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Abstract—The rapid growth of urban areas has significantly 

compounded traffic challenges, amplifying concerns about 

congestion and the need for efficient traffic management. 

Accurate short-term traffic flow prediction remains important 

for strategic infrastructure planning within these expanding 

urban networks. This study explores a Transformer-based model 

designed for traffic flow prediction, conducting a comprehensive 

comparison with established models such as Long Short-Term 

Memory (LSTM), Bidirectional Long Short-Term Memory 

(BiLSTM), Bidirectional Gated Recurrent Unit (BiGRU), and 

Time-Delay Neural Network (TDNN). Our approach integrates 

traditional time series values with derived time-related features, 

enhancing the model's predictive capabilities. The aim is to 

effectively capture temporal dependencies within operational 

data. Despite the effectiveness of existing models, internal 

complexities persist due to diverse road conditions that influence 

traffic dynamics. The proposed Transformer model consistently 

demonstrates competitive performance and offers adaptability 

when learning from longer time spans. However, the simpler 

BiLSTM model proved to be the most effective when applied to 

the utilized data. 

Keywords—Traffic flow; short-term prediction; machine 

learning; transformer 

I. INTRODUCTION 

Urbanization and the subsequent surge in vehicular traffic 
pose challenges to the efficiency and sustainability of urban 
transportation networks. The intricate interplay of dynamic 
factors, including population growth, urban expansion, and 
evolving commuter behaviours, necessitates innovative 
solutions for managing traffic flow. In particular, the advent of 
advanced predictive models has emerged as a cornerstone in 
addressing the complexities inherent in urban traffic dynamics 
[1], [2]. 

Traffic flow prediction, an important component of 
intelligent transportation systems, facilitates proactive traffic 
management, congestion alleviation, and resource 
optimization. This predictive capability is increasingly crucial 
in urban planning and policymaking. Precise insights into 
future traffic patterns empower decision-makers to devise 
effective strategies for infrastructure development, traffic 
routing, and overall enhancement of urban mobility. 
Understanding population behaviours within transport models, 
especially in relation to mode choice for trips, forms a critical 
aspect that can influence the precision and application of 
predictive traffic models [3]. 

In the domain of traffic flow prediction, the quest for 
accurate, adaptive, and efficient models has intensified, given 

the important role of predictive systems in optimizing urban 
transportation networks. Traditional models, including Long 
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), 
Bidirectional Recurrent models and Convolutional Neural 
Networks (CNNs) such as Time-Delay Neural Network 
(TDNN), have significantly contributed to unravelling 
temporal dependencies within traffic data [4]. 

The introduction of the Transformer architecture [5], 
initially developed for Natural Language Processing (NLP) 
tasks, has paved the way for sequence modelling in various 
domains. Known for its distinctive attention mechanisms, this 
architecture revolutionises sequential data processing by 
employing self-attention mechanisms. This allows for a deeper 
comprehension of intricate relationships within sequences. The 
ability to discern temporal correlations has highlighted its 
potential application in traffic flow prediction models [6]–[8]. 

In this study, we undertake the task of forecasting future 
vehicle counts based on historical observations, with a specific 
focus on univariate traffic flow forecasting. The objective is to 
harness the capabilities of a transformer, which excels at 
discerning intricate traffic dynamics. The aim is to analyse how 
well it can decode complex traffic patterns by capturing time-
related nuances and dependencies within the traffic data. 
Furthermore, we compare the performance of the transformer 
with the established neural networks for sequence modelling, 
such as LSTM, Bidirectional Long Short-Term Memory 
(BiLSTM), Bidirectional Gated Recurrent Unit (BiGRU), and 
TDNN. The incorporation of temporal features and the 
evaluation of distinct past observation intervals might yield 
additional insights for our analysis. 

The paper is organized as follows: Section II provides an 
overview of existing traffic flow prediction models, Section III 
offers a detailed description of the prediction models, Section 
IV explains the experimental setup and evaluation 
methodologies, and Section V presents an analysis and 
comparative assessment of results. In Section VI, the 
discussion of the results is presented, and Section VII 
concludes with remarks that outline implications for future 
research. 

II. RELATED WORKS 

The evolution of time series prediction has been marked by 
advancements in data analysis, machine learning, and 
computational power. Initially, time series prediction relied on 
statistical (or parametric) methods such as Autoregressive (AR) 
and Moving Average (MA) models [9], [10]. These models are 
the building blocks of the Autoregressive Integrated Moving 
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Average (ARIMA) model [11], which remains a common 
approach for time series prediction to date. These methods 
assumed that future values depend linearly on past 
observations and aimed to capture the underlying trends and 
patterns. 

