
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

715 | P a g e

www.ijacsa.thesai.org

Experience Replay Optimization via ESMM for

Stable Deep Reinforcement Learning

Richard Sakyi Osei, Daphne Lopez

School of Computer Science Engineering and Information Systems

Vellore Institute of Technology, Vellore, India

Abstract—The memorization and reuse of experience,

popularly known as experience replay (ER), has improved the

performance of off-policy deep reinforcement learning (DRL)

algorithms such as deep Q-networks (DQN) and deep

deterministic policy gradients (DDPG). Despite its success, ER

faces the challenges of noisy transitions, large memory sizes, and

unstable returns. Researchers have introduced replay

mechanisms focusing on experience selection strategies to

address these issues. However, the choice of experience retention

strategy has a significant influence on the selection strategy.

Experience Replay Optimization (ERO) is a novel reinforcement

learning algorithm that uses a deep replay policy for experience

selection. However, ERO relies on the naïve first-in-first-out

(FIFO) retention strategy, which seeks to manage replay memory

by constantly retaining recent experiences irrespective of their

relevance to the agent’s learning. FIFO sequentially overwrites

the oldest experience with a new one when the replay memory is

full. To improve the retention strategy of ERO, we propose an

experience replay optimization with enhanced sequential

memory management (ERO-ESMM). ERO-ESMM uses an

improved sequential retention strategy to manage the replay

memory efficiently and stabilize the performance of the DRL

agent. The efficacy of the ESMM strategy is evaluated together

with five additional retention strategies across four distinct

OpenAI environments. The experimental results indicate that

ESMM performs better than the other five fundamental

retention strategies.

Keywords—Experience replay; experience replay optimization;

experience retention strategy; experience selection strategy; replay

memory management

I. INTRODUCTION

Deep reinforcement learning (DRL) has emerged as a
robust framework for training agents to make intelligent
decisions in complex environments [1] in the area of health [2],
[3], [4], automobile [5], [6], robotics [7], [8], energy [9], [10],
[11] and others. RL algorithms aim to maximize cumulative
rewards by allowing an agent to interact with an environment,
learning from trial and error. One crucial component of RL is
experience replay (ER), which involves reusing past
experiences to enhance the learning process. ER has been
successful in the RL field since its implementation in the deep
Q-network (DQN) algorithm [12] and has undergone numerous
improvements by researchers. It has proven to be a valuable
technique, facilitating improved sample efficiency, breaking
transition correlations, stabilizing learning dynamics, and
reducing the cost of training [12], [13], [14], [15]. However,
the effectiveness of ER strongly relies on selecting and
retaining relevant experiences [16]. Experience sampling

involves the sequential or stochastic (random) selection of an
experience index (the array index of the stored transitions) to
determine the experience to use for training the RL agent. In
contrast, experience retention focuses on strategies that can be
adopted to determine the experiences to be stored and how
these experiences can be managed in the replay buffer to
optimize the learning process.

In recent years, various ER strategies have been proposed
to address the challenges associated with experience retention.
Isele and Cosgan [17] suggests that strategies for sampling
experiences can be based on surprise, reward, state-space
coverage, global training distribution, and state-action
similarities. Similarly, de Bruin et al. [16] identified the full
database (Full DB), first-in-first-out (FIFO), temporal
difference error (TDE), and exploration as strategies for
experience retention. They assert that while the FIFO strategy
sequentially replaces old experiences irrespective of their
relevance to learning, the exploration strategy stochastically
overwrites the least-explored experience. The TDE strategy
stochastically overwrites the least surprising experience, while
the Resv approach ensures that "observed" experiences have
equal retention rights. Moreover, the Full DB strategy uses a
large amount of memory to store all experiences and does not
require the removal of experiences from the replay memory.

Even with the improvements in ER strategies, they have
limitations. The TDE is susceptible to noise, differences in
function approximation accuracy, and randomness in the
environment [15], [16], [18], [19], [20]. The FIFO strategy is
affected by rapid changes in the state distribution, and Resv has
premature data distribution convergence and poor coverage of
state action over the optimal policy. Exploration takes longer to
learn the correct value function, and Full DB promotes the rise
of irrelevant experiences in the replay buffer [16]. Hence, there
is still ample room for improvement in designing more
efficient and effective experience retention strategies.

The proposed experience replay optimization with
enhanced sequential memory management (ERO-ESMM) is a
novel reinforcement learning algorithm that aims to improve
the learning stability of DRL agents. The ERO-ESMM
algorithm uses an enhanced sequential memory management
(ESMM) strategy to manage the replay memory efficiently and
stabilize the agent's performance. Compared to five existing
experience retention strategies, the experimental results
indicate that ERO-ESMM exhibits superior performance.

In this study, we present an enhanced experience retention
strategy for DRL. Our proposed strategy aims to improve the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

716 | P a g e

www.ijacsa.thesai.org

efficiency and effectiveness of experience replay by carefully
managing experiences within the replay memory. The primary
advancements presented in this study can be outlined as
follows:

1) Firstly, we develop three new retention strategies to

improve the efficiency and effectiveness of experience replay.

2) Secondly, we investigate the effects of six retention

strategies, including the enhanced FIFO, on the ERO-

enhanced DDPG algorithm.

3) Finally, we propose an enhanced framework

incorporating the highest-performing retention strategy into

the ERO framework.

