
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

724 | P a g e

www.ijacsa.thesai.org

Real Time FPGA Implementation of a High Speed for

Video Encryption and Decryption System with High

Level Synthesis Tools

Ahmed Alhomoud

Department of Computer Sciences, Faculty of Computing and Information Technology,

Northern Border University, Rafha 91911, Saudi Arabia

Abstract—The development of communication networks has

made information security more important than ever for both

transmission and storage. Since the majority of networks involve

images, image security is becoming a difficult challenge. In order

to provide real-time image encryption and decryption, this study

suggests an FPGA implementation of a video cryptosystem that

has been well-optimized based on high level synthesis. The

MATLAB HDL coder and Vivado Tools from Xilinx are used in

the design, implementation, and validation of the algorithm on

the Xilinx Zynq FPGA platform. Low resource consumption and

pipeline processing are well-suited to the hardware architecture.

For real-time applications involving secret picture encryption

and decryption, the suggested hardware approach is widely

utilized. This study suggests an implementation of the

encryption-decryption system that is both very efficient and area-

optimized. A unique high-level synthesis (HLS) design technique

based on application-specific bit widths for intermediate data

nodes was used to realize the proposed implementation. For

HLS, MATLAB HDL coder was used to generate register

transfer level RTL design. Using Vivado software, the RTL

design was implemented on the Xilinx ZedBoard, and its

functioning was tested in real time using an input video stream.

The results produced are faster and more area- efficient (target

FPGA has fewer gates than before) than those of earlier solutions

for the same target board.

Keywords—Security; encryption; decryption; AES; HDL coder;

high level synthesis; FPGA; Zynq7000

I. INTRODUCTION

The development of strong, computationally light, and
efficient encryption algorithms is therefore necessary to sup-
port the ongoing increase in data volume and throughput in
Internet of Things applications, as well as video streaming,
real-time video processing, mobile transmissions, and other
related activities. This is because network security has become.
A constant topic for business activities due to the
advancements of information technology (IT) applications
involving sensitive data [1,2]. For governments, banks, and
high-security systems worldwide, the Advanced Encryption
Standard (AES) continues to be the recommended encryption
standard [3,4]. The last encryption technique is the most often
used; it is utilized in 5G systems, WiMAX, Gigabit Ethernet,
and Worldwide Interoperability for Microwave Access [5,6,7].
Furthermore, this algorithm can be effectively implemented on
both software and hardware platforms; AES software versions
give poorer physical security but require fewer resources [8, 9].

However, the increasing need for secure data transmissions
at high speeds and volumes while maintaining physical
security makes hardware implementation of the AES algorithm
imperative [10,11]. The primary challenge with applications
utilized in these domains is to ensure real-time system
operation [2]. Implementing real-time functionality on a
general-purpose computer is often unfeasible due to the
inherent limitations of memory, CPU, and peripheral devices.
Typically, numerous actions are executed on every pixel in the
majority of image processing programs. The sequential
execution of these operations by general-purpose processors
has detrimental effects on both resource use and performance
[2,3]. Nevertheless, FPGAs (Field Programmable Gate Arrays)
possess the potential to function in a parallel manner in relation
to hardware, setting them apart from conventional CPUs.
Operations in FPGAs are partitioned into segments, allowing
for concurrent execution of many operations [12,13]. Fig. 1
presents a complete system for real-time image and video
processing using an embedded system.

The landscape of smart video encryption is evolving
rapidly, demanding sophisticated analysis of live video streams
to accurately identify objects, scenes, and critical events. This
has led to the integration of advanced analysis mechanisms into
the traditional image processing pipelines of modern video
cameras [14]. However, the stringent constraints of real-time
processing and low power consumption inherent in camera
modules limit the complexity and number of operations that
can be feasibly implemented [15]. To address this challenge,
researchers have focused on a select few pre-processing tasks
like motion estimation, image segmentation, and robust video
encryption [15].

