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Abstract—The memorization and reuse of experience, 

popularly known as experience replay (ER), has improved the 

performance of off-policy deep reinforcement learning (DRL) 

algorithms such as deep Q-networks (DQN) and deep 

deterministic policy gradients (DDPG). Despite its success, ER 

faces the challenges of noisy transitions, large memory sizes, and 

unstable returns. Researchers have introduced replay 

mechanisms focusing on experience selection strategies to 

address these issues. However, the choice of experience retention 

strategy has a significant influence on the selection strategy. 

Experience Replay Optimization (ERO) is a novel reinforcement 

learning algorithm that uses a deep replay policy for experience 

selection. However, ERO relies on the naïve first-in-first-out 

(FIFO) retention strategy, which seeks to manage replay memory 

by constantly retaining recent experiences irrespective of their 

relevance to the agent’s learning. FIFO sequentially overwrites 

the oldest experience with a new one when the replay memory is 

full. To improve the retention strategy of ERO, we propose an 

experience replay optimization with enhanced sequential 

memory management (ERO-ESMM). ERO-ESMM uses an 

improved sequential retention strategy to manage the replay 

memory efficiently and stabilize the performance of the DRL 

agent. The efficacy of the ESMM strategy is evaluated together 

with five additional retention strategies across four distinct 

OpenAI environments. The experimental results indicate that 

ESMM performs better than the other five fundamental 

retention strategies. 

Keywords—Experience replay; experience replay optimization; 

experience retention strategy; experience selection strategy; replay 

memory management 

I. INTRODUCTION 

Deep reinforcement learning (DRL) has emerged as a 
robust framework for training agents to make intelligent 
decisions in complex environments [1] in the area of health [2], 
[3], [4], automobile [5], [6], robotics [7], [8], energy [9], [10], 
[11] and others. RL algorithms aim to maximize cumulative 
rewards by allowing an agent to interact with an environment, 
learning from trial and error. One crucial component of RL is 
experience replay (ER), which involves reusing past 
experiences to enhance the learning process. ER has been 
successful in the RL field since its implementation in the deep 
Q-network (DQN) algorithm [12] and has undergone numerous 
improvements by researchers. It has proven to be a valuable 
technique, facilitating improved sample efficiency, breaking 
transition correlations, stabilizing learning dynamics, and 
reducing the cost of training [12], [13], [14], [15]. However, 
the effectiveness of ER strongly relies on selecting and 
retaining relevant experiences [16]. Experience sampling 

involves the sequential or stochastic (random) selection of an 
experience index (the array index of the stored transitions) to 
determine the experience to use for training the RL agent. In 
contrast, experience retention focuses on strategies that can be 
adopted to determine the experiences to be stored and how 
these experiences can be managed in the replay buffer to 
optimize the learning process. 

In recent years, various ER strategies have been proposed 
to address the challenges associated with experience retention. 
Isele and Cosgan [17] suggests that strategies for sampling 
experiences can be based on surprise, reward, state-space 
coverage, global training distribution, and state-action 
similarities. Similarly, de Bruin et al. [16]  identified the full 
database (Full DB), first-in-first-out (FIFO), temporal 
difference error (TDE), and exploration as strategies for 
experience retention. They assert that while the FIFO strategy 
sequentially replaces old experiences irrespective of their 
relevance to learning, the exploration strategy stochastically 
overwrites the least-explored experience. The TDE strategy 
stochastically overwrites the least surprising experience, while 
the Resv approach ensures that "observed" experiences have 
equal retention rights. Moreover, the Full DB strategy uses a 
large amount of memory to store all experiences and does not 
require the removal of experiences from the replay memory. 

Even with the improvements in ER strategies, they have 
limitations. The TDE is susceptible to noise, differences in 
function approximation accuracy, and randomness in the 
environment [15], [16], [18], [19], [20]. The FIFO strategy is 
affected by rapid changes in the state distribution, and Resv has 
premature data distribution convergence and poor coverage of 
state action over the optimal policy. Exploration takes longer to 
learn the correct value function, and Full DB promotes the rise 
of irrelevant experiences in the replay buffer [16]. Hence, there 
is still ample room for improvement in designing more 
efficient and effective experience retention strategies. 