We review existing experience retention strategies in
Section III to achieve these objectives. We then present our
enhanced retention strategy, outlining its core principles and
rationale in Section III. Subsequently, we describe the
experimental setup used to evaluate the performance of our
approach in Section IV and provide detailed results and
analysis. Finally, in Section V, we conclude our study and
recommend future work in the field.

II. RELATED WORK

We recognize that sampling and retention strategies are
essential to experience replay in reinforcement-learning
algorithms. This section briefly overviews the experience
replay mechanism and sampling strategy. However, the section
focuses on retention strategies, explicitly identifying those that
effectively improve the performance of RL algorithms that use
experience replays. The section explains the actor-critic
method since the study seeks to improve an actor-critic
algorithm (DDPG).

A. Experience Replay

With ER, an agent generates experiences using an
exploration-exploitation method at specific intervals and stores
them in fixed-size replay memory. The agent then samples
these experiences uniformly and randomly from the replay
buffer into a mini-batch and repeatedly uses them to train the
RL algorithm. This random selection prevents high correlation
among the sampled experiences.

ER was first introduced by Lin [21] in the early 1990s, but
it gained widespread attention when Mnih et al. [12] combined
it with a deep convolutional neural network to create a
groundbreaking deep Q-network (DQN) algorithm. Since then,
ER has become a critical component of RL algorithms,
allowing them to use experience effectively and reduce the
interactions required with the environment. Before the
introduction of ER, algorithms such as Q-learning [20], which
relied on a tabular data storage mechanism, could not retain
previous state-action values because the current ones of the
same state-action pair would overwrite them. This
"catastrophic forgetting’ [22], [23], [24], [25], [26] behavior
leads to slower learning and poor algorithm convergence.

Although many algorithms that implement diverse
sampling strategies have been developed, the size and data
structure of the replay buffer, mini-batch size, experience
retention rate, experience sampling, and retention techniques

significantly influence the performance of these algorithms
[40]. The selection of the experience index for experience
sampling or retention can be sequential or random (uniform or
prioritized probability). Sequential index selection is not
appropriate for experience sampling because it creates a high
correlation among the selected experiences, which
subsequently slows down the agent's learning [12], [13], [34],
[41]. Table I shows that most cited RL algorithms use a
sequential index selection approach to remove experiences
from the replay memory.

TABLE I. SOME RL ALGORITHMS AND THEIR EXPERIENCE INDEX

SELECTION APPROACH FOR EXPERIENCE RETENTION

Algorithm

Experience Index Selection

Approach

Sequential Random

 Uniform Priority

Deep Q-Network (DQN) [12] 

Double DQN[27] 

Dueling DQN[28] 

Prioritized Experience Replay (PER)
[29]



Deep Deterministic Policy Gradient

(DDPG) [30]


Twin Delayed Deep Deterministic

Policy Gradient (TD3) [18]


Trust Region Policy Optimisation
(TRPO) [31]



Proximal Policy Optimisation (PPO)

[32]


Episodic Memory Deep Q-Network
(EMDQN) [33]



Advantage Actor-Critic (A2C) +

Prioritized Stochastic Memory
Management (PSMM) [20], [34]

 

DQN + Dual Memory Structure

(DMS) [12], [35]
 

DDPG + Experience Replay

Optimisation (ERO) [30], [36]


Combined Experience Replay (CER)

[37]



Attentive Experience Replay (AER)

[38]


Selective Experience Replay (SER)

[17]
  

Prioritized Sequence Experience
Replay (PSER) [39]



The advancements in ER are incorporated in many popular
RL algorithms, such as DQN [12], dueling DQN [28], double
DQN [27], twin delayed deep deterministic policy gradient
(TD3)[18], deep deterministic policy gradient (DDPG) [30],
proximal policy optimization (PPO)[32], episodic memory
deep Q-Network (EMDQN) [33], and trust region policy
optimization (TRPO) [31], still use the naïve ER uniform
random sampling strategy. Other algorithms, such as
prioritized experience replay (PER) [36], prioritized sequence
experience replay (PSER) [37], experience replay optimization
(ERO) [38], and attentive experience replay (AER) [39],
implement prioritized strategies. Equally, prioritized stochastic
memory management (PSMM) [20], combined experience
replay (CER) [37], selective experience replay (SER) [17], and
episodic memory control (EMC)[40] use experience retention

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

717 | P a g e

www.ijacsa.thesai.org

strategies (memory management strategies). In contrast, some
replay strategies focus on the structure of the replay memory
instead of the content[35], [42], [43]. ERO has proven superior
among prioritized selection algorithms, owing to its easy
adaptation and generalization to multiple environments [23].

B. Experience Retention Strategies and Algorithms

Experience retention plays a critical role in the success of
ER algorithms. We can only select the experiences available in
the replay buffer for training. If valuable experiences are
maintained in the buffer, there will be a higher probability of
sampling a mini-batch full of relevant experience to train the
RL agent. In contrast, the worst training could be given to the
agent. Therefore, it is imperative to investigate and unearth
innovative ways to improve existing retention strategies or,
better still, develop new ones.