Recognizing the growing complexity of computer vision
systems, designers are increasingly turning to higher-level
programming and synthesis tools to expedite the development
process and overcome hardware limitations. Two prominent
tools in this arena are Simulink Hardware Description
Language (HDL) Coder and Xilinx High-Level Synthesis
(HLS) [16, 17]. Xilinx HLS stands out for its exceptional
suitability for designing large-scale computer vision systems. It
boasts the ability to seamlessly integrate pre-existing standard
algorithms and offers comprehensive functional verification,
ensuring accuracy and efficiency [17]. Additionally, HDL
Coder empowers rapid synthesis and verification of diverse
image processing methods, ranging from picture statistics
gathering and custom filtering to color space conversion [16].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

725 | P a g e

www.ijacsa.thesai.org

Fig. 1. Embedded real time image and video processing system.

Nevertheless, there is no specific support for picture
segmentation tasks in the present toolbox version. To
accomplish this, a Simulink model is created that increases this
toolbox’s capacity and supports this essential feature. While
academics have recently proposed a number of advanced
methods for image encryption, implement” encryption
decryption algorithm” implemented [14, 15] into our proposed
hardware in order to minimize the use of logic resources.
Moreover, it has been shown that switching from moving
averaging to weighted averaging reduces the amount of logic
resources needed without sacrificing the accuracy of the
results. As a result, the following can be used to summarize the
contributions of the completed work: Creation of a
synthesizable Simulink model for the AES-based
cryptosystem, which isn’t yet accessible as an intrinsic block in
the Simulink HDL Coder/Vision HDL Coder toolbox
(MATLAB R2018b). By substituting the weighted average for
the moving average, which necessitates an expensive division
operation, logic resource conservation is achieved. In
comparison to earlier methods, this work presents a real-time
implementation of video encryption and decryption on a Xilinx
ZedBoard and shows that it is faster and uses less space on the
FPGA. A unique high-level design technique was used to
create the design, which synthesizes the design with
intermediate signal widths limited by the application (input
stimulus). The rest of this essay is structured as follows: An
introduction to high- level synthesis is given in Section I.
Related work is given in Section II. FPGA High level synthesis
is given in Section III. The AES Encryption and Decryption
architecture is explained in Section IV. Image and video
acceleration is given in Section V. RTL design implementation
mentioned in Section VI. Finally Section VII concludes the
paper.

II. RELATED WORK

Recently, numerous researchers have undertaken
investigations on cryptographic algorithms inside the realm of
Internet of Things (IoT). Reference [18] introduced a dynamic
pass- word access approach for uniformly storing the key

matrix on all nodes. The sender did not need to transmit a basic
key, but rather the storage coordinates of the key matrix. The
receiver then extracted the key from the matrix based on these
coordinates, therefore enhancing the security of key
transmission. Reference [19] introduced a Very Large-Scale
Integration (VLSI) design that incorporates a 64-bit data path
for the lightweight cipher present. This architecture achieves
excellent performance, low power consumption, and a compact
footprint on FPGA, resulting in a high throughput rate. In order
to fulfill the security demands of various application contexts,
distinct techniques are necessary for the encryption and
decryption system to handle data. Reference [20] developed a
customizable encryption system that allowed users to choose
their preferred encryption method from a range of options
specified in the FPGA configuration file, hence enhancing the
flexibility of the system. Reference [21] suggested a hybrid
protocol architecture for Short Message Services (SMS) that
incorporates AES and Rivest Cipher 4 (RC4) algorithms to
enhance the security of smart houses. This solution offered
secure communication in the IoT context, ensuring
confidentiality and randomness. However, it incurred a certain
level of cost in terms of both time and space. Hossain et al. In
study [21] author developed a flexible encryption method on
the FPGA. Users have the option to choose between the AES,
Data Encryption Standard (DES), and 3DES algorithms for
encryption, based on their specific needs. This design enhanced
system adaptability, but incurred wastage of logic resources.
The advent of dynamically reconfigurable technology offered a
superior option to achieve a balance between system flexibility
and hardware resource usage.

