
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

690 | P a g e  

www.ijacsa.thesai.org 

Practical Application of AI and Large Language 

Models in Software Engineering Education

Vasil Kozov
1
, Galina Ivanova

2
, Desislava Atanasova

3 

Dept. of Informatics, University of Ruse “Angel Kanchev”, Ruse, Bulgaria
1, 3 

Dept of Computer Systems and Technology, University of Ruse “Angel Kanchev”, Ruse, Bulgaria
2 

 

 
Abstract—Subjects with limited application in the software 

industry like AI have recently received tremendous boon due to 

the development and raise of publicity of LLMs. LLM-powered 

software has a wide array of practical applications that must be 

taught to Software Engineering students, so that they can be 

relevant in the field. The speed of technological change is 

extremely fast, and university curriculums must include those 

changes. Renewing and creating new methodologies and 

workshops is a difficult task to complete successfully in such a 

dynamic environment full of cutting-edge technologies. This 

paper aims to showcase our approach to using LLM-powered 

software for AI generated images, like Stable diffusion and code 

generation tools like ChatGPT in workshops for two relevant 

subjects – Analysis of Software Requirements and Specifications, 

as well as Artificial Intelligence. A comparison between the 

different available LLMs that generate images is made, and the 

choice between them is explained. Student feedback is shown and 

a general positive and motivational impact is noted during and 

after the workshop. A brief introduction that covers the subjects 

where AI is applied is made. The proposed solutions for several 

uses of AI in the field of higher education, more specifically 

software engineering, are presented. Several workshops have 

been made and included in the curriculum. The results of their 

application have been noted and an analysis is made. More 

propositions on further development based on the gained 

experience, feedback and retrieved data are made. Conclusions 

are made on the application of AI in higher education and 

different ways to utilize such tools are presented. 

Keywords—Application of AI-powered software; AI generated 

images; software engineering; stable diffusion; higher education 

I. INTRODUCTION 

With the release of popular and easy to use text based large 
language models, Artificial intelligence (AI) chatbots and 
image generation AI, it has become a necessity to teach 
students how to properly use them for the correct purposes. A 
big detriment of using AI by first and second year students is 
their lack of understanding in the subjects where they are trying 
to use AI. This sadly leads to less problem-solving thinking 
and doing actual effort to work on tasks. This in turn leads to 
less brain development and lack of practical skills. Teaching 
students how to correctly use such tools to enhance their 
learning is imperative for developing them into good 
specialists that may in turn use AI powered software and 
hardware to their benefit. 

The Software Engineering bachelor’s degree was chosen 
for the inclusion of teaching AI. Based on our experience, the 
more technically advanced and tech savvy students are more 

receptive towards the inclusion of new and experimental 
approaches. This was the main factor in our choice of who to 
use this approach with. Several subjects were selected, where 
the methodologies were applied. Workshops and materials to 
help with training the students were created. In the current 
report the focus will be on the application of Large Language 
Models (LLMs) in two subjects - Artificial intelligence (6th 
semester) and Analyzing system requirements and 
specifications (5th semester). It will also be discussed how to 
use LLMs to enhance the subject Introduction to Programming 
by writing unit tests (while that is still in the testing phase and 
has only been partially applied), as well as future ideas for the 
inclusion of image generation AI in Computer Graphics. 

In order to apply the tools that contain AI, methodologies 
have been adapted to suit the needs of the subjects. Two of 
them will be discussed and the choices that have been made as 
well as the reasoning behind them will be explained. 

II. APPLICATION OF AI-POWERED SOFTWARE 

A. Inclusion of AI Assistance in Analyzing Software 

Requirements and Specifications (ASRS) 

At this point in time during their university education, 
software engineering students have already passed Databases 
(DBs), Object Oriented Programming (OOP), and some of 
their Algorithm subjects. They are introduced to the vision on 
how to lighten their workload using assistive tools powered by 
AI. ChatGPT is the text generation model that is currently 
being used, but as new AI chat bots emerge, university staff is 
testing them and showing students the differences between 
them. 

In the subject ASRS, the students are required to submit a 
project – a software system that they must create and fully 
document using an iterative process. Our first use of ChatGPT 
is when we demonstrate its capabilities for idea generation. 