The proposed experience replay optimization with 
enhanced sequential memory management (ERO-ESMM) is a 
novel reinforcement learning algorithm that aims to improve 
the learning stability of DRL agents. The ERO-ESMM 
algorithm uses an enhanced sequential memory management 
(ESMM) strategy to manage the replay memory efficiently and 
stabilize the agent's performance. Compared to five existing 
experience retention strategies, the experimental results 
indicate that ERO-ESMM exhibits superior performance. 

In this study, we present an enhanced experience retention 
strategy for DRL. Our proposed strategy aims to improve the 
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efficiency and effectiveness of experience replay by carefully 
managing experiences within the replay memory. The primary 
advancements presented in this study can be outlined as 
follows: 

1) Firstly, we develop three new retention strategies to 

improve the efficiency and effectiveness of experience replay. 

2) Secondly, we investigate the effects of six retention 

strategies, including the enhanced FIFO, on the ERO-

enhanced DDPG algorithm. 

3) Finally, we propose an enhanced framework 

incorporating the highest-performing retention strategy into 

the ERO framework. 

We review existing experience retention strategies in 
Section III to achieve these objectives. We then present our 
enhanced retention strategy, outlining its core principles and 
rationale in Section III. Subsequently, we describe the 
experimental setup used to evaluate the performance of our 
approach in Section IV and provide detailed results and 
analysis. Finally, in Section V, we conclude our study and 
recommend future work in the field. 

II. RELATED WORK 

We recognize that sampling and retention strategies are 
essential to experience replay in reinforcement-learning 
algorithms. This section briefly overviews the experience 
replay mechanism and sampling strategy. However, the section 
focuses on retention strategies, explicitly identifying those that 
effectively improve the performance of RL algorithms that use 
experience replays. The section explains the actor-critic 
method since the study seeks to improve an actor-critic 
algorithm (DDPG). 

A. Experience Replay 

With ER, an agent generates experiences using an 
exploration-exploitation method at specific intervals and stores 
them in fixed-size replay memory. The agent then samples 
these experiences uniformly and randomly from the replay 
buffer into a mini-batch and repeatedly uses them to train the 
RL algorithm. This random selection prevents high correlation 
among the sampled experiences. 

ER was first introduced by Lin [21] in the early 1990s, but 
it gained widespread attention when Mnih et al. [12] combined 
it with a deep convolutional neural network to create a 
groundbreaking deep Q-network (DQN) algorithm. Since then, 
ER has become a critical component of RL algorithms, 
allowing them to use experience effectively and reduce the 
interactions required with the environment. Before the 
introduction of ER, algorithms such as Q-learning [20], which 
relied on a tabular data storage mechanism, could not retain 
previous state-action values because the current ones of the 
same state-action pair would overwrite them. This 
"catastrophic forgetting’ [22], [23], [24], [25], [26] behavior 
leads to slower learning and poor algorithm convergence. 

Although many algorithms that implement diverse 
sampling strategies have been developed, the size and data 
structure of the replay buffer, mini-batch size, experience 
retention rate, experience sampling, and retention techniques 

significantly influence the performance of these algorithms 
[40]. The selection of the experience index for experience 
sampling or retention can be sequential or random (uniform or 
prioritized probability). Sequential index selection is not 
appropriate for experience sampling because it creates a high 
correlation among the selected experiences, which 
subsequently slows down the agent's learning [12], [13], [34], 
[41]. Table I shows that most cited RL algorithms use a 
sequential index selection approach to remove experiences 
from the replay memory.  