Many studies are devoted to creating specialized hardware
accelerators that can be utilized to carry out specific tasks in
applications related to image and video processing. To
showcase the system's functionality, spatial filters were
implemented on the embedded platform Zedboard [22]. The
paper examines a recent study on a hardware accelerator for
video processing, which was developed on an Altera Cyclone
IV FPGA. The accelerator is engineered to possess reduced

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

726 | P a g e

www.ijacsa.thesai.org

processing and memory bandwidth demands. The research
findings are detailed in citation [23, 24]. Platforms Based
Design (PBD) analyzes the Virtex-5 FPGA's performance in
real time while processing images and videos by looking for
commonalities and differences among different design criteria.
To implement an effective architectural solution, the Xilinx
ML-507 platform runs a PBD. This system is capable of real-
time 60 fps video capturing in VGA resolution [5]. On the
Xilinx Zynq7000 System on a Chip (SoC), different designs
have been constructed using the Histogram of Oriented
Gradients, or HOG, method. These designs can process images
with a resolution of 1920 x 1080 pixels and achieve a frame
rate of 39.6 frames per second: [6]. The authors demonstrated
how to use the OpenCV function on an ARM processor for
hardware implementation. The several classifications of
hardware accelerated systems that employ Field-Programmable
Gate Arrays (FPGAs) for image analysis are concisely listed in
reference [2]. FPGAs have the capability to perform concurrent
execution of several threads, allowing them to effectively
handle a diverse array of applications, including those
commonly encountered in the automotive industry. When it
comes to driver assistance systems (DA), most researchers
have highlighted the improvements in image and video
processing [14]. Claus et al. [15] proposed the utilization of
dynamic partial reconfiguration (DPR) in driver assistance
(DA) systems, employing Multiple Processor System-on-Chip
(MPSoC) architecture, to enhance security in various driving
situations. The "Autovision" architecture was designed to
demonstrate the benefits of DPR by utilizing hardware
accelerated engines. Several observations focus on the
development of hardware-based real-time lane identification
for advanced driving assistance systems. Using the Hough
Transform, real-time lane detection is implemented at a clock
speed of 100 MHz on the Xilinx Zynq-7000 platform. Thanks
to its 480 × 270-pixels resolution, it can run at 130 fps per
second. The implementation is performed via the Vivado HLS
tool [16]. FPGAs are well-suited for complex video and image
processing workloads, such as K-means clustering.

 The process of dividing an image into segments and
compressing it without any loss of data is referred to as picture
segmentation and compressing without loss [17]. Edge
detection is an advanced image processing technique mostly
used in surveillance systems. The article authored by
Kowalczyk et al. [8] examines the practical execution of 4K
streaming of videos on Xilinx devices. A high-definition video
streaming system utilizing quick prototyping has been
developed, employing an FPGA-based edge detection design
[9]. The research presents a comparative analysis and
investigation into edge recognition filters implemented on
Field-Programmable Gate Arrays (FPGAs) for real-time
processing of video and images techniques [10]. Babu et al.
[11] present a succinct analysis of the various classifications of
FPGA architecture and their corresponding applications.

III. FPGA HIGH-LEVEL SYNTHESIS FOR IMAGE

PROCESSING SYSTEM WITH MATLAB HDL CODER

After the text edit has been completed, the paper is ready
for the template. Duplicate the template file by using the Save
As command and use the naming convention prescribed by
your conference for the name of your paper. In this newly

created file, highlight all of the contents and import your
prepared text file. You are now ready to style your paper; use
the scroll down window on the left of the MS Word Formatting
toolbar.

Fig. 2 displays the simplified block diagram of the
proposed system architecture. The design is suitable for both
image and video encryption and decryption, as it allows for the
sequential streaming of information for each pixel. However,
when it comes to video processing, the method may require a
single pixel or several pixels.

The system comprises a range of video processing
processes that can be controlled by specific algorithms,
resulting in the faster execution of certain filters on the
integrated blocks of the Xilinx SoC platform. The output is
directly transferred to a video processing component and
display component. In addition, the processed output is
produced and displayed outside on an HDMI monitor. Xilinx
implements various video processing accelerators in the
programmable logic (PL) based on the design.

Fig. 2 shows the design schematic for the proposed system.
This method is applicable to video and image processing due to
the sequential processing of the input pixels. When encrypting
and decrypting embedded videos, mega pixels are required.
Built on the embedded Xilinx SoC platform blocks, it can run
complex algorithms faster thanks to a video block that can be
configured with unique algorithms. The video processing block
and display component directly accept the output from the
video and picture systems [16]. The Xilinx Zynq 7000 platform
systems are utilized for the implementation of several FPGA
video and image processing accelerators [5,14]. The Advanced
Extensible Interface (AXI) in the architecture shown in Fig. 1
connects the processor responsible for transferring the
incoming video to the video processing pipeline system. The
ARM CPU and the USB camera communicate over interfaces
and exchange data. The memory controller contains the frame
data. The HDMI display exhibits the method when the video IP
core has finished executing it on the frame. The pipeline is
being maintained for future versions [10].