Another frequently used method is employing Kalman 
filtering [12], [13]. Due to dynamic traffic conditions and the 
nonlinear nature of traffic flow, parametric methods may 
struggle to effectively capture traffic features. As a result, there 
has been a shift in focus towards non-parametric machine 
learning methods in the field of traffic flow forecasting [4]. 
Decision trees, k-nearest neighbour (k-NN) [14], Support 
Vector Machines, and Neural Networks (NNs) started making 
their way into the domain. However, challenges remained in 
handling the temporal dependencies inherent in time series 
data. 

The resurgence of interest in neural networks, particularly 
Recurrent Neural Networks (RNNs), marked a significant 
milestone. RNNs, with their ability to capture sequential 
dependencies, demonstrated improved performance in time 
series prediction tasks. LSTMs are a type of RNN, which have 
shown the ability to extract complex correlations in non-linear 
traffic data and capture long-term dependencies. The study 
conducted in [15] compares the LSTM architecture with 
models such as random walk, support vector regression, 
wavelet neural network, and the stacked autoencoder, 
emphasizing its favourable outcomes in short-term traffic flow 
prediction. The hybrid LSTM proposed in [16] optimizes its 
structure and parameters to adapt to various traffic scenarios. 
Comparative analysis reveals that the hybrid LSTM model 
outperformed other typical models (Fuzzy C-Means, Kalman 
filter and LSTM) in terms of prediction accuracy. This 
improvement in accuracy was achieved with only a marginal 
increase in processing time compared to LSTM model. 

The performance comparison between LSTM and its 
simplified counterpart GRU, indicates that GRU outperformed 
LSTM when the past observation sequences were small [17]. 
On the other hand, LSTM performed better with more complex 
datasets and required the use of extended sequences to predict 
future traffic volume. A comparative analysis with benchmark 
models proposed in [18], including ARIMA, LSTM, BiLSTM, 
and GRU, indicates the superior performance of the BiGRU 
model. The bidirectional model utilizes preceding and 
succeeding time sequences to extract additional traffic flow 
information. Notably, deep learning methods, including Bi-
GRU, outperformed the traditional ARIMA model in 
prediction accuracy, particularly during peak periods. 
However, the BiGRU model exhibited a slight lag in traffic 
flow prediction. 

Recent advances in time series forecasting using 
Transformer models are gaining traction in the field of traffic 
forecasting. Known for their prowess in cross-sequence tasks, 
these models have been refined to predict temporal data, 
fundamentally transforming conventional methodologies by 
optimizing computing processes and capturing extensive 
dependencies. Cai et al. [6] focused on addressing spatio-
temporal dependencies in traffic forecasting. Their Traffic 
Transformer architecture, inspired by the Transformer 

framework and Graph CNNs, adeptly managed periodicity, and 
spatial dependencies. It showcased superior performance with 
real-world traffic datasets. Reza et al. [7] introduced a multi-
head attention-based transformer model for traffic flow 
forecasting. The model demonstrates greater efficiency in 
capturing prolonged traffic flow patterns compared to 
recurrent-based models. However, to achieve optimal 
performance, the proposed transformer required substantial 
amounts of training data. Existing studies predominantly 
concentrate on short-term predictions, creating a gap in long-
term traffic forecasting research. Tedjopurnomo et al. [8] stress 
the significance of extending prediction to 24 hours for better 
congestion planning. To overcome limitations in current 
recurrent structure-based models for long-term traffic 
prediction, they introduce a modified Transformer model 
named TrafFormer, incorporating time and day embedding. 
Experimental results highlight the superior performance of 
their proposed model compared to existing hybrid neural 
network models. 

III. METHODS 

This section delineates the intricacies of sequential neural 
network architectures—LSTM, BiLSTM, BiGRU, TDNN, and 
Transformer—applied in the domain of traffic flow prediction 
models. 

A. Long Short-Term Memory and Bidirectional Long Short-

Term Memory 

LSTM, an extension of a Vanilla RNNs, presents a robust 
architecture aimed at resolving the limitations of conventional 
RNNs in capturing long-range dependencies. Addressing the 
vanishing gradient problem inherent in RNNs, LSTM units 
incorporate a memory cell (    that persists and evolves over 
time steps. 