TABLE I.  SOME RL ALGORITHMS AND THEIR EXPERIENCE INDEX 

SELECTION APPROACH FOR EXPERIENCE RETENTION 

Algorithm 

Experience Index Selection 

Approach 

Sequential Random 

 Uniform Priority 

Deep Q-Network (DQN) [12]     

Double DQN[27]     

Dueling DQN[28]     

Prioritized Experience Replay (PER) 
[29] 

    

Deep Deterministic Policy Gradient 

(DDPG) [30] 
    

Twin Delayed Deep Deterministic 

Policy Gradient (TD3) [18] 
    

Trust Region Policy Optimisation 
(TRPO) [31] 

    

Proximal Policy Optimisation (PPO) 

[32] 
    

Episodic Memory Deep Q-Network 
(EMDQN) [33] 

    

Advantage Actor-Critic (A2C) + 

Prioritized Stochastic Memory 
Management (PSMM) [20], [34] 

    

DQN + Dual Memory Structure 

(DMS) [12], [35] 
     

DDPG + Experience Replay 

Optimisation (ERO) [30], [36] 
    

Combined Experience Replay (CER) 

[37] 
 

    

Attentive Experience Replay (AER) 

[38] 
    

Selective Experience Replay (SER) 

[17] 
     

Prioritized Sequence Experience 
Replay (PSER) [39] 

    

The advancements in ER are incorporated in many popular 
RL algorithms, such as DQN [12], dueling DQN [28], double 
DQN [27], twin delayed deep deterministic policy gradient 
(TD3)[18], deep deterministic policy gradient (DDPG) [30], 
proximal policy optimization (PPO)[32], episodic memory 
deep Q-Network (EMDQN) [33], and trust region policy 
optimization (TRPO) [31], still use the naïve ER uniform 
random sampling strategy. Other algorithms, such as 
prioritized experience replay (PER) [36], prioritized sequence 
experience replay (PSER) [37], experience replay optimization 
(ERO) [38], and attentive experience replay (AER) [39], 
implement prioritized strategies. Equally, prioritized stochastic 
memory management (PSMM) [20], combined experience 
replay (CER) [37], selective experience replay (SER) [17], and 
episodic memory control (EMC)[40] use experience retention 
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strategies (memory management strategies). In contrast, some 
replay strategies focus on the structure of the replay memory 
instead of the content[35], [42], [43]. ERO has proven superior 
among prioritized selection algorithms, owing to its easy 
adaptation and generalization to multiple environments [23]. 

B. Experience Retention Strategies and Algorithms 

Experience retention plays a critical role in the success of 
ER algorithms. We can only select the experiences available in 
the replay buffer for training. If valuable experiences are 
maintained in the buffer, there will be a higher probability of 
sampling a mini-batch full of relevant experience to train the 
RL agent. In contrast, the worst training could be given to the 
agent. Therefore, it is imperative to investigate and unearth 
innovative ways to improve existing retention strategies or, 
better still, develop new ones. 

The naïve approach of randomly selecting buffered 
experiences uniformly or managing the replay memory with a 
simple FIFO strategy is simple but less successful than the 
prioritized approach for managing the replay buffer [16], [29], 
[44]. Recent enhanced works on experience replay have relied 
on rule-based strategies that directly prioritize transitions 
through sampling strategies or indirectly through retention 
strategies [36]. However, some prioritized strategies 
incorporate a certain degree of randomness during 
implementation, using hyperparameters to regulate 
prioritization. Prioritization relies on features such as the 
temporal difference error (TDE), reward signal, similarities or 
diversity of states[18], or a combination of any of these 
features [20], [36]. A comprehensive study by de Bruin et al. 
[16] outlines age, exploration, and surprise as the criteria for 
retaining experiences in the buffer. 

Retention depends on the duration for which an experience 
remains in the buffer. FIFO, Full DB, and Reservoir are 
strategies that rely on age. Although FIFO uses sequential 
indexing to remove old experiences without regard for their 
contribution to learning, Reservoir overwrites experiences in a 
uniformly random fashion and has limited state-action 
coverage. The Full DB method accommodates all experiences 
until the end of the training but may retain irrelevant 
experiences. 