The naïve approach of randomly selecting buffered
experiences uniformly or managing the replay memory with a
simple FIFO strategy is simple but less successful than the
prioritized approach for managing the replay buffer [16], [29],
[44]. Recent enhanced works on experience replay have relied
on rule-based strategies that directly prioritize transitions
through sampling strategies or indirectly through retention
strategies [36]. However, some prioritized strategies
incorporate a certain degree of randomness during
implementation, using hyperparameters to regulate
prioritization. Prioritization relies on features such as the
temporal difference error (TDE), reward signal, similarities or
diversity of states[18], or a combination of any of these
features [20], [36]. A comprehensive study by de Bruin et al.
[16] outlines age, exploration, and surprise as the criteria for
retaining experiences in the buffer.

Retention depends on the duration for which an experience
remains in the buffer. FIFO, Full DB, and Reservoir are
strategies that rely on age. Although FIFO uses sequential
indexing to remove old experiences without regard for their
contribution to learning, Reservoir overwrites experiences in a
uniformly random fashion and has limited state-action
coverage. The Full DB method accommodates all experiences
until the end of the training but may retain irrelevant
experiences.

It is worth noting that there are better choices than the
exploration criteria when dealing with problems that require
minimal interaction with the agent's environment [16]. TDE is
an expression of the surprise between the targeted and
predicted q-values. Overfitting can occur if not parameterized

and regulated [29], [40]. Actor-Critic Method Two major

approaches in RL, value-based and policy-based methods, have
been widely explored. Value-based methods estimate the value
function, while policy-based methods directly optimize the
agent's policy [1]. However, each approach has its limitations.
Value-based methods tend to suffer from overestimation, the
curse of dimensionality, and are often computationally
expensive. On the other hand, policy-based methods can be
inefficient in exploring the environment and may need help
with convergence [13], [18], [45]. To address these challenges,
the actor-critic algorithm, a hybrid approach, combines the
strengths of value-based and policy-based methods [13], [18],
[46]. It consists of two key components: the actor and the

critic. The actor represents the policy and selects actions based
on the observed states. The critic estimates the value function,
providing feedback to the actor by evaluating the chosen
actions.

The actor is typically implemented as a parametric model,
like a neural network, which maps states to a probability
distribution over actions. It explores the environment, collects
experiences, and adjusts its policy based on the rewards it
receives. The critic, represented by a parametric model,
estimates the value function by approximating the expected
cumulative reward associated with states or actions. By
combining the strengths of both approaches, actor-critic
algorithms can achieve faster convergence, more stable
learning, and better performance in a wide range of RL
problems. This hybrid approach has found successful
applications in various domains, including robotics control,
game playing, and natural language processing [15], [34].

III. METHODOLOGY

This section briefly introduces ERO and PSMM while
paying particular attention to the selection and retention
strategies used. It further presents the proposed framework and
implemented algorithms.

A. Experience Replay Optimization

ERO is an experience selection method that relies on
Reward and TDE for prioritization [36]. Unlike other TDE
prioritization sampling strategies that favor experiences with
higher TD errors, ERO selects less surprised TDE experiences
and uses a novel replay policy network for the prioritization
process. A mini-batch of high-priority transitions (transitions
with vector 1) was created, and its elements were uniformly
sampled to train the agent [23]. After the agent interacts with
the environment, the transitions are stored in the replay buffer
and subsequently prioritized through a Boolean (0, 1)
vectorization process using the replay policy. During training,
the replay policy receives feedback from the environment for
policy evaluation.

Since the performance of a sampling strategy is highly
dependent on the implementing algorithm and the benchmark
environment [16], there is the need for a sampling method that
can learn and adapt to different algorithms and environments -
ERO does rightly so. ERO still uses the FIFO retention strategy
despite its novel adapting strategy and superior performance
over prioritized sampling methods such as PER [36], [44].

Hence, when the replay memory exceeds its capacity, the
oldest transition is sequentially replaced with a new transition,
irrespective of its importance in learning. Nonetheless, when
relevant transitions are retained and frequently sampled using
an intelligent index selection strategy, we are optimistic that
the agent's performance and convergence rate will improve
[14], [45], [47]. Therefore, there is a need to augment ERO
with a memory management mechanism that is better than
FIFO[16]. The beauty and novelty of the ERO algorithm
depend on its replay policy network, which relies on Eq. (1) to
Eq. (4). Table II explains the notations used in the equations,
and the replay policy update is presented in Algorithm 1 [36].

 { (
|)| } (1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

718 | P a g e

www.ijacsa.thesai.org

 * | + (2)

 (3)

 (|) ∑
 , () ()-

 (4)

where, denotes the function approximator, is a

transition in the replay buffer . denotes the parameters
of ,

 is a feature vector, and N is the number of transitions

in a mini-batch. The priority score function is expressed

as (
|) (), where the priority score is represented

by Lambda () . * + is the Bernoulli distribution of
sample . The replay reward, cumulative reward of the
current policy, and cumulative reward of the previous policy
are denoted by

 , and
 respectively.

Algorithm 1: PolicyUpdate

Input:

Cumulative reward of current policy

Cumulative reward of previous policy

Output:

Sample subset

Calculate replay reward based on (3)

For (each replay updating step) do

 Randomly sample batch * } form B

 Update replay policy based on (4)

End

Sample subset from B using (2)

B. Prioritized Stochastic Memory Management

Experience replay selection strategies are often the focus of
researchers. However, it is essential to note that a poorly
designed retention technique can negatively impact the
performance of the learning agent [16], [17], [20]. One
proposed method for effective replay memory management is
prioritized stochastic memory management (PSMM), which
was introduced by Ko and Chang [35]. The PSMM employs a
stochastic approach to remove the history with the least TDE
or return when the replay memory is full, using the probability
computed in Eq. (5).

 . (
()

()

)/

∑ . (
()

()

)/

 (5)

The computation of the probability for elimination () in
Kwon and Chang’s method involves the utilization of historical
information through return and temporal difference error
(TDE) metrics [25]. These metrics were normalized to restrict
their values from 0 to 1, facilitating unbiased evaluations and
promoting stable memory management. The method employs
several hyperparameters, such as , , and , which
are optimized for improved performance. The and
 determine the relative weights assigned to the actor and
critic components, respectively, whereas ρ represents a
probability tuning parameter. This approach ensures the
effective utilization of historical data and facilitates the
optimization of the method's parameters.

The computations for
()

 and
()

 are shown in
Eq. (6) and Eq. (7), respectively.

() *

 (6)

() *

 (7)

.
()

/

∑ .
()

/

 (8)

 . (
()

)/

∑ . (
()

)/

 (9)

TABLE II. SYMBOLS AND NOTATIONS USED IN THIS SECTION

Notation Explanation

 Function approximator

 Replay buffer

 A transition in the replay buffer B

 Parameters of the function approximator

 Feature vector

 Priority score

 Cumulative reward

 Cumulative reward of current policy

 Cumulative reward of previous policy

 A specified batch size of sampled transitions

 Probability tuning parameter

 Parameter for tuning the probability of elimination

C. Proposed Framework

Researchers have recently harnessed and combined various
algorithms' strengths to create resilient, stable, and generalized
hybrid algorithms. Our proposed framework amalgamates the
ERO framework and enhances the FIFO retention strategy.

Fig. 1. A preliminary experiment was conducted to identify the optimum

experience retention ratio. When the replay memory capacity is reached, the

buffered experiences are overwritten using a ratio. A ratio of 2:8 means 20%
of the old experiences are sequentially overwritten with new experiences, and

80% are retained. However, for a ratio of 8:2, only 20% of the buffered

experiences are retained.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

719 | P a g e

www.ijacsa.thesai.org

Fig. 2. Proposed Framework: experience replay optimization with enhanced

sequential memory management (ERO-ESMM). Transitions from the

environment are stored in the replay buffer. Mini-batches from the transitions

are vectorized, prioritized by the replay policy, and sampled uniformly at
random to train the agent. After training, the replay policy receives feedback

for policy evaluation. When the memory is full, ESMM ensures that

transitions in the first half of the replay memory are sequentially overwritten
with new ones.

The ESMM, PSMM(α), and PSMM() retention strategies
were developed to create the new framework. While PSMM(α)
and PSMM() use Eq. (8) and Eq. (9), respectively, ESMM
extends the FIFO retention strategy by sequentially overwriting
older transitions in the first half of the memory when the
memory is full. The one-half was arrived at after preliminary
experiments were conducted using different ratios of the replay
buffer for experience retention. Fig. 1, which shows the
preliminary experiment results, confirms that an even
distribution of old and new experiences in the replay buffer
enhances the performance of the RL agent.

The ESMM, PSMM(α), and PSMM() strategies and
FIFO, Full DB, and Resv were further investigated to ascertain
their effects on the ERO-enhanced DDPG algorithm. The
strategy with the highest mean return, ESMM, was
incorporated into the ERO framework to propose an improved
framework, an experience replay optimization with enhanced
sequential memory management (ERO-ESMM). The proposed
framework and its algorithm are shown in Fig. 2 and Algorithm
2, respectively.

Algorithm 2: ERO-ESMM Enhanced DDPG

Initialize policy , replay policy and buffer B
For (each iteration) do
 For (each time-step t) do

 Select action at according to and state st

 Execute action at and observe st+1 and rt

 If (B is full) then

 If (index i+1 == ½ len(B)) then

 i=0

 Else

 i =(i+1) mod len(B)

 End

 Store transition(st, at, rt, st+1) at

 End

 If (episode is complete) then

 Calculate the cumulative reward

 If (
) then

 = PolicyUpdate(
 ,

 , B)

 End

 Set

 End

 End

 For (each training step) do

 Uniformly sample a batch * } from
 Update the critic of

 Update the actor of

 Update the target networks

 Update the for each transition in * }

 End

End

D. Setup of RL Environment

To ascertain the efficiency of the proposed framework, we
conducted a series of experiments in the Pendulum-v0,
MountainCarContinuous-v0, LunarLandarContinuous-v2, and
the BipedalWalker-v3 environments [48] of the OpenAI Gym
as a platform for the evaluation and analysis of results.
Screenshots of these environments are shown in Fig. 3.

(a) (b)

(c) (d)

Fig. 3. Screenshots of two Classic Control (top row) and two Box2D (down

row) environments from the OpenAI Gym. Fig. 3(a) and (b) represent the

Pendulum-v0 and MountainCarContinuous-v0 environments, respectively.

Fig. 3(c) and (d) represents the LunarLandarContinuous-v2 and the
BipedalWalker-v3 environments respectively.

Pendulum-v0 presents a classical inverted pendulum swing-
up problem, which demands that the agent persistently swing
up the pendulum from an initial arbitrary position until it
attains an upright position while its 3-dimensional observation
space comprises angle, acceleration, and angular velocity, its
action space is continuous, ranging between -2.0 (anti-
clockwise torque) and 2.0 (clockwise torque). The agent's
rewards depend on its actions and the associated state.

The MountainCarContinuous-v0 environment is another
benchmark classical control environment that requires the RL
agent to apply actions to a car to reach the top of a hill as
quickly as possible. It is an extension of the classic
"MountainCar-v0" environment but with continuous action
space, making it more suitable for problems requiring
continuous control. It consists of a 2-dimensional observation
space of the car's position and velocity and a continuous action
space between -1.0 and 1.0. The RL agent is negatively
rewarded each time an action is taken until the car reaches the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

720 | P a g e

www.ijacsa.thesai.org

top of the hill. Hence, the agent applies continuous efficient
actions to overcome the car's inertia and climb the hill.

LunarLanderContinuous-v2 is an extension of the original
Box2D discrete action space LunarLander-v2 environment,
where the agent controls a lunar lander attempting to land on a
designated landing pad on the moon's surface. In contrast to the
discrete version, this environment allows the agent to apply a
range of continuous actions (a throttle that varies between 0
and 1 and a rotation angle between -1 and 1) instead of
selecting from a fixed set of discrete actions. It has an 8-
dimensional observation space that includes information about
the lander's position, velocity, orientation, angular velocity,
whether the legs are touching the ground, and whether the
lander has successfully landed. The RL agent receives positive
rewards for moving closer to the landing pad and a significant
positive reward for landing safely. Negative rewards are given
for using fuel, and a slight negative reward is given for each
time step.

BipedalWalker-v3 is similarly a Box2D environment where
the agent controls a bipedal robot with four legs and must learn
to make it walk and navigate through a complex terrain while
avoiding obstacles. The challenge lies in learning a coordinated
sequence of actions to control the robot's joints and achieve
stable and efficient locomotion. This environment is
represented by a 24-dimensional observation space, which
contains information about the position, velocity, angle,
angular velocity, and state of the joints, feet, and lidar sensors.
The agent receives positive rewards for progressing forward
and avoiding obstacles. However, negative rewards are given
for using excessive torque or falling, encouraging the agent to
discover stable and effective locomotion strategies.

The suitability of these environments for the DDPG
algorithm is attributable to the availability of continuous
tasks[30]. Thus, the selection of these environments was
motivated by their compatibility with the requirements of the
DDPG algorithm and their standard use in previous studies for
evaluating RL algorithms [49].

E. Parameter Setting

Because the proposed framework extends the ERO-
enhanced DDPG algorithm, the experimental configurations
were based on the OpenAI DDPG stable baseline[50], and the
hyperparameters for the sampling and retention methods were
in line with ERO and PSMM, respectively. However, the
memory size and number of time steps were adjusted during
implementation.

In Table III, six notations and their explanations are clearly
shown to facilitate comprehension of our visualizations. Aside
from the Full DB, which has the memory size and number of
time steps set to 2 × 106, the other five retention strategies
were evaluated with a memory size of 1 × 106 and time steps
of 2 × 106. Similar to PSMM[25], we set
 and = 0.5 when implementing PSMM(). In the
PSMM(α), we rely on an α value 0.6[21]. Other parameters for
the evaluation of experiments were done on an Intel(R)
Xeon(R) CPU E3-1220 v6 @ 3.00GHz(4CPUs) with 32GB
RAM and a Windows Server 2012R2 operating system.

TABLE III. EXPERIENCE RETENTION STRATEGIES EVALUATED IN THE

STUDY

Notation Explanation

FIFO Sequentially overwrite old experiences with new ones.

ESMM
Replace experiences in the first half of the buffer with new

ones.

Full DB
Experiences are not overwritten. The replay memory stores all
experiences.

Resv
Experiences are uniformly, at random, overwritten with new

ones.

PSMM(α) Experiences are stochastically overwritten based on (8)

PSMM() Experiences are stochastically overwritten based on (9)

IV. RESULTS AND DISCUSSION

This section examines the comparative effectiveness of the
retention strategies within each environment. The metric for
quantifying the performance of the evaluated strategies is the
mean return. The return, also known as cumulative reward or
cumulative return, is a measure of the overall success of the RL
agent in achieving its goals. It is the summation of rewards
received by the agent at each time step from the start of an
episode until its termination[1], [51], [52]. The return is
typically used to evaluate and compare the performance of
different algorithms and policies in a specific reinforcement
learning task. The mean return can be derived as follows:

 (10)

 (11)

where, is the return, is the reward at time step t,
and T is the final time-step.

The performance of each retention strategy was evaluated
based on the progressive average returns computed using Eq.
(11). The results are illustrated in Fig. 4 to Fig. 7.

 In the Pendulum environment, as shown in Fig. 4, the
ESMM and PSMM(α) strategies exhibit superior performance
compared to FIFO, while Full DB and PSMM(ρ) strategies
perform worse. The Resv strategy exhibits limited
effectiveness as it faces challenges in learning optimal policies
to stabilize the pendulum. This struggle is reflected in a mean
return of -1061.29.