At each time step, LSTM units navigate through three 
gates: the forget gate (   , input gate (   , and output gate     . 
These gates modulate the flow of information, orchestrating the 
update and retention of information within the cell state. The 
LSTM architecture is shown in Fig. 1. 

 
Fig. 1. Graphical visualization of the functioning of the LSTM unit. 

Each gate within the LSTM unit serves a distinctive 
function: 

 Forget gate (   : This gate regulates the relevance of 
past information, allowing the LSTM unit to decide the 
degree of retention or discarding of prior information 
from the cell state. 
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 Input Gate (     Responsible for modulating incoming 
information, the input gate enables the selective update 
of the cell state based on the present input sequence and 
the preceding state. 

 Output gate       Governing the flow of information 
from the cell state to generate the output, this gate 
ensures the controlled dissemination of relevant 
information. 

In the context of traffic flow prediction models, LSTM 
networks exhibit remarkable proficiency in capturing and 
predicting complex traffic dynamics over prolonged periods, 
owing to their capacity to capture long-term dependencies 
within sequential traffic data. 

BiLSTM extends the capabilities of LSTM by 
incorporating bidirectional processing, allowing information to 
flow both forward and backward within the network. BiLSTM 
units consist of two LSTM layers: one processes the input 
sequence forward in time, while the other processes the 
sequence in reverse. Each BiLSTM unit operates with two sets 

of gates similar to LSTM: forget gates    ⃗⃗⃗     ⃖⃗⃗⃗  , input gates 
   ⃗⃗    ⃗⃗⃖ , and output gates    ⃗⃗  ⃗   ⃖⃗ ⃗⃗   for the forward and backward 
directions, respectively. This dual directionality enables the 
network to capture dependencies in both past and future 
contexts simultaneously. 

By leveraging information from both past and future 
contexts, BiLSTM units excel in comprehensively 
understanding the sequential nature of data. In the domain of 
traffic flow prediction models, BiLSTM architectures 
demonstrate enhanced capabilities in capturing complex 
temporal dependencies, leveraging bidirectional information 
flow to predict traffic patterns with improved accuracy, 
especially when dealing with nuanced traffic dynamics 
influenced by historical and future context [19]. 

B. Gated Recurrent Unit and Bidirectional Gated Recurrent 

Unit 

GRU presents an alternative architecture to LSTM, 
designed to capture long-range dependencies in sequential 
data. GRU units comprise two gates: reset gate (     and an 
update gate       effectively regulating the flow of information 
within the network. The reset gate determines how much of the 
past information to forget, while the update gate modulates the 
blending of new input with the previous state. The GRU 
architecture is shown in Fig. 2. 

 
Fig. 2. Graphical visualization of the functioning of the GRU unit. 

Unlike LSTM, GRU units do not possess a separate cell 
state, simplifying the architecture while preserving its capacity 
to capture temporal dependencies. GRU units are adept at 
learning from sequential data due to their simplified structure, 
making them particularly suitable for traffic flow prediction 
models. Their ability to balance the preservation and update of 
past information allows for effective modelling of traffic 
dynamics, enabling the prediction of flow patterns with a focus 
on essential temporal relationships. 

BiGRU extends the GRU architecture to process 
information bidirectionally. Similar to BiLSTM, BiGRU 
incorporates two sets of GRU layers that process input 
sequences in both forward and backward directions. BiGRU 
units maintain the characteristics of GRU but leverage 
bidirectional information flow, allowing simultaneous 
exploration of past and future contexts [20]. 

In this work, bidirectional RNNs were employed to 
improve training efficiency by simultaneously processing the 
input sequence in both forward and backward directions (see 
Table I). The BiGRU and BiLSTM models comprise two 
bidirectional recurrent layers, and their outputs are aggregated 
using global average pooling. For comparison, we also 
included the classical LSTM model, which comprises three 
sequential LSTM layers, an aggregating LSTM layer, and 
densely connected layers. 