As seen on Fig. 1, a description of the problem help is 
needed with is given on the left, and although it lacks detail, it 
is a true and valid statement, so the model gives a useful, albeit 
generic answer. On the right side the LLM is queried using a 
message that has more details included. It has been decided to 
include as much relevant information as possible as the specific 
requirements are narrowed down. A description of the field of 
study and level of progress in the field is defined – “student in 
Software engineering”, this can be further expanded by 
specifying that this is a bachelor’s degree. By noting the 
current user skillset, the LLM can get software project ideas 
within the correct scope, omitting unfamiliar technologies. The 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

691 | P a g e  

www.ijacsa.thesai.org 

“course project” part of the message is also a component that 
will be used to further refine the scope of the ideas, giving 
them a timeframe. After defining what the LLM is required to 
do, the specified field is narrowed even further by statements 
of likes and dislikes. The overall structure of the message on 
the right helps the LLM print ideas that are more likely to 
interest the user and are within their means to achieve. The 
term “prompt engineering” [1] can better help describe this part 
of the communication with AI. It is highly possible that every 
person working with LLMs will be required to understand how 
to express themselves in a meaningful way if they want to be 
more efficient in the long term. Whether or not that will 
become a job requirement is speculative, but it is certainly a 
useful skill to have right now for students. 

The logical path in narrowing down the choices that the 
model must make in its answer looks similar to this hierarchy 
in this case: field (of study or work) -> constraints (skillset, 
abilities, requirements) -> environment descriptions (question 
framework) -> task that has to be completed by the LLM 
(actual answer format) -> formatting (table, software code, 
bullet points, queries for other software) -> further 
requirements (inclusion and exclusion of topics and fields). 

It is of course allowed for the students to use their own 
ideas irrespective of ChatGPT’s’, and they are encouraged to 

ask the AI for further fine-tuning – more functional 
requirements that will help their product become more robust, 
as well as help them expand their personal vision and make it 
better. The process is showcased step-by-step in real-time, but 
a video is prepared in case of service interruption during the 
demonstration. Outages in the OpenAI services have been less 
frequent recently, but during the peak hours they still happen, 
and it is important to have a good backup ready. Creating these 
videos is like a snapshot in time – it also helps showcase the 
differences in versions and their progress, as well as the time it 
takes to answer queries, model differences (3.5 and 4.0), as 
well as answer consistency. Recording the results has created 
data points for further research. 

A showcase on how the model can play its role is also 
being created but requires more testing. Researchers have 
emulated an entire software development team creating and 
finishing a project [2]. The idea is to showcase how the 
different roles in a software development process are 
represented by AI (e.g., “Imagine you are a business analyst 
working on project 8 - Airport Logistics Planner. What would 
your workflow be? How would you approach every one of 
your team members? Please describe your activities using a 
table.”). Current focus is on the fact that users must highly 
customize their input and requirements gradually if they want 
to create and document a good and useful product. 

 

Fig. 1. Comparison between statements for idea generation, showcasing the influence of detailed information to the outcome. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

692 | P a g e  

www.ijacsa.thesai.org 

The next step comes when the students have decided on 
their ideas for each team. At this point they have written most 
of the requirements, their vision, and they have mostly decided 
on what technological stack they will use. A showcase on how 
to create a relational DB that covers their functional 
requirements is done. 

On Fig. 2 the process can be seen – starting with asking for 
the creation of several versions of the relations in a database 
and GPT must draw them with tables and connect them. When 
solutions are iterated several times, the first version of the 
database is required is completed. At this point SQL statements 
that will create the DB and its relations are required, specifying 
the type of software and SQL server they are going to run on. 
The demonstration currently uses MS SQL server through the 
Management Studio, but other clients are viable alternatives 
too – like PostgreSQL or MySQL. The demonstrations do not 
yet include experimenting with communicating with ChatGPT 
for NOSQL solutions, due to time constraints, but they are 
worth looking into. 

 

 

 
Fig. 2. Aasking ChatGPT with the creation of a database for a small-scale 

project. 

 
Fig. 3. Inclusion of AI in the software development process in the ASRS 

subject. 

Another important step is showing how to “seed” the 
database with relevant data. First, a request that simply returns 
random raw data into several queries is created (see Fig. 3). 
Afterwards, if necessary, several key points and examples that 
the message should include in order to get relevant data are 
defined – for example random data in a special regular 
expression format is requested. Another option is to give GPT 
a short list with the example data, or the pattern to which it 
conforms. GPT can then work with it and iterate on it. This is 
followed by asking for the insert statements that are used to 
seed the finished database. There are cases where it has been 
noticed that there are differences in the format of the required 
data, as well as problems with relations – the foreign keys are 
not populated in the corresponding order, which leads to issues. 
Those issues are easily solvable for students that have passed 
their database-related subjects and further support the learning 
experience in working with such tools. 