Regarding the MountainCarContinuous-v0 environment, as
indicated in Fig. 5, the ESMM strategy outperforms all other
models, including FIFO. The Full DB and Resv strategies
show some improvement over FIFO, while PSMM(α) and
PSMM(ρ) perform worse with rewards of -6.05 and -6.46,
respectively.

In the LunarLanderContinuous-v2 environment, as shown
in Fig. 6, the ESMM, PSMM(α), and PSMM(ρ) strategies
demonstrate superior performance compared to FIFO. The Full
DB model performs worse than FIFO and PSMM(ρ), while the
Resv model exhibits the poorest performance.

Likewise, in the BipedalWalker-v3 environment, the
ESMM and PSMM(α) models perform better than the FIFO
strategy. However, the Full DB and Resv models perform
worse than ESMM and PSMM(α), with PSMM(ρ) showing the
poorest performance among all models in this environment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

721 | P a g e

www.ijacsa.thesai.org

Fig. 4. Performance comparison of the six retention strategies evaluated on

the Pendulum-v0 environment.

Fig. 5. Performance comparison of the six retention strategies evaluated on

the MountainCarContinuous-v0 environment.

Fig. 6. Performance comparison of the six retention strategies evaluated on

the LunarLandarContinuous-v2 environment.

Fig. 7. Performance comparison of the six retention strategies evaluated on

the BipedalWalker-v3 environment.

The results indicate significant model performance
variation across different OpenAI Gym environments. The
ESMM strategy generally exhibits better and more stable
performance across the experimented environments, which can
be attributed to its fair distribution of experiences in the replay
buffer. While the PSMM(α) model performs better in the
Pendulum environment, the PSMM(ρ) strategy performs better
than other models, except ESMM, in the Lunar Lander
Continuous-v2 environment.

Conversely, the Full DB model tends to perform worse in
most environments because all experiences are stored,
including the worst experiences obtained during the early
stages of the RL agent's training. The Resv strategy's
performance shows inconsistency across the environments due
to its entirely random strategy for identifying the experience to
remove when the replay buffer is full.

V. CONCLUSION

In this study, we developed three new retention strategies to
improve the effectiveness of experience replay. These
strategies include ESMM, PSMM(α), and PSMM(ρ). The
development of these strategies is significant, as they provide
new alternatives for managing the memory of an RL agent in a
reinforcement learning setting. These strategies addressed
specific challenges encountered in experience replay, such as
the trade-off between memory usage and retention of relevant
experiences.

This study also investigated the effects of six different
retention strategies on the ERO-enhanced DDPG algorithm.
These strategies include FIFO, Full DB, Resv, PSMM (α),
PSMM(ρ), and our proposed method (ESMM). The results of
this investigation are significant because they provide insights
into the comparative performance of different retention
strategies and help identify the most effective strategy. This
information can guide the design of more efficient
reinforcement learning algorithms.

-1100
-1000

-900
-800
-700
-600
-500
-400
-300
-200
-100

M
e

an
 R

e
tu

rn

Retention Strategy

-7

-6

-5

-4

-3

-2

-1

0

M
e

an
 R

e
tu

rn

Retention strategy

-300
-280
-260
-240
-220
-200
-180
-160
-140

M
e

an
 R

e
tu

rn

Retention Strategy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

722 | P a g e

www.ijacsa.thesai.org

Finally, we propose an enhanced framework incorporating
the highest-performing retention strategy into the ERO
framework. This enhanced framework, called experience-
replay optimization with enhanced sequential memory
management (ERO-ESMM), significantly contributes to
reinforcement learning. By integrating the best-performing
retention strategy, the framework offers a more optimized
approach to experience replay, leading to improved
performance in reinforcement-learning tasks.

Overall, the experimental results suggest that developing
new retention strategies, combined with their investigation and
incorporation into existing frameworks, can significantly
improve the performance of reinforcement learning algorithms.
These results have implications for future research and
demonstrate the importance of exploring new techniques for
optimizing reinforcement learning. In the future, we will use a
separate neural network to predict the index of the experience
to delete from the replay buffer when it exceeds its limit.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: an Introduction.
MIT press, 2018.

[2] B. Varghese and S. Krishnakumar, ‘Fast Fractal Coding of MRI Images
using Deep Reinforcement Learning’, IJACSA, vol. 12, no. 4, 2021, doi:
10.14569/IJACSA.2021.0120492.

[3] W. E. Fathy and A. S. Ghoneim, ‘A Deep Learning Approach for Breast
Cancer Mass Detection’, International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 10, no. 1, Art. no. 1, 31 2019,
doi: 10.14569/IJACSA.2019.0100123.

[4] S. Luo, ‘Lung Cancer Classification using Reinforcement Learning-
based Ensemble Learning’, International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 14, no. 8, Art. no. 8, 54/30
2023, doi: 10.14569/IJACSA.2023.01408120.

[5] E. Jacinto, F. Martinez, and F. Martinez, ‘Navigation of Autonomous
Vehicles using Reinforcement Learning with Generalized Advantage
Estimation’, International Journal of Advanced Computer Science and
Applications (IJACSA), vol. 14, no. 1, Art. no. 1, 31 2023, doi:
10.14569/IJACSA.2023.01401103.

[6] I. Rasheed, F. Hu, and L. Zhang, ‘Deep reinforcement learning approach
for autonomous vehicle systems for maintaining security and safety
using LSTM-GAN’, Vehicular Communications, vol. 26, p. 100266,
2020.