TABLE I.  CONFIGURATION OF RECURRENT MODELS 

Layer LSTM BiLSTM  BiGRU  

1. LSTM() Bidirectional(LSTM)  Bidirectional(GRU)  

2. Dropout(0.2) Dropout(0.2)  Dropout(0.2)  

3. LSTM() Bidirectional(LSTM)  Bidirectional(GRU)  

4. Dropout(0.2) Dropout(0.2)  Dropout(0.2)  

5. LSTM() GlobalAvgPooling()  GlobalAvgPooling()  

6. Dropout(0.2) Dense()  Dense()  

7. LSTM() Dense(1)  Dense(1)  

8. Dropout(0.2)     

9. Dense()     

10. Dense(1)     

C. Time-Delay Neural Network 

TDNN represents a specialized class of feedforward neural 
networks designed for modelling temporal sequences. These 
networks utilize fixed-size time windows to capture intricate 
temporal dependencies embedded within sequential data. 
Unlike recurrent counterparts such as LSTM or GRU, TDNNs 
employ distinct convolutional layers, each capturing unique 
temporal abstractions within the input data. 

Operating through convolutional layers that traverse the 
input sequence, TDNNs adeptly extract features within 
predefined time windows or delays. These localized features 
then undergo further processing across subsequent layers, 
culminating in higher-level representations that encapsulate the 
temporal intricacies within the data. By focusing on local 
patterns across diverse time scales, TDNNs excel in capturing 
short and medium-term dependencies inherent in sequential 
data. The complete architecture of the TDNN used in our 
experiments is detailed in Table II. 
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TABLE II.  CONFIGURATION OF TDNN MODEL 

Layer TDNN 

1. TDNNLayer([-2,2]) 

2. TDNNLayer([-2,0,2]) 

3. TDNNLayer([-3,0,3]) 

4. TDNNLayer([0]) 

5. TDNNLayer([0]) 

6. Flatten() 

7. Dense(32) 

8. Dense(1) 

D. Transformer 

Transformers have emerged as a paradigm-shifting 
architecture within neural networks, initially recognized for 
their success in NLP tasks. Unlike traditional RNNs, 
Transformers process input data in parallel, disassembling it 
into smaller tokens embedded within high-dimensional vectors. 
These vectors are then passed through multiple layers, utilizing 
a mechanism called self-attention to focus on important input 
segments. This intrinsic mechanism empowers Transformers to 
capture long-range dependencies and effectively model the 
underlying structures of natural language. The utilization of 
Transformers in traffic flow prediction represents a frontier 
where their prowess in capturing contextual relationships and 
long-range dependencies can significantly contribute to the 
evolution of precise traffic flow prediction models. 

 
Fig. 3. Transformer architecture. 

The Fig. 3 shows the proposed architecture of a single-
block Transformer (where Nx represents the block ID), 
consisting of following sub-layers: a multi-head self-attention 
mechanism, an LSTM layer, and fully connected feed-forward 
network. In our implementation, we opted for the use of two 
transformer blocks based on experimental findings. The output 
of the last Transformer block is aggregated using row-wise and 
column-wise attention pooling and is then fed to the final dense 
layers. The model takes as input either the one-dimensional 
time series or two-dimensional time series × number of 
features. 

IV. EXPERIMENTS 

This section provides an overview of the experimental 
setup, dataset specifics, training strategies, and evaluation 
metrics crucial for both the development and assessment of the 
performance of the neural network architectures used in traffic 
flow prediction. 

A. Dataset 

The traffic dataset [21] used in this study is publicly 
available on the Kaggle online platform. This dataset consists 
of a collection of time series data, recording vehicle counts at 
hourly intervals across four distinct junctions. The features 
within this dataset include DateTime, Junction Type, Vehicle 
Count, and ID. The temporal span of data collection varies, 
encompassing observations from November 2015 to June 2017 
for three junctions and from January 2017 to June 2017 for the 
remaining junction. Overall, this dataset comprises a total of 
48,100 observations, providing insights into the hourly 
vehicular traffic across multiple junctions. In this study, data 
from junction number one was selected for experimentation. 

Preprocessing techniques, including Z-score normalization 
and differencing with a one-week window span, were 
employed to mitigate inherent temporal patterns and trends 
within the dataset. Normalization addresses the issue of 
diversity in the value ranges of time series data, which is 
suboptimal for neural network input. The stationarity of the 
data was assessed using the Augmented Dickey-Fuller test. 

In addition to time series values, we also included derived 
time-related features such as the month, hour, day of the week, 
weekend indicator, and lag features representing the values 
from the previous hour and the same hour on the previous day. 

B. Network Setup and Training 

The experiments were conducted on a hardware platform, 
encompassing the environmental parameters listed in Table III. 