The necessity to create intricate DSP systems that call for
specialized arithmetic units, such the addition-compare- select
unit for the Viterbi decoder, gave rise to the MBD approach for
FPGAs. A more refined degree of FPGA-based circuit
optimization is needed for these computing units [17]. This
degree of optimization is typically linked to conventional
digital design systems for processing images and videos. In
essence, model-based design describes the real- time
interactions that a system will have with the analog
environment. The bulk of these apps make use of the widely
used Unified Modeling Language (UML). The methods by
which these tools establish and describe a system differ. These
tools may employ various implementation tactics, some of
which may prove to be less effective than others. However,
they assure rapid system prototyping, ensuring punctuality.
Some factors that affect the choice of a tool are its level of
flexibility, its availability as pre-built libraries and blocks, and
its general understanding.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

727 | P a g e

www.ijacsa.thesai.org

Fig. 2. Crypto-video system on FPGA based on Zynq7000 platform.

Matlab, Simulink Realtime Workshop, Arti-Real Time
Studio, and Rhapsody from Ilogix are among the UML-based
tools [15]. These instruments are used in the creation of
embedded multiprocessor environments. There are two types
of tools that facilitate the creation of HDL code for FPGA:
block-based tools and C language-based tools that utilize
blocks to produce HDL code from block diagrams. Following
that, the HDL code is utilized by the hardware of the synthesis
tool in order to put the system design into action on the FPGA
computer. Synplify DSP, Xilinx System Generator, DSP
Builder Altera, and Simulink HDL Coder are some of the tools
that are predicated on the Simulink and MATLAB
environments. The majority of these tools are based on these
environments. These technologies ensure a sophisticated
modeling environment for signal processing algorithms.
Combining the IP cores from FPGA manufacturers with blocks
from the Simulink library results in the creation of HDL code
that is singular to the platform in question. The designer
benefits from more freedom through the utilization of tools
such as Simulink HDL Coder, which seamlessly incorporates
MATLAB functions and m-block files. The designer generates
a Simulink model and subsequently transforms it into the
FPGA environment with these tools.

The second group of MBD tools uses C to construct a
system design abstraction. Among these are the Handel-C from
Celoxica and the Catapult C from Mentor Graphics. A popular
tool for developing embedded systems on FPGA, the Simulink
HDL coder is the main engine behind these products [9].

MathWorks introduced its hardware/software workflow for
Zynq-7000, with a specific focus on Model-Based Design
(MBD), in September 2013, as stated in references [10, 11].
According to the depicted process in Fig. 3, Simulink is
utilized with HDL toolkit to create models that may effectively
demonstrate a fully dynamic system. These encompass a
Simulink model designed for algorithms specifically tailored
for the Xilinx Zynq SoC platform. Additionally, it enables the
rapid creation of software-hardware implementations for the
Zynq platform directly from the algorithm and system
architecture.

Fig. 3. Model based design prototyping with MATLAB / HDL coder.

The development of the suggested real-time video
processing system is bifurcated into two components: 1)
Designing the architecture of a video processing system, and 2)
Designing algorithms for video processing. The initial section
examines the primary elements that contribute to the video
processing system on the Zynq platform, specifically focusing
on the AXI4 Interfaces utilized for efficient data transmissions.
The subsequent section delves into the strategies and
enhancements implemented for constructing video processing
algorithms using Vivado HLS [25]. The proposed approach is
founded upon the following fundamental principle:

 The utilization of Simulink simulation by system de-
signers and algorithm developers serves two purposes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

728 | P a g e

www.ijacsa.thesai.org

The designer’s task is building models for an entire
system, encompassing communications, image, and
video processing components. The second purpose is to
enable the division of the model into hardware and
software components and achieve a favorable balance
for high-level synthesis.

 The Xilinx Zynq 7000 platform can be equipped with
high-speed I/O cores and IP cores through the
utilization of HDL code generation from HDL coder
TM.