Students are shown how to ask for UI suggestions (mainly 
HTML and CSS), but as their chosen project tech stacks are 
different (games, desktop applications, web sites and mobile 
apps), the use of AI in the development part of the project is 
concluded here. It is important to note that there are interesting 
applications for creating unit tests that are mentioned. This part 
of the subject curriculum is still in development so at this stage 
students are only shown how to make simple unit tests for C# 
and how to base them on their functional requirements. 

To put the finishing touch to their projects, hints are given 
on using the roleplaying ChatGPT to help them with their final 
presentations. A dialogue is shown following a similar 
structure to: “Hello, you are a business analyst. You are going 
to present a project on the topic of a flight fleet management 
software system. Your audience consists of people working in 
the sector. The project is made using the following 
technologies: C#, MSSQL, WebSocket, JavaScript and others. 
What would be your plan to present this project if you only 
have 15 minutes to talk?”. Students are usually very impressed, 
as most of them are used to using AI tools in other ways. 

The use of AI powered software in the different steps of the 
software development process that is used in the ASRS subject 
can be seen in Fig. 3. As the focus is on creating requirements, 
specification and software documentation, it is acceptable to 
use AI for any of the other steps, as students have already 
learnt how to complete those by themselves. A strong 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

693 | P a g e  

www.ijacsa.thesai.org 

argument can be made that AI powered chatbots will generate 
the entire documentation themselves in the near future, but this 
stage of development is not yet reached. The guiding 
philosophy is that if students are able to finish a task by 
themselves and understand it well enough, they should be 
taught how to automate it at a future point in time. 

B. Inclusion of AI Assistance in the Artificial Intelligence 

Subject 

The use of assistive tools with AI in the subject "Artificial 
Intelligence" is presented in the second half of the semester. 
Traditionally the first half of the workshop tasks for the 
students consist of using Python to solve classic AI problems, 
such as eight queens and different crosswords, while using 
search and constraint satisfaction algorithms. After the 
introductory problems are taught, several more advanced topics 
and workshops are covered. Students are shown neural 
networks (NNs) - single layered and multilayered. They are 
tasked with creating several NNs on their own using the Keras 
library and MNIST data sets. The use of convoluted NNs in 
various fields such as in finances - predicting financial time 
series [4], gives the opportunity to teach students the 
interdisciplinary aspects of software engineering in general. 
After all, what use is software engineering if there is no field to 
attach software to? Giving working examples in actual 
businesses and practical applications gives confidence and 
generates ideas in our pupils. 

In one of the following workshops, instructions on how to 
use open-source face recognition libraries in Python to detect 
faces on photos of famous people are included. There are 
training sets provided that are used to train and validate the 
model. In the researchers’ experience, doing this workshop 
takes a significant amount of time – both the process to fulfill 
all the necessary requirements on each of their personal 
machines, and then follow the instructions and test the code 
they have written step by step are time-consuming. After the 
students have managed to go through all the steps and have 
created a working piece of software, they are encouraged to 
train and validate the model using their own set of photos as 
training sets. 

Facial recognition, and image recognition in general, is not 
a new concept, but it is imperative students are taught how to 
apply it and use LLM tools on their own product to improve 
and test it. Students gain more thorough experience on how to 
modify their software products more efficiently by having 
access to the ChatGPT terminal, and thus to the entire 
collective training set using hundreds of billions of parameters 
that OpenAI have been using and improving. 

A simple visual representation of the approach to teaching 
students in the AI subject is shown in Fig. 4. 

The process of preparing additional workshops is 
constantly undergoing, and some have yet to be completed 
with students, as the subject is next semester in their 
curriculum. One workshop includes a comparison in image 
generation methods for different assisted tools, several of the 
most popular AI tools are presented - Stable Diffusion, Bing 
Images, Bard and Dall-E. A sufficiently difficult prompt using 
weight distribution for each of its parameters is used. 

 
Fig. 4. Methodology for practical application of theoretical knowledge base 

in the education of students. 