[7] Y. Han et al., ‘Deep reinforcement learning for robot collision avoidance
with self-state-attention and sensor fusion’, IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 6886–6893, 2022.

[8] G. E. Setyawan, P. Hartono, and H. Sawada, ‘Cooperative Multi-Robot
Hierarchical Reinforcement Learning’, International Journal of
Advanced Computer Science and Applications (IJACSA), vol. 13, no. 9,
Art. no. 9, Dec. 2022, doi: 10.14569/IJACSA.2022.0130904.

[9] D. An, F. Cui, and X. Kang, ‘Optimal scheduling for charging and
discharging electric vehicles based on deep reinforcement learning’,
Frontiers in Energy Research, vol. 11, 2023, Accessed: Dec. 13, 2023.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/
fenrg.2023.1273820.

[10] H. Zhao et al., ‘Combination optimization method of grid sections based
on deep reinforcement learning with accelerated convergence speed’,
Frontiers in Energy Research, vol. 11, 2023, Accessed: Dec. 13, 2023.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/
fenrg.2023.1269854.

[11] V. L. Narayanan, ‘Reinforcement learning in wind energy - a review’,
International Journal of Green Energy, vol. 0, no. 0, pp. 1–24, 2023, doi:
10.1080/15435075.2023.2281329.

[12] V. Mnih et al., ‘Human-level control through deep reinforcement
learning’, Nature, vol. 518, no. 7540, pp. 529–533, 2015, doi:
10.1038/nature14236.

[13] Z. Wang et al., ‘Sample efficient actor-critic with experience replay’, in
5th International Conference on Learning Representations, ICLR 2017 -
Conference Track Proceedings, 2017.

[14] D. Yang, X. Qin, X. Xu, C. Li, and G. Wei, ‘Sample Efficient
Reinforcement Learning Method via High Efficient Episodic Memory’,
IEEE Access, vol. 8, pp. 129274–129284, 2020, doi:
10.1109/ACCESS.2020.3009329.

[15] T. de Bruin, Sample efficient deep reinforcement learning for control.
2019. doi: 10.4233/uuid.

[16] T. De Bruin, J. Kober, K. Tuyls, and R. Babuška, ‘Experience selection
in deep reinforcement learning for control’, Journal of Machine
Learning Research, vol. 19, pp. 1–56, 2018.

[17] D. Isele and A. Cosgun, ‘Selective experience replay for lifelong
learning’, in Proceedings of the AAAI Conference on Artificial
Intelligence, 2018, pp. 3302–3309.

[18] S. Fujimoto, H. V. Hoof, and D. Meger, ‘Addressing Function
Approximation Error in Actor-Critic Methods’, arXiv preprint
arXiv:1802.09477, 2018.

[19] C. Kang, C. Rong, W. Ren, F. Huo, and P. Liu, ‘Deep Deterministic
Policy Gradient Based on Double Network Prioritized Experience
Replay’, IEEE Access, vol. 9, 2021, doi:
10.1109/ACCESS.2021.3074535.

[20] T. Kwon and D. E. Chang, ‘Prioritized Stochastic Memory Management
for Enhanced Reinforcement Learning’, in 2018 IEEE International
Conference on Consumer Electronics - Asia, ICCE-Asia 2018, 2018, pp.
7–10. doi: 10.1109/ICCE-ASIA.2018.8552124.

[21] L. Lin, ‘Self-improvement Based On Reinforcement Learning, Planning
and Teaching’, in Machine Learning Proceedings 1991, vol. 321, 1992,
pp. 323–327. doi: 10.1016/b978-1-55860-200-7.50067-2.

[22] Z. Li and D. Hoiem, ‘Learning without forgetting’, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 9908 LNCS, pp.
614–629, 2016, doi: 10.1007/978-3-319-46493-0_37.

[23] J. Kirkpatrick et al., ‘Overcoming catastrophic forgetting in neural
networks’, Proceedings of the National Academy of Sciences of the
United States of America, vol. 114, no. 13, pp. 3521–3526, Mar. 2017,
doi: 10.1073/PNAS.1611835114.

[24] R. Kemker, M. McClure, A. Abitino, T. L. Hayes, and C. Kanan,
‘Measuring catastrophic forgetting in neural networks’, in 32nd AAAI
Conference on Artificial Intelligence, AAAI 2018, 2018. doi:
10.1609/aaai.v32i1.11651.

[25] T. L. Hayes, K. Kafle, R. Shrestha, M. Acharya, and C. Kanan,
‘REMIND Your Neural Network to Prevent Catastrophic Forgetting’,
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
12353 LNCS, pp. 466–483, 2020, doi: 10.1007/978-3-030-58598-3_28.

[26] C. Greco, B. Plank, R. Fernández, and R. Bernardi, ‘Measuring
Catastrophic Forgetting in Visual Question Answering’, in Lecture
Notes in Electrical Engineering, vol. 714, 2021. doi: 10.1007/978-981-
15-9323-9_35.

[27] H. V. Hasselt, A. Guez, and D. Silver, ‘Deep Reinforcement Learning
with Double Q-Learning’, in Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence (AAAI-16), 2016, pp. 2094–2100.

[28] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De
Frcitas, ‘Dueling Network Architectures for Deep Reinforcement
Learning’, 33rd International Conference on Machine Learning, ICML
2016, vol. 4, no. 9, pp. 2939–2947, 2016.

[29] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘Prioritized experience
replay’, 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings, pp. 1–21, 2016.

[30] Josh Achiam, ‘Deep Deterministic Policy Gradient’, OpenAI Spinning
Up. [Online]. Available: https://spinningup.openai.com/en/latest/
algorithms/ddpg.t.

[31] P. Schulman, John and Levine, Sergey and Abbeel, Pieter and Jordan,
Michael and Moritz, ‘Trust region policy optimization’, in International
conference on machine, 2015, pp. 1889–1897. doi:
10.3917/rai.067.0031.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

723 | P a g e

www.ijacsa.thesai.org

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘Proximal Policy Optimization Algorithms’, arXiv preprint
arXiv:1707.06347, pp. 1–12, 2017.

[33] Z. Lin, T. Zhao, G. Yang, and L. Zhang, ‘Episodic memory deep q-
networks’, in IJCAI International Joint Conference on Artificial
Intelligence, 2018, pp. 2433–2439. doi: 10.24963/ijcai.2018/337.

[34] V. Mnih, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, and D. Silver,
‘Asynchronous Methods for Deep Reinforcement Learning’, in 33rd
International Conference on Machine Learning, ICML 2016, 2016, pp.
1928--1937.

[35] W. Ko and D. E. Chang, ‘A dual memory structure for efficient use of
replay memory in deep reinforcement learning’, in 2019 19th
International Conference on Control, Automation and Systems (ICCAS),
2019, pp. 1483--1486.

[36] D. Zha, K. H. Lai, K. Zhou, and X. Hu, ‘Experience replay
optimization’, IJCAI International Joint Conference on Artificial
Intelligence, vol. 2019-Augus, pp. 4243–4249, 2019, doi:
10.24963/ijcai.2019/589.

[37] S. Zhang and R. S. Sutton, ‘A deeper look at experience replay’, arXiv
preprint arXiv:1712.01275, 2017.

[38] P. Sun, W. Zhou, and H. Li, ‘Attentive Experience Replay’, in
Proceedings of the AAAI Conference on Artificial Intelligence, 2020,
pp. 5900–5907. doi: 10.1609/aaai.v34i04.6049.

[39] M. Brittain, J. Bertram, X. Yang, and P. Wei, ‘Prioritized sequence
experience replay’, arXiv, 2019.

[40] T. de Bruin, J. Kober, K. Tuyls, and R. Babuska, ‘The importance of
experience replay database composition in deep reinforcement learning’,
Deep Reinforcement Learning Workshop, Advances in Neural
Information Processing Systems (NIPS), pp. 1–9, 2015.

[41] B. Mavrin, H. Yao, and L. Kong, ‘Deep Reinforcement Learning with
Decorrelation’, Mar. 2019, [Online]. Available:
http://arxiv.org/abs/1903.07765.

[42] W. Olin-Ammentorp, Y. Sokolov, and M. Bazhenov, ‘A Dual-Memory
Architecture for Reinforcement Learning on Neuromorphic Platforms’,
Neuromorphic Computing and Engineering, vol. 1, p. 024003, 2021.

[43] N. Kamra, U. Gupta, and Y. Liu, ‘Deep Generative Dual Memory
Network for Continual Learning’. 2017. [Online]. Available:
http://arxiv.org/abs/1710.10368.

[44] R. Liu and J. Zou, ‘The Effects of Memory Replay in Reinforcement
Learning’, 2018 56th Annual Allerton Conference on Communication,
Control, and Computing, Allerton 2018, pp. 478–485, 2019, doi:
10.1109/ALLERTON.2018.8636075.

[45] H. R. Maei, ‘Convergent Actor-Critic Algorithms Under Off-Policy
Training and Function Approximation’. arXiv, Feb. 21, 2018. Accessed:
Nov. 24, 2023. [Online]. Available: http://arxiv.org/abs/1802.07842.

[46] V. R. Konda and J. N. Tsitsiklis, ‘Actor-critic algorithms’, Advances in
Neural Information Processing Systems, pp. 1008–1014, 2000.

[47] J. Tarbouriech, M. Pirotta, M. Valko, and A. Lazaric, ‘A Provably
Efficient Sample Collection Strategy for Reinforcement Learning’, pp.
1–33, 2020.

[48] G. Brockman et al., ‘OpenAI Gym’, arXiv preprint arXiv:1606.01540,
pp. 1–4, 2016.

[49] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D.
Meger, ‘Deep reinforcement learning that matters’, in 32nd AAAI
Conference on Artificial Intelligence, AAAI 2018, 2018.

[50] N. Raffin, Antonin and Hill, Ashley and Ernestus, Maximilian and
Gleave, Adam and Kanervisto, Anssi and Dormann, ‘Stable Baselines’,
GitHub repository, 2019, [Online]. Available: https://github.com/hill-
a/stable-baselines.

[51] E. F. Morales and H. J. Escalante, ‘A brief introduction to supervised,
unsupervised, and reinforcement learning’, in Biosignal processing and
classification using computational learning and intelligence, Elsevier,
2022, pp. 111–129. Accessed: Nov. 25, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B97801282012510001
78.

[52] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J.
Pineau, An introduction to deep reinforcement learning, vol. 11. 2018.
doi: 10.1561/2200000071.