TABLE III.  EXPERIMENTAL SETUP 

Parameters Configuration 

CPU Intel Core i9-12900HX 

GPU nVidia GeForce RTX 3080 Ti 

GPU memory size 16GB 

RAM 64GB 

Operating systems Win11 

Deep learning architecture Tensorflow 2.10.1 
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Training of the neural networks—LSTM, BiLSTM, 
BiGRU, TDNN, and Transformer—entailed parameter tuning. 
These models were systematically constructed with iterative 
exploration into diverse epochs, learning rates, batch sizes, and 
optimizer choices. Furthermore, the Halving Grid Search 
algorithm was used to narrow down the search for optimal 
settings through successive halving. The key parameters 
governing model training are detailed in Table IV. 

TABLE IV.  KEY PARAMETERS DURING MODEL TRAINING 

Parameters Setup 

Epochs 500 

Early stopping patience 10 

Momentum 0.99 

Learning rate 0.001 

Weight decay 0.0005 

Batch size 128 

Optimizer Adam/Lion 

C. Metrics 

The evaluation metrics are important in assessing the 
efficacy of traffic flow prediction models developed using 
neural networks. While analytical or theoretical validation of 
these models proves challenging, error metrics play a crucial 
role in assessing their performance [22]. 

The evaluation metric used in this work is the Mean 
Squared Error (MSE) and Mean Absolute Error (MAE). MSE 
is a common metric employed to measure the average squared 
difference between the actual and predicted values (1). A 
higher MSE indicates greater prediction error. 

      
 

 
 ∑       
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where, n denotes the number of values. In this study, the 
Root Mean Square Error (RMSE) was utilized, which is the 
square root of MSE. This choice was made because RMSE 
shares the same scale as the original target variable. 

The squaring of deviations in MSE significantly impacts 
the results, especially for extreme values. MSE exhibits higher 
sensitivity to these outliers. Conversely, for proximal values, 
squaring produces even smaller values, indicating their reduced 
significance rendering MSE less sensitive to nearby values. 
Therefore, an additional metric was employed to assess the 
performance of the models. 

MAE operates similarly to MSE and represents the average 
positive deviation between predicted values and reference 
values. MAE is computed as the average absolute difference 
between predicted and reference values in Eq. (2) for n 
instances: 
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MAE provides a single value encapsulating all absolute 
deviations. The MAE metric does not amplify the effect of 

outliers since it considers absolute differences without 
squaring. 

V. EXPERIMENTAL RESULTS 

In this section, we present and analyse the experimental 
results obtained from applying various time-series forecasting 
models. The outcomes of the model evaluation are detailed in 
Table V, encompassing results for five distinct models: LSTM, 
BiLSTM, BiGRU, TDNN, and Transformer. For each model, 
performance is assessed across two time intervals—6 hours 
and 12 hours. Past observations from the last t hours served as 
input, and predictions for the subsequent time point (t + 1 hour) 
were generated. Furthermore, two experimental settings were 
employed: time series modelling using simple sequences, and 
time series modelling with additional features. During the 
evaluation phase, we conducted 10 successive model trainings, 
and the results of the best model are reported. 

The results reveal variations in the models' predictive 
capabilities under different forecasting horizons. In most cases, 
models that make predictions based on the past 6-hour time 
interval achieved better results. The Transformer model 
appears to perform well when forecasting based on longer time 
spans. The complexity of the proposed Transformer might 
handle intricate inputs more efficiently. 

In general, the inclusion of time features in the learning 
process resulted in improved error metrics. By integrating 
temporal information, models acquire the capability to leverage 
inherent temporal patterns and dependencies within time series 
data. The best results for each time interval (columns) are 
highlighted in bold. Among the considered models, BiLSTM, 
BiGRU, and the proposed Transformer proved to be the most 
effective, with BiLSTM achieving the highest performance. 
This outcome can be attributed to the fact that a simpler model 
is more suitable for a smaller database. While the proposed 
Transformer model consistently demonstrates competitive 
performance, particularly evident with MAE values ranging 
from 0.1695 to 0.1714, it may be better suited for larger 
datasets. The utilization of pretraining could potentially further 
enhance its performance. 

TABLE V.  COMPARISON OF THE EXPERIMENTAL RESULTS 

Model Metrics Time series Time series × features 

  6h 12h 6h 12h 

LSTM 
RMSE 
MAE 

0.2388 
0.1720 

0.2399 
0.1725 

0.2365 
0.1694 

0.2383 
0.1703 

BiLSTM 
RMSE 
MAE 

0.2380 
0.1708 

0.2392 
0.1717 

0.2350 
0.1688 

0.2363 
0.1692 

BiGRU 
RMSE 

MAE 

0.2361 

0.1704 

0.2398 

0.1715 

0.2359 

0.1692 

0.2368 

0.1699 

TDNN 
RMSE 

MAE 

0.2386 

0.1720 

0.2406 

0.1735 

0.2388 

0.1724 

0.2394 

0.1727 

Transformer 
RMSE 

MAE 

0.2385 

0.1714 

0.2367 

0.1711 

0.2363 

0.1711 

0.2376 

0.1695 
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Fig. 4. Five-day prediction comparison across various sequence models: a) simple time series prediction; b) time series prediction with additional features. 

VI. DISCUSSION 

The evaluation of LSTM, BiLSTM, BiGRU, TDNN, and a 
modified Transformer over two time intervals (6 hours and 12 
hours) and across two experimental settings, including time 
series modelling with simple sequences and time series 
modelling with additional features, has provided insights into 
their predictive capabilities. The effectiveness of models is 
influenced by the choice of the past time horizon. Notably, 
most of the models learning from a 6-hour time span 
demonstrated superior performance compared to those learning 
from 12 hours. The inherent complexity of the Transformer 
architecture enables it to effectively capture temporal 
dependencies, making it particularly well-suited for forecasting 
based on longer time spans. 

The predicted outcomes of all models without the use of 
time features are visualized in Fig. 4(a). Upon comparison with 
the addition of time features in Fig. 4(b), subtle improvements 
in prediction accuracy can be observed. The visualized days 
start from Tuesday and extend until midday on Sunday. The 
predicted values closely mimic the real-world values, with one 
notable exception: the models have learned to anticipate an 
increase in the number of vehicles on Thursdays and Fridays. 
Including supplementary information about holidays or non-
working days might improve the model's decision-making 
process, especially in pinpointing the busiest traffic days of the 
week related to holiday travel.  

The prediction outcomes for the proposed Transformer 
model and the best performing BiLSTM are illustrated in  
Fig. 5. For a more detailed perspective, only two days are 
displayed, revealing a distinct decline in the number of vehicles 
from Friday to Saturday. The incorporation of temporal 
features (see Fig. 5(b)) to some extent helped align the 
predicted values more closely with the actual values. 

Selecting between BiLSTM and Transformer for time 
series prediction relies on the characteristics of the data and the 
available computational resources. While BiLSTM is a type of 

RNN that can capture temporal dependencies in sequential 
data, Transformer is a type of attention-based NN that can 
process sequential data in parallel, resulting in faster training 
times. The size of a dataset can influence the performance 
difference between a BiLSTM and a Transformer. The 
Transformer can be well-suited for transfer learning, 
particularly when pre-trained on large datasets, making it 
valuable for tasks involving limited labelled data. 

 
Fig. 5. The prediction outcomes of BiLSTM and Transformer models: a) 

simple time series prediction; b) time series prediction with additional 
features. 

VII. CONCLUSION 

In this study, we conducted an analysis of various time-
series forecasting models, including LSTM, BiLSTM, BiGRU, 
TDNN, and modified Transformer. The evaluation 
encompassed two time intervals (6 hours and 12 hours) and 
two experimental settings: time series modelling using simple 
sequences and time series modelling with additional features. 
Our findings indicate variations in the predictive capabilities of 
the models under different forecasting horizons. Notably, 
models learning from a 6-hour time interval generally 
outperformed those learning from 12 hours. The Transformer 
model demonstrated efficacy in longer time spans, showcasing 
its ability to handle intricate inputs efficiently due to its 
inherent complexity. 
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The integration of time features into the learning process 
often resulted in improvements in error metrics. This 
enhancement arises from the models' capacity to leverage 
temporal patterns within time series data. Among the 
considered models, BiLSTM, BiGRU, and the proposed 
Transformer emerged as the most effective, with BiLSTM 
achieving the highest performance. 

In our future work, the potential of transfer learning and 
improved fine-tuning will be explored. Moreover, evaluating 
other time series datasets may provide additional insights into 
the proposed analysis. The findings of this study can contribute 
to the broader understanding of model selection and 
optimization in time series forecasting, with implications for 
both research and practical applications in urban planning and 
traffic management systems. 
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