It is worth noting that Bard also hallucinated and tried to 
say it “drew” an image and responded with a google image 
search during one of the attempts to make it draw.  

Fig. 5, 6, 7 and 8 display some of the collated results that 
were achieved using the currently most popular available AI-
powered models. After multiple attempts, only Bing produced 
acceptable results, while Bard simply could not create any 
images itself, and returned googled images in almost all the 
attempts. The online version of DALL-E could not make 
images of better resolution and quality than those shown on 
Fig. 5. It can be said that testing web services in this way is not 
extensive enough, but when the services are unreliable 
themselves, produce different results and are in most cases 
limited, paid or of bad quality, they cannot be reliably used for 
educational purposes. 

 
Fig. 5. Using Stable diffusion multiple times using a prompt. 

 

 
Fig. 6. Dall-E web using a prompt: “please draw a young robot that has a 

white coat, make the image ultra realistic”. 

 
Fig. 7. Bard’s response to drawing prompts. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

694 | P a g e  

www.ijacsa.thesai.org 

 

 
Fig. 8. Bing Images (Dall-E based). 

It should be noted that Fig. 6 showcases the result of a very 
specific prompt with weight distribution that is as follows:  
“breathtaking, mysterious, fantasy, magical, (female robot:1.5) 
(creating a machine with hands), surrealism, hyper-realistic, 
colors and shapes, highly detailed, realism pushed to extreme, 
fine texture, 8k, ultra-detailed, (vivid swirling smoke, thick 
smoke:1.4), fluid, fire, cinematic, (intricate details:1.5), 
(vibrant colors:1.4), flash explosion, (colorful powder 
explosion), (billowing hair:1.5) "((magical enchantment on 
hands))" "((creates a machine from hands towards viewer))"”. 
The LLM allows for incredibly detailed instructions that can be 
followed, such instructions are unavailable for the other tested 
tools currently. Fig. 5, 7 and 8 display the limitations of the 
most popular models. While spectacular results can also be 
achieved using them, it requires a bigger investment in 
prompting them, both in terms of time and money (as the paid 
model tokes are usually limited). 

Some advantages and disadvantages are shown in Table I. 
The best results during the testing were achieved by 
StableDiffision. All the other services had either service 
disruptions (Bing, Bard), hallucinations (Bing, Dall-E), 
required tokens and accounts (Bing, Dall-E), or simply didn’t 
do as requested (Bing, Bard). The multitude of disadvantages 
make them unfit to be used in higher education. They are worth 
looking into further if their future iterations are improved. The 
currently chosen AI for the future workshops is 
StableDiffusion. Preliminary testing and scenarios based on the 
technology are being created and refined. 

The methodology that has been adapted for an AI image 
generation workshop is shown on Fig. 9. It includes stable 
diffusion and showcases different models and their differences. 

TABLE I.  COMPARISON BETWEEN THE DIFFERENT AI POWERED IMAGE 

GENERATION TOOLS 

AI Advantages Disadvantages Notes 

Bard  
 

Free, on the 

web. Powered 

by Google. 

Inconsistent 

behavior – 

sometimes says 
it cannot 

currently 

generate images; 
other times 

returns google 

image results. 

Says it cannot 

generate images 
when prompted. 

After multiple 

attempts it starts 
to hallucinate 

that it can, in 

fact, generate 
images. The 

process itself is 

erroneous – it 
returns google 

image searches 

instead of 
generating 

images. 

DALL-E 

Free, on the 

web. 
Implemented in 

other software. 

Low quality 
images, uses 

tokens, results 

are 
unsatisfactory. 

Has bots in 
discord that 

work better than 

the software 
itself. 

Bing 
Free, uses Dall-

e. 

Only 5 

questions. Has 

memory loss 
afterwards. 

Requires 
Microsoft Edge 

to work. 

Sometimes does 
not work – due 

to service 

disruption. 

Says that it 

cannot generate 
images. Then 

generates 

images. 

Stable Diffusion 

Works offline. 

Can be 
downloaded for 

free. There are 

various 
community 

resources and 

models 
available.  

Active open-

source project. 

Requires 
hardware to run. 

Pre-trained 

models are at 
least several 

gigabytes each. 

Takes a long 
time to teach a 

model if 

hardware is not 
powerful 

enough. 

While setting up 

the software can 

be difficult, the 
results are of 

great quality and 

require little 
manipulation 

before they can 

be used in 
production. 

 
Fig. 9. Methodology for showcasing AI image generation to software 

engineering students. 

Stable diffusion has an advantage for the current purposes - 
meaning it can be locally installed for free by anyone, and it 
doesn't require services or subscriptions. It does have hardware 
requirements, but they can be satisfied relatively easily for 
lower image resolutions. There is an enormous number of pre-
trained models that are available, as well as learning resources 
from its community. Several different approaches to combining 
or altering images after their creation are discussed and 
prepared for presentation. 

C. Introduction to Programming 

For many students, the subject is the first time they work 
with algorithms and needing to understand what they are 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

695 | P a g e  

www.ijacsa.thesai.org 

doing. As it is taught during the first semester, the skill level 
difference is enormous. Preparing C++ tasks that are relevant 
and not demotivating is always a challenge everywhere in 
education [6, 7], some professors have very interesting 
solutions ways to solve the problem using games [8, 9]. The 
current established approach is to have automated tests for each 
small task we give the students, but it is still undecided on 
whether everyone should be introduced to testing at such an 
early semester. The benefits of test-driven development (TDD) 
are unquestionable [10, 11], but it requires a paradigm shift that 
is based on pre-existing knowledge in programming simple 
tasks, that many students lack during the first semester. 
Overloading fledgling software engineers with information is 
not the goal of the subject. The current idea is to use GPT to 
automate test creation process for the tasks that are given to the 
students for each workshop. The unit tests provide a good 
opportunity to limit test the code of students, but a reasonable 
way to enable them to access and understand them (as just 
giving a repository link is difficult for the average first-year 
student to understand) is not yet found. There are existing 
frameworks that provide a similar service [12], however they 
are not fit for this specific purpose. 

D. Computer Graphics 

There have been discussions on how exactly to integrate 
tools such as Stable Diffusion and creating applications using 
technology based on API that works with an AI that is locally 
deployed, but the complexity of the task is daunting for 
students at the average skill level during the fifth semester. 
What has been learned is that there needs to be an in-depth 
course that helps students familiarize themselves with the 
usage of image generating software on a deeper level. Software 
engineers should be able to not only create images – the way 
they are taught during the Artificial intelligence course, but 
also understand AI image generating software and how to write 
code for applications that use the tool themselves. They need to 
be able to alter the image generating algorithms of the AI 
models, and create models fit to their projects’ needs. 

E. Results and Observations 

While the Dunning-Kruger effect has an impact on student 
self-assessment, research has shown that the differences 
between actual skill (and hence skill improvement) and self-
evaluation are within acceptable levels [3]. It can be therefore 
proposed that students’ self-assessment of their own skill 
improvement is significant enough to warrant noting a positive 
improvement due to the inclusion of AI in their curriculum 
subjects. Offloading the burden of menial tasks that can be 
easily automated leaves ample time for the actual improvement 
of their own professional interests and creating software 
products of value. One of the problems that have arisen is how 
professors evaluate whether the work done has led to 
improvement in a students’ general skills, or just their skill in 
communicating with AI. That, however, is a complex enough 
problem to warrant research all by itself. 

After questioning the students using a survey, as shown in 
Fig 10, it has been noticed that there is a good answer 
distribution among all the questions. It can be concluded that 
while it is useful, AI powered software needs improvement, 
and students using it need more experience to use it. 

 
Fig. 10. Methodology for showcasing AI image generation to software 

engineering students. 

What can be said with certainty is that students with the 
same university background have achieved success in projects 
that are more complex, more complete, and more in depth than 
those from previous years. According to the interviews with 
their teams during their project presentations, AI has certainly 
played a significant role in “doing the heavy lifting” for most 
of the teams. The most noticeable improvement is in the lower 
achieving students – given such powerful tools, they can 
elevate their skill level to a degree, sufficient for them to be 
motivated enough to be able to complete a reasonably sized 
software project. Compared to previous semesters in the same 
subject - students on the low skill spectrum could not finish as 
much work in the same amount of time. Elevating the results 
less skilled learners can achieve is motivating for professors as 
well. This gives confidence, experience, and motivation to the 
students, which in turn helps with student retention and an 
improvement to the system in higher education. Lifting the 
floor is beneficial to improving educational levels [5]. 

III. CONCLUSION 

Software engineering students need more exposure to AI 
tools in higher education. We need to have specialized subjects 
to help them familiarize themselves with this type of 
technology. It is imperative that they are not placed in a 
position where they have to “make do” but have the 
opportunity to learn how to leverage AI in their projects. 

It is important to note that all LLMs often hallucinate, and 
because of that they are not reliable for checking facts and 
truth. At this point of their evolution, it is difficult to use them 
in the same way search engines are trustworthy data sources 
are used. What they are incredible at though, is giving ideas, 
workflows, helping with automation and doing the heavy 
lifting when beginning and polishing projects. This is what we 
are trying to teach our students, that they must be aware of the 
strengths and weaknesses of tools that apply AI. 

 With any emerging nascent technology, there is more 
testing required in order to make it work better. Familiarizing 
students with the correct approach to using AI assistive tools - 
focusing on their strengths and being aware of their 
weaknesses, is imperative for them to not be in a 
disadvantageous position in their future careers. As AI grows, 
everyone not aware of how to take advantage of it will quickly 
become a less valuable employee for the business. Starting too 
early is detrimental to brain development and problem-solving 
skills, but starting late is detrimental to career opportunities and 
life quality. Communication skills will become even more 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

696 | P a g e  

www.ijacsa.thesai.org 

important in the future but acquiring them will require more 
effort with the further digitization of communication and the 
lessening of social relationships people experience. 

ACKNOWLEDGMENT 

This research is supported by the Bulgarian Ministry of 
Education and Science under the National Program “Young 
scientists and Postdoctoral Students – 2. 

REFERENCES 

[1] Oppenlaender, Jonas. "Prompt engineering for text-based generative 
art." arXiv preprint arXiv:2204.13988 (2022). 

[2] Qian, Chen, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan 
Xu, Zhiyuan Liu, and Maosong Sun. "Communicative agents for 
software development." arXiv preprint arXiv:2307.07924 (2023). 

[3] Gignac, Gilles E., and Marcin Zajenkowski. "The Dunning-Kruger 
effect is (mostly) a statistical artefact: Valid approaches to testing the 
hypothesis with individual differences data." Intelligence 80 (2020): 
101449. 

[4] Markova, Maya. "Convolutional neural networks for forex time series 
forecasting." In AIP Conference Proceedings, vol. 2459, no. 1. AIP 
Publishing, 2022. 

[5] Crouch, Luis, and Caine Rolleston. "Raising the floor on learning levels: 
Equitable improvement starts with the tail." RISE Insights 2016 (2017): 
1-14. 

[6] Aung, Shune Lae, Nem Khan Dim, Soe Mya Mya Aye, Nobuo Funabiki, 
and Htoo Htoo Sandi Kyaw. "Investigation of Value Trace Problem for 
C++ Programming Self-study of Novice Students." International Journal 
of Information and Education Technology 12, no. 7 (2022): 631-636. 

[7] Alzahrani, Nabeel, Frank Vahid, Alex Edgcomb, Kevin Nguyen, and 
Roman Lysecky. "Python Versus C++ An Analysis of Student Struggle 
on Small Coding Exercises in Introductory Programming Courses." In 
Proceedings of the 49th ACM Technical Symposium on Computer 
Science Education, pp. 86-91. 2018. 

[8] Ariffin, Mazeyanti Mohd, Nurshazlyn Mohd Aszemi, and Mohammad 
Syazran Mazlan. "CodeToProtect©: C++ programming language video 
game for teaching higher education learners." In Journal of Physics: 
Conference Series, vol. 1874, no. 1, p. 012064. IOP Publishing, 2021. 

[9] Agapito, Jenilyn L., Joshua C. Martinez, and J. D. Casano. "Xiphias: A 
competitive classroom control system to facilitate the gamification of 
academic evaluation of novice C++ programmers." In Proceedings of 
International Symposium on Computing for Education, ISCE, vol. 14, 
pp. 9-15. 2014. 

[10] Beck, Kent. Test driven development: By example. Addison-Wesley 
Professional, 2022. 

[11] Langr, Jeff. "Modern C++ Programming with Test-driven Development: 
Code Better, Sleep Better." Modern C++ Programming with Test-Driven 
Development (2013): 1-368. 

[12] Markoska, Ramona. "Managing ICT solutions for training and 
evaluation of C++ programming skills in e-learning ecosystem." New 
Trends and Issues Proceedings on Humanities and Social Sciences 6, no. 
7 (2019): 33-41. 

 