It is worth noting that there are better choices than the 
exploration criteria when dealing with problems that require 
minimal interaction with the agent's environment [16]. TDE is 
an expression of the surprise between the targeted and 
predicted q-values. Overfitting can occur if not parameterized 

and regulated [29], [40]. Actor-Critic Method Two major 

approaches in RL, value-based and policy-based methods, have 
been widely explored. Value-based methods estimate the value 
function, while policy-based methods directly optimize the 
agent's policy [1]. However, each approach has its limitations. 
Value-based methods tend to suffer from overestimation, the 
curse of dimensionality, and are often computationally 
expensive. On the other hand, policy-based methods can be 
inefficient in exploring the environment and may need help 
with convergence [13], [18], [45]. To address these challenges, 
the actor-critic algorithm, a hybrid approach, combines the 
strengths of value-based and policy-based methods [13], [18], 
[46]. It consists of two key components: the actor and the 

critic. The actor represents the policy and selects actions based 
on the observed states. The critic estimates the value function, 
providing feedback to the actor by evaluating the chosen 
actions. 

The actor is typically implemented as a parametric model, 
like a neural network, which maps states to a probability 
distribution over actions. It explores the environment, collects 
experiences, and adjusts its policy based on the rewards it 
receives. The critic, represented by a parametric model, 
estimates the value function by approximating the expected 
cumulative reward associated with states or actions. By 
combining the strengths of both approaches, actor-critic 
algorithms can achieve faster convergence, more stable 
learning, and better performance in a wide range of RL 
problems. This hybrid approach has found successful 
applications in various domains, including robotics control, 
game playing, and natural language processing [15], [34]. 

III. METHODOLOGY 

This section briefly introduces ERO and PSMM while 
paying particular attention to the selection and retention 
strategies used. It further presents the proposed framework and 
implemented algorithms. 

A. Experience Replay Optimization 

ERO is an experience selection method that relies on 
Reward and TDE for prioritization [36]. Unlike other TDE 
prioritization sampling strategies that favor experiences with 
higher TD errors, ERO selects less surprised TDE experiences 
and uses a novel replay policy network for the prioritization 
process. A mini-batch of high-priority transitions (transitions 
with vector 1) was created, and its elements were uniformly 
sampled to train the agent [23]. After the agent interacts with 
the environment, the transitions are stored in the replay buffer 
and subsequently prioritized through a Boolean (0, 1) 
vectorization process using the replay policy. During training, 
the replay policy receives feedback from the environment for 
policy evaluation. 

Since the performance of a sampling strategy is highly 
dependent on the implementing algorithm and the benchmark 
environment [16], there is the need for a sampling method that 
can learn and adapt to different algorithms and environments - 
ERO does rightly so. ERO still uses the FIFO retention strategy 
despite its novel adapting strategy and superior performance 
over prioritized sampling methods such as PER [36], [44]. 

Hence, when the replay memory exceeds its capacity, the 
oldest transition is sequentially replaced with a new transition, 
irrespective of its importance in learning. Nonetheless, when 
relevant transitions are retained and frequently sampled using 
an intelligent index selection strategy, we are optimistic that 
the agent's performance and convergence rate will improve 
[14], [45], [47]. Therefore, there is a need to augment ERO 
with a memory management mechanism that is better than 
FIFO[16]. The beauty and novelty of the ERO algorithm 
depend on its replay policy network, which relies on Eq. (1) to 
Eq. (4). Table II explains the notations used in the equations, 
and the replay policy update is presented in Algorithm 1 [36]. 

  { (   
|  )|     }               (1) 
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where,   denotes the function approximator,    is a 

transition in the replay buffer   .    denotes the parameters 
of  ,    

 is a feature vector, and N is the number of transitions 

in a mini-batch. The priority score function is expressed 

as  (   
|  )  (   ), where the priority score is represented 

by Lambda ( ) .      *   +  is the Bernoulli distribution of 
sample    . The replay reward, cumulative reward of the 
current policy, and cumulative reward of the previous policy 
are denoted by       

 , and    
 respectively. 