 The Zynq Cortex-A9 cores can be programmed using
the embedded coder from Simulink, which facilitates
quick iteration of embedded software development.

 The ARM processor system and programmable logic
with support for Xilinx Zynq 7000 may generate
automatic AXI4 interface cores.

 Integration with subsequent processes, such as soft-
ware compilation, generating the executable for the
ARM, and creating bit streams using Xilinx imple-
mentation tools like Vivado, allows for a fast prototype
process. These jobs can be directly downloaded to Zynq
7000 platform boards.

IV. FUNDAMENTALS OF THE AES-128 ENCRYPTION /

DECRYPTION ALGORITHM

Similar to the Data Encryption Standard (DES), the AES
algorithm presented in Fig. 4 operates as a block cipher at the
bit level. Each block length is set at 128 bits, whereas the key
length can be any value between 128 and 256 bits [20]. Every
128-bit data block is divided into 16 bytes, which are then
mapped onto a 4 × 4 array called state. Every byte in the state
represents a 2 x 8 cardinality Galois Field (GF) element. The
algorithm consists of n rounds, or iterations, depending on the
length of the key. For a key length of 128 bits, 192 bits, or 256
bits, the number of rounds is 10, 12, or 14. With the exception
of the final round, each encryption round consists of the
following four operations:

 Substitute Bytes

 Shift Rows

 Mix Columns

Fig. 4. AES encryption and decryption process.

 Add Round Key

Every operation is executed in turn throughout each round,
with the exception of the first Add Round Key; the Mix
Columns action is skipped in the last round (see Fig. 5).

Fig. 5. AES 128 encryption algorithm.

The Substitute Bytes step is a non-linear transformation in
which the relationship between the key and the cipher-text is
hidden by replacing each byte in the state array with the entry
of a fixed 8-bit Substitution Box (Sbox), which is implemented
as a lookup table with 2 8 words of 8 bits each. To prevent
assaults based on basic algebraic features, the Sbox utilized is
constructed from the multiplicative inverse over GF(28) and
paired with an invertible geometric transformation, yielding a
16 × 16 bytes table (see Fig. 5). Based on the most and least
significant nibbles of the 8-bit input data, the permutation is
obtained T The bytes in each row are circularly shifted by a
specified offset during the Shift Rows step’s operation on the
state array’s rows. Every byte in the second row is moved one
position to the left; similarly, the third and fourth rows are
shifted by two and three bytes to the left, respectively. The first
row remains unmodified. In the Mix Columns phase, each
column of the state array is mixed linearly by treating it as a
polynomial over GF(28). Each column is then multiplied,
modulo z4 + 1, by a fixed polynomial (c(z) = 03z3 + 01z2 +
01z + 02). The relationship between the plain text and the
ciphertext must be concealed using both the Mix Columns and
Shift Rows methods.

V. IMAGE AND VIDEO ACCELERATION WITH HIGH LEVEL

SYNTHESIS

The functional diagram of the suggested system design is
displayed in Fig. 6. Since the input pixels are processed
sequentially, the approach can be used to both image and video
processing. Mega pixels are needed in the embedded video
processing process. It is constructed from a video block that
can be programmed with customized algorithms, speeding up
complicated and resource- and time-consuming algorithms on
the embedded Xilinx SoC platform blocks. A video processing
block and a display component receive the output directly from
the video and image systems [16]. The Xilinx Zynq 7000
platform systems are used to implement the several FPGA
video and image processing accelerators [5] One MBD tool
that makes system modeling, analysis, and simulation possible

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

729 | P a g e

www.ijacsa.thesai.org

is Simulink HDL coder. It provides the designer with an
organized graphical environment that enables the creation of
highly complicated system designs. Moreover, the user of this
application can generate adaptable custom blocks using
MATLAB functions. utilizing Simulink blocks, the designer
can produce bit-precise and synthesizable HDL code from the
model by utilizing the Simulink HDL coder. Altera Quartus II,

Synplify, and Xilinx Vivado are some of the tools that can be
used to synthesis and map the obtained HDL code to the target
FPGA board. There are numerous built libraries in the
Simulink HDL coder [11]. Adders, multipliers, accumulators,
integrators, multi-port switches, lookup tables, etc. are a few
examples of these preset libraries.

Fig. 6. FPGA crypