 

test_data) 

V. RESULTS AND DISCUSSION 

The study uses an exhaustive approach to create an 
advanced e-health system that combines advanced 
surveillance techniques with an adaptable machine learning 
classifier to monitor diabetes patients. The dataset includes 
information from sixty-two diabetic patients who were 
examined over the course of sixty-seven days. The 13,173 
glucose concentration measurement values and five 
characteristics are evenly scaled as a preprocessing step using 
Min-Max normalization. The next step is to extract 
characteristics using Principal Component Analysis, which 
reduces dimensionality and identifies important factors 
impacting patient characteristics and fluctuations in glucose 
levels. The main component of the suggested system is the 
tracking and classification mechanism, which makes use of a 
hybrid convolutional neural network coupled with a support 
vector machine. Significant characteristics are automatically 
identified by the seven-layer CNN, and robust classification is 
ensured by SVM. In order to highlight the complementing 
advantages of CNN's feature extraction skills and SVM's 
binary classification, the study presents novel hybrid CNN-
SVM architecture. The Grey Wolf Optimization framework is 
modelled after the cooperative optimization process seen in 
wolf packs, is used to tune the model's parameters and 
improve its efficiency. 

A. Performance Evaluation 

Evaluation indicators are essential for assessing the 
effectiveness of classification. A calculation of accuracy is the 
approach that is most commonly utilized for this goal. How 
well a classifier identifies sample datasets may be used to 
measure how accurate it is for any given collection of 
information. Because depending entirely on the accuracy 
measure will prevent you from making the best assessments 
conceivable. The researchers also used other parameters to 
assess the classifier's effectiveness. Measures of accuracy, 
recall, precision, and F1-score were employed to assess the 
effectiveness of the proposed method. The definitions of each 
metric are described as follows 

      (True Positive) refers to the amount of information 

that has been correctly categorized. 

 The term      (False Positive) represents the volume 
of reliable information that was incorrectly 
categorized. 

 False negatives (    ) are instances where incorrect 

information has been given an actual classification. 

 The categorization of incorrect information values is 
referred to as      (True Negative). 

1) Accuracy: The accuracy of the classifier shows how 

often it makes the correct prediction. Accuracy is defined as 

the ratio of correct estimations to all other reasonable theories. 

It is demonstrated by Eq. (14). 

          
         

                   
 (14) 

2) Precision: Evaluating a classifier's precision, or degree 

of accuracy, yields the number of possibilities that are 

properly identified. Increased reliability leads to fewer false 

positives, but lower precision results in many more. Precision 

is defined as the proportion of properly classified cases 

relative to all occurrences. It is defined by Eq. (15). 

    
    

                   (15) 

3) Recall: Recall determines a categorization's sensitivity, 

or how much pertinent information it generates. As 

recollection improves,     total amount decreases. The 

percentage of occurrences that have been accurately classified 

to all of the expected instances is called recall. This is 

demonstrable by Eq. (16). 

   
    

          
     (16) 

4) F1-Score: Addition of precision and recall yields an 

association of measurements known as the F-measure, which 

represents the weighted average of accuracy and recall. It is 

characterised by Eq. (17). 

         
                   

                
           (17) 

5) ROC Curve: In deep learning and machine learning, 

area under the ROC curve, or AUC, is a popular assessment 

statistic for binary categorization issues. The area under the 

curve (AOC) is a visual depiction of the receiver operating 

characteristic (ROC) curve that shows how effective the 

binary identification technique is. In a binary categorized 

issue, the classifier determines whether the incoming data is 

part of a positive or negative partition. The ROC curve 

displays the      vs. the      for different categorization 

parameters. AOC values range from 0 to 1, with higher 

numbers denoting more efficiency. An optimum classifier has 

an AOC of one, whereas a totally randomly assigned classifier 

has an AOC of 0.5. Since the approach takes into account 

every conceivable level of detection and offers only one 

statistic for comparing the effectiveness of various classifiers. 
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Fig. 3. Training and testing accuracy. 

The training and testing accuracy scores at different 
epochs of the model training procedure are shown in Fig. 3. 
Training and testing accuracy exhibit a steady rising trend 
with an increase in training epochs, suggesting that the model 
is performing better. The model obtains a testing accuracy of 
75% and a training accuracy of 76.8% at the beginning of 
training. 

 
Fig. 4. Training and testing loss. 

The training accuracy increases with the number of 
epochs, reaching at 99% after 90 and 99.6% after 100 epochs. 
A similar pattern may be found in the associated testing 
accuracy, which shows how well the model generalizes to new 
information. The model's ability to learn from and adapt to the 
dataset is seen by the significant rise in accuracy from 10 to 
100 epochs. The final epochs achieve a high degree of 
accuracy, indicating a resilient and well-trained model. The 
model is more reliable in correctly predicting patterns 
associated to diabetes because training and testing accuracy 
converge at higher epochs, indicating efficient learning 
without overfitting. The training and testing loss values at 
various epochs during the algorithm's training procedure are 
shown in Fig. 4. Lower numbers indicate higher model 
performance. Loss values show the difference between the 
expected and actual values. Training and testing loss are both 
rather high in the early phases of training (at 10 epochs), 

indicating the model's inadequate ability for precise result 
prediction. On the other hand, training and testing loss 
consistently decrease with the number of epochs, indicating 
enhanced model convergence and accuracy in predictions. The 
training loss dramatically drops to 0.06 by the 100th epoch, 
demonstrating that the system effectively eliminates mistakes 
throughout the learning process from the training set. 
Additionally, the testing loss drops to 0.14, indicating that the 
model can generalize even on untested information. The 
model's capacity for identifying diabetes-related 
characteristics is supported by the consistent reduction in loss 
values over epochs, which shows effective learning, and the 
similarity of testing and training losses, which suggests the 
model, maintains high accuracy without overfitting. 

TABLE I. PROPER AND IMPROPER CATEGORIZED INFORMATION 

Methods SVM [26] DT [26] SMO [27] CNN-SVM 

Improper 

Categorized 

Data 

8.482% 11.030% 13.715% 0.312% 

Proper 
Categorized 

Data 

89.115% 84.541% 79.455% 99.851% 

With a focus on data pertaining to diabetes, Table I and 
Fig. 5 examine how well various categorization techniques 
performed in terms of accurate and incorrect information 
categorization. Support Vector Machine (SVM), Decision 
Trees (DT), Sequential Minimal Optimization (SMO), and the 
suggested hybrid approach, CNN-SVM, are among the 
techniques assessed. The rates at which each approach 
misclassifies information are indicated by the percentages in 
the Improper Categorized Information. The percentages of 
incorrectly categorized information for SVM, DT, and SMO 
are greater (8.482%, 11.030%, and 13.715%, respectively). 
The CNN-SVM hybrid strategy, on the other hand, performs 
noticeably better than these techniques, attaining a very low 
rate of 0.312% in incorrect classification. 

 

Fig. 5. Proper and improper categorized information. 
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The Proper Categorized Information, on the other hand, 
demonstrates how accurately each approach categorizes 
information pertaining to diabetes. This is where CNN-SVM 
excels, exceeding SVM, DT, and SMO, with percentages of 
89.115%, 84.541%, and 79.455%, respectively, in appropriate 
categorization with an astounding 99.851% accuracy. The 
outcomes demonstrate the suggested CNN-SVM hybrid 
model's improved performance in classifying diabetes-related 
information with accuracy, indicating its potential as a useful 
method for patient monitoring and illness prediction. 

 

Fig. 6. Fitness improvement over iterations. 

The Grey Wolf Optimization algorithm's enhancement in 
efficiency as iteratively refines the model's parameters is 
demonstrated in Fig. 6 by the Fitness Improvement over 
Iterations. The fitness value which indicates the optimization 
of the objective function increases during the first iterations 
while the algorithm searches the parameter space. A 
discernible increase in fitness is shown as the iterations 
continue on, suggesting that the GWO method is effective in 
fine-tuning the parameters to get improved placement with the 
optimization objective. Fitness values show a constant 
decreasing trend, which indicates that the algorithm is 
efficient in converging towards the best parameter 
combinations. The above chart provides a visual 
demonstration of the GWO algorithm's capacity to 
dynamically modify parameters to improve the model's 
efficiency continually. It also demonstrates the algorithm's 
effectiveness in fine-tuning for optimal outcomes across a 
number of rounds. 

 
Fig. 7. ROC curve. 

Fig. 7 shows a plot of True Positive Rate (Sensitivity) vs. 
False Positive Rate (1 - Specificity) over several threshold 
values for a binary categorization model, which represents the 
Receiver Operating Characteristic (ROC) Curve. The True 
Positive Rate progressively improves as the discriminating 
threshold reduces from 0.6 to 0.6 in the given figure of 
threshold values and associated False Positive Rates, 
indicating the model's capacity to accurately detect positive 
events. Additionally, there is an increase in the False Positive 
Rate, which signifies the occurrences of the model 
misclassifying negative cases as positive. The relationship 
between sensitivity and specificity is graphically represented 
by the ROC Curve, which offers an understanding of the 
model's overall discriminating strength over a variety of 
threshold values. 

TABLE II. COMPARISON OF ROC OF PROPOSED METHOD WITH OTHER 

EXISTING APPROACHES 

Models Levels 

SVM 0.8148 

DT 0.8052 

SMO 0.8264 

Proposed CNN-SVM 0.8687 

Table II presents a comparison of the Receiver Operating 
Characteristic (ROC) performance metrics for different 
models, specifically Support Vector Machine (SVM), 
Decision Tree (DT), Sequential Minimal Optimization (SMO), 
and the proposed method, a Convolutional Neural Network-
Support Vector Machine hybrid (CNN-SVM). The ROC 
values serve as indicators of the models' ability to discriminate 
between classes, with higher values suggesting better 
performance. In this context, the proposed CNN-SVM 
demonstrates the highest ROC value of 0.8687, indicating 
superior discriminative capabilities compared to SVM 
(0.8148), DT (0.8052), and SMO (0.8264). The results suggest 
that the hybrid approach, combining Convolutional Neural 
Network and Support Vector Machine, outperforms traditional 
machine learning models in the specific task or dataset under 
consideration, emphasizing its potential for enhanced 
predictive accuracy and classification performance. 

The suggested CNN-SVM model's performance metrics 
for diabetes prediction are compiled in Fig. 8, which displays 
outstanding outcomes for all major assessment parameters. 
With an impressive 99.6% accuracy rate, the model 
demonstrates its ability to accurately categorize occurrences. 
With a remarkable 99.4% precision rate a measure of the 
model's accuracy in positive predictions it is clear that there is 
little chance of false positives. The model's strong sensitivity 
is further demonstrated by the recall metric, which measures 
the model's capacity to identify all positive events and is now 
99.4%. At a remarkable 99.5%, the F1-Score a balanced 
metric of accuracy and recall highlights the CNN-SVM 
model's overall efficacy in diabetes prediction. All of these 
findings indicate the suggested model's stability and 
dependability, highlighting its possibilities as an innovative 
technology for precise and effective diabetic patient 
monitoring. 
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Fig. 8. Model performance. 

TABLE III. COMPARISON OF PERFORMANCE METRICS OF PROPOSED 

METHOD WITH OTHER EXISTING APPROACHES 

Models Accuracy (%) 
Precision 

(%) 
Recall 
(%) 

F1-Score 
(%) 

SVM 96.45 95.11 95.15 95.17 

DT 95.34 95.23 95.23 95.10 

SMO 97.12 96.09 96.10 96.10 

Proposed CNN-
SVM 

99.6 99.4 99.4 99.5 

The suggested CNN-SVM model and other methods, such 
as Support Vector Machine (SVM), Decision Tree (DT), and 
Sequential Minimal Optimization (SMO), are extensively 
contrasted using performance metrics in Table II and Fig. 9. 
With an outstanding 99.6% accuracy rate, the suggested CNN-
SVM model performs better than alternative approaches. The 
suggested model has outstanding performance as seen by its 
99.4%, 99.4%, and 99.5% precision, recall, and F1-Score 
metrics. By contrast, SVM attains competitive precision, 
recall, and F1-Score values in addition to a high accuracy of 
96.45%. 

Accuracy ratings of 95.34% and 97.12% for DT and SMO, 
respectively, also show satisfactory results. However, the 
suggested CNN-SVM model performs better overall on all 
assessed parameters, highlighting its effectiveness in tasks 
involving the prediction and categorization of diabetes. These 
findings demonstrate the hybrid CNN-SVM approach's 
potential for innovative healthcare applications, especially 
when it comes to diabetic patient monitoring. 

B. Discussion 

By combining a variety of sophisticated surveillance 
approaches with an adaptive machine learning classifier, the 
study described here provides a comprehensive method for 
creating an advanced e-health system for diabetic patient 
monitoring. The research makes use of a dataset that includes 
sixty-two diabetic patients who were followed up on for sixty-
seven days in a row. The dataset undergone significant 
preprocessing, which included feature extraction using 
Principal Component Analysis (PCA) and Min-Max 

normalization. The fundamental component of the suggested 
system combines a support vector machine (SVM) with a 
hybrid convolutional neural network (CNN) for tracking and 
categorization. Grey Wolf Optimization framework is used to 
tune model parameters. Accuracy, precision, recall, F1-Score, 
and the Receiver Operating Characteristic (ROC) Curve are all 
used in the model's performance evaluation to give a thorough 
assessment of its prediction competencies. The results show 
that the model is adaptable in classifying data relevant to 
diabetes and show a notable improvement in accuracy 
throughout training epochs, reaching an astonishing 99.6%. 
The proposed CNN-SVM model has potential for accurate and 
efficient diabetic patient monitoring by outperforming other 
conventional methods like SVM [26], DT [26], and SMO [27]. 
The Fitness Improvement over Iterations graph, which 
illustrates the study's findings, provides an understanding of 
how the Grey Wolf Optimization method affects the model's 
effectiveness. This graph shows how the method refines 
parameters iteratively, improving fitness values and 
optimizing the objective function. The model's ability to learn 
and generalize well is further demonstrated by the continuous 
decline in loss values during training epochs. The suggested 
CNN-SVM model is superior to other current techniques in 
terms of accuracy, precision, recall, and F1-Score, as 
demonstrated by the comparison shown in Table II and Fig. 9. 
All of these results point to the possibility of creative 
healthcare applications using the hybrid CNN-SVM 
architecture and Grey Wolf Optimization algorithm, especially 
for accurate diabetes patient prediction and monitoring. The 
work demonstrates the possibility of combining machine 
learning and optimization approaches for better healthcare 
outcomes in addition to adding to the knowledge of diabetes 
patient monitoring. 

 
Fig. 9. Comparison of performance metrics of proposed method with other 

existing approaches. 

VI. CONCLUSION AND FUTURE WORKS 

In conclusion, this study has showcased an innovative 
method for monitoring diabetic patients, which has resulted in 
the creation of a sophisticated computerized health system that 
combines a sophisticated tracking system with a hybrid 
adaptive machine learning classifier. The system, which is 
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trained and optimized utilizing the Grey Wolf Optimization 
technique, takes advantage of the synergies between support 
vector machines (SVM) and convolutional neural networks 
(CNN) in hybrid architecture. The comprehensive assessment 
of conventional performance measures has proven the 
enhanced accuracy, precision, recall, and F1-Score of the 
suggested CNN-SVM model, indicating its efficacy in 
classifying data pertaining to diabetes. Analyses that compare 
the hybrid model to more conventional techniques like SVM, 
Decision Trees, and Sequential Minimal Optimization 
highlight the significant improvement in accuracy that the 
hybrid model offers. In addition, the study has provided 
informative visuals which provide an extensive 
comprehension of the learning dynamics and optimization of 
the model. These visualizations include fitness increase over 
iterations, ROC curves, training and testing accuracy graphs, 
loss curves, and more. The suggested system's resilience and 
ability to provide accurate and efficient diabetes patient 
monitoring emphasize its importance in improving e-health 
applications and creating opportunities for customized and 
adaptable healthcare solutions. The research makes a 
significant contribution by presenting a novel framework that 
combines machine learning, intelligent tracking, and 
optimization techniques. This framework paves up the 
opportunity for novel approaches to diabetes care in the e-
health era. The generalizability and practicality of the model 
will be improved in subsequent work by extending the dataset 
to incorporate more varied demographic information and 
taking real-world deployment issues into account. Further 
research into the incorporation of real-time feedback from 
patient's mechanisms and the possibility of using edge 
computing to lower monitoring process latency might enhance 
the responsiveness and user involvement of the suggested e-
health system. 
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