Algorithm 1: PolicyUpdate 

Input: 

Cumulative reward of current policy   
  

Cumulative reward of previous policy   
  

Output: 

Sample subset    

Calculate replay reward based on (3) 

For (each replay updating step) do 

 Randomly sample batch *  } form B 

 Update replay policy based on (4) 

End 

Sample subset    from B using (2) 
 

B. Prioritized Stochastic Memory Management 

Experience replay selection strategies are often the focus of 
researchers. However, it is essential to note that a poorly 
designed retention technique can negatively impact the 
performance of the learning agent [16], [17], [20]. One 
proposed method for effective replay memory management is 
prioritized stochastic memory management (PSMM), which 
was introduced by Ko and Chang [35]. The PSMM employs a 
stochastic approach to remove the history with the least TDE 
or return when the replay memory is full, using the probability 
computed in Eq. (5). 

    

   .  (           
( )

               
( )

)/

∑    .  (           
( )

               
( )

)/ 
   

 (5) 

The computation of the probability for elimination (  ) in 
Kwon and Chang’s method involves the utilization of historical 
information through return and temporal difference error 
(TDE) metrics [25]. These metrics were normalized to restrict 
their values from 0 to 1, facilitating unbiased evaluations and 
promoting stable memory management. The method employs 
several hyperparameters, such as       ,        , and  , which 
are optimized for improved performance. The        and 
        determine the relative weights assigned to the actor and 
critic components, respectively, whereas ρ represents a 
probability tuning parameter. This approach ensures the 
effective utilization of historical data and facilitates the 
optimization of the method's parameters. 

The computations for      
( )

 and         
( )

 are shown in 
Eq. (6) and Eq. (7), respectively. 
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TABLE II.  SYMBOLS AND NOTATIONS USED IN THIS SECTION 

Notation Explanation 

  Function approximator 

  Replay buffer 

   A transition in the replay buffer B 

   Parameters of the function approximator 

   
 Feature vector 

  Priority score 

   Cumulative reward 

  
  Cumulative reward of current policy 

   
  Cumulative reward of previous policy 

   A specified batch size of sampled transitions 

  Probability tuning parameter 

  Parameter for tuning the probability of elimination 

C. Proposed Framework 

Researchers have recently harnessed and combined various 
algorithms' strengths to create resilient, stable, and generalized 
hybrid algorithms. Our proposed framework amalgamates the 
ERO framework and enhances the FIFO retention strategy. 

 
Fig. 1. A preliminary experiment was conducted to identify the optimum 

experience retention ratio. When the replay memory capacity is reached, the 

buffered experiences are overwritten using a ratio. A ratio of 2:8 means 20% 
of the old experiences are sequentially overwritten with new experiences, and 

80% are retained. However, for a ratio of 8:2, only 20% of the buffered 

experiences are retained. 
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Fig. 2. Proposed Framework: experience replay optimization with enhanced 

sequential memory management (ERO-ESMM). Transitions from the 

environment are stored in the replay buffer. Mini-batches from the transitions 

are vectorized, prioritized by the replay policy, and sampled uniformly at 
random to train the agent. After training, the replay policy receives feedback 

for policy evaluation. When the memory is full, ESMM ensures that 

transitions in the first half of the replay memory are sequentially overwritten 
with new ones. 

The ESMM, PSMM(α), and PSMM( ) retention strategies 
were developed to create the new framework. While PSMM(α) 
and PSMM( ) use Eq. (8) and Eq. (9), respectively, ESMM 
extends the FIFO retention strategy by sequentially overwriting 
older transitions in the first half of the memory when the 
memory is full. The one-half was arrived at after preliminary 
experiments were conducted using different ratios of the replay 
buffer for experience retention. Fig. 1, which shows the 
preliminary experiment results, confirms that an even 
distribution of old and new experiences in the replay buffer 
enhances the performance of the RL agent. 

The ESMM, PSMM(α), and PSMM(  ) strategies and 
FIFO, Full DB, and Resv were further investigated to ascertain 
their effects on the ERO-enhanced DDPG algorithm. The 
strategy with the highest mean return, ESMM, was 
incorporated into the ERO framework to propose an improved 
framework, an experience replay optimization with enhanced 
sequential memory management (ERO-ESMM). The proposed 
framework and its algorithm are shown in Fig. 2 and Algorithm 
2, respectively. 

Algorithm 2: ERO-ESMM Enhanced DDPG  

Initialize policy  , replay policy   and buffer B 
For (each iteration) do 
 For (each time-step t) do 

  Select action at according to   and state st 

  Execute action at and observe st+1 and rt 

  If (B is full) then 

   If (index i+1 == ½ len(B) ) then 

   i=0 

   Else 

   i =(i+1) mod len(B) 

   End 

   Store transition(st, at, rt, st+1) at    

  End 

  If (episode is complete) then 

   Calculate the cumulative reward   
  

   If (     
       ) then 

      = PolicyUpdate(    
 ,  

  , B)      

   End 

   Set     
     

  

  End 

 End 

 For (each training step) do 

 Uniformly sample a batch *  } from    
 Update the critic of   

 Update the actor of   

 Update the target networks 

 Update the   for each transition in *  } 

 End 

End 
 

D. Setup of RL Environment 

To ascertain the efficiency of the proposed framework, we 
conducted a series of experiments in the Pendulum-v0, 
MountainCarContinuous-v0, LunarLandarContinuous-v2, and 
the BipedalWalker-v3 environments [48] of the OpenAI Gym 
as a platform for the evaluation and analysis of results. 
Screenshots of these environments are shown in Fig. 3. 

  
(a)   (b) 

  
(c)   (d) 

Fig. 3. Screenshots of two Classic Control (top row) and two Box2D (down 

row) environments from the OpenAI Gym. Fig. 3(a) and (b) represent the 

Pendulum-v0 and MountainCarContinuous-v0 environments, respectively. 

Fig. 3(c) and (d) represents the LunarLandarContinuous-v2 and the 
BipedalWalker-v3 environments respectively. 

Pendulum-v0 presents a classical inverted pendulum swing-
up problem, which demands that the agent persistently swing 
up the pendulum from an initial arbitrary position until it 
attains an upright position while its 3-dimensional observation 
space comprises angle, acceleration, and angular velocity, its 
action space is continuous, ranging between -2.0 (anti-
clockwise torque) and 2.0 (clockwise torque). The agent's 
rewards depend on its actions and the associated state. 

The MountainCarContinuous-v0 environment is another 
benchmark classical control environment that requires the RL 
agent to apply actions to a car to reach the top of a hill as 
quickly as possible. It is an extension of the classic 
"MountainCar-v0" environment but with continuous action 
space, making it more suitable for problems requiring 
continuous control. It consists of a 2-dimensional observation 
space of the car's position and velocity and a continuous action 
space between -1.0 and 1.0. The RL agent is negatively 
rewarded each time an action is taken until the car reaches the 
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top of the hill. Hence, the agent applies continuous efficient 
actions to overcome the car's inertia and climb the hill. 

LunarLanderContinuous-v2 is an extension of the original 
Box2D discrete action space LunarLander-v2 environment, 
where the agent controls a lunar lander attempting to land on a 
designated landing pad on the moon's surface. In contrast to the 
discrete version, this environment allows the agent to apply a 
range of continuous actions (a throttle that varies between 0 
and 1 and a rotation angle between -1 and 1) instead of 
selecting from a fixed set of discrete actions. It has an 8-
dimensional observation space that includes information about 
the lander's position, velocity, orientation, angular velocity, 
whether the legs are touching the ground, and whether the 
lander has successfully landed. The RL agent receives positive 
rewards for moving closer to the landing pad and a significant 
positive reward for landing safely. Negative rewards are given 
for using fuel, and a slight negative reward is given for each 
time step. 

BipedalWalker-v3 is similarly a Box2D environment where 
the agent controls a bipedal robot with four legs and must learn 
to make it walk and navigate through a complex terrain while 
avoiding obstacles. The challenge lies in learning a coordinated 
sequence of actions to control the robot's joints and achieve 
stable and efficient locomotion. This environment is 
represented by a 24-dimensional observation space, which 
contains information about the position, velocity, angle, 
angular velocity, and state of the joints, feet, and lidar sensors. 
The agent receives positive rewards for progressing forward 
and avoiding obstacles. However, negative rewards are given 
for using excessive torque or falling, encouraging the agent to 
discover stable and effective locomotion strategies. 

The suitability of these environments for the DDPG 
algorithm is attributable to the availability of continuous 
tasks[30]. Thus, the selection of these environments was 
motivated by their compatibility with the requirements of the 
DDPG algorithm and their standard use in previous studies for 
evaluating RL algorithms [49]. 

E. Parameter Setting 

Because the proposed framework extends the ERO-
enhanced DDPG algorithm, the experimental configurations 
were based on the OpenAI DDPG stable baseline[50], and the 
hyperparameters for the sampling and retention methods were 
in line with ERO and PSMM, respectively. However, the 
memory size and number of time steps were adjusted during 
implementation. 

In Table III, six notations and their explanations are clearly 
shown to facilitate comprehension of our visualizations. Aside 
from the Full DB, which has the memory size and number of 
time steps set to 2 × 106, the other five retention strategies 
were evaluated with a memory size of 1 × 106 and time steps 
of 2 × 106. Similar to PSMM[25], we set               
    and        = 0.5 when implementing PSMM( ). In the 
PSMM(α), we rely on an α value 0.6[21]. Other parameters for 
the evaluation of experiments were done on an Intel(R) 
Xeon(R) CPU E3-1220 v6 @ 3.00GHz(4CPUs) with 32GB 
RAM and a Windows Server 2012R2 operating system. 

TABLE III.  EXPERIENCE RETENTION STRATEGIES EVALUATED IN THE 

STUDY 

Notation Explanation 

FIFO Sequentially overwrite old experiences with new ones. 

ESMM 
Replace experiences in the first half of the buffer with new 

ones. 

Full DB 
Experiences are not overwritten. The replay memory stores all 
experiences. 

Resv 
Experiences are uniformly, at random, overwritten with new 

ones. 

PSMM(α) Experiences are stochastically overwritten based on (8) 

PSMM( ) Experiences are stochastically overwritten based on (9) 

IV. RESULTS AND DISCUSSION 

This section examines the comparative effectiveness of the 
retention strategies within each environment. The metric for 
quantifying the performance of the evaluated strategies is the 
mean return. The return, also known as cumulative reward or 
cumulative return, is a measure of the overall success of the RL 
agent in achieving its goals. It is the summation of rewards 
received by the agent at each time step from the start of an 
episode until its termination[1], [51], [52]. The return is 
typically used to evaluate and compare the performance of 
different algorithms and policies in a specific reinforcement 
learning task. The mean return can be derived as follows: 

                                 (10) 

            
  

                  
       (11) 

where,    is the return,      is the reward at time step t, 
and T is the final time-step. 

The performance of each retention strategy was evaluated 
based on the progressive average returns computed using Eq. 
(11). The results are illustrated in Fig. 4 to Fig. 7. 

 In the Pendulum environment, as shown in Fig. 4, the 
ESMM and PSMM(α) strategies exhibit superior performance 
compared to FIFO, while Full DB and PSMM(ρ) strategies 
perform worse. The Resv strategy exhibits limited 
effectiveness as it faces challenges in learning optimal policies 
to stabilize the pendulum. This struggle is reflected in a mean 
return of -1061.29. 

Regarding the MountainCarContinuous-v0 environment, as 
indicated in Fig. 5, the ESMM strategy outperforms all other 
models, including FIFO. The Full DB and Resv strategies 
show some improvement over FIFO, while PSMM(α) and 
PSMM(ρ) perform worse with rewards of -6.05 and -6.46, 
respectively. 

In the LunarLanderContinuous-v2 environment, as shown 
in Fig. 6, the ESMM, PSMM(α), and PSMM(ρ) strategies 
demonstrate superior performance compared to FIFO. The Full 
DB model performs worse than FIFO and PSMM(ρ), while the 
Resv model exhibits the poorest performance. 

Likewise, in the BipedalWalker-v3 environment, the 
ESMM and PSMM(α) models perform better than the FIFO 
strategy. However, the Full DB and Resv models perform 
worse than ESMM and PSMM(α), with PSMM(ρ) showing the 
poorest performance among all models in this environment. 
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Fig. 4. Performance comparison of the six retention strategies evaluated on 

the Pendulum-v0 environment. 

 
Fig. 5. Performance comparison of the six retention strategies evaluated on 

the MountainCarContinuous-v0 environment. 

 
Fig. 6. Performance comparison of the six retention strategies evaluated on 

the LunarLandarContinuous-v2 environment. 

 
Fig. 7. Performance comparison of the six retention strategies evaluated on 

the BipedalWalker-v3 environment. 

The results indicate significant model performance 
variation across different OpenAI Gym environments. The 
ESMM strategy generally exhibits better and more stable 
performance across the experimented environments, which can 
be attributed to its fair distribution of experiences in the replay 
buffer. While the PSMM(α) model performs better in the 
Pendulum environment, the PSMM(ρ) strategy performs better 
than other models, except ESMM, in the Lunar Lander 
Continuous-v2 environment. 

Conversely, the Full DB model tends to perform worse in 
most environments because all experiences are stored, 
including the worst experiences obtained during the early 
stages of the RL agent's training. The Resv strategy's 
performance shows inconsistency across the environments due 
to its entirely random strategy for identifying the experience to 
remove when the replay buffer is full. 

V. CONCLUSION 

In this study, we developed three new retention strategies to 
improve the effectiveness of experience replay. These 
strategies include ESMM, PSMM(α), and PSMM(ρ). The 
development of these strategies is significant, as they provide 
new alternatives for managing the memory of an RL agent in a 
reinforcement learning setting. These strategies addressed 
specific challenges encountered in experience replay, such as 
the trade-off between memory usage and retention of relevant 
experiences. 

This study also investigated the effects of six different 
retention strategies on the ERO-enhanced DDPG algorithm. 
These strategies include FIFO, Full DB, Resv, PSMM (α), 
PSMM(ρ), and our proposed method (ESMM). The results of 
this investigation are significant because they provide insights 
into the comparative performance of different retention 
strategies and help identify the most effective strategy. This 
information can guide the design of more efficient 
reinforcement learning algorithms. 
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Finally, we propose an enhanced framework incorporating 
the highest-performing retention strategy into the ERO 
framework. This enhanced framework, called experience-
replay optimization with enhanced sequential memory 
management (ERO-ESMM), significantly contributes to 
reinforcement learning. By integrating the best-performing 
retention strategy, the framework offers a more optimized 
approach to experience replay, leading to improved 
performance in reinforcement-learning tasks. 

Overall, the experimental results suggest that developing 
new retention strategies, combined with their investigation and 
incorporation into existing frameworks, can significantly 
improve the performance of reinforcement learning algorithms. 
These results have implications for future research and 
demonstrate the importance of exploring new techniques for 
optimizing reinforcement learning. In the future, we will use a 
separate neural network to predict the index of the experience 
to delete from the replay buffer when it exceeds its limit. 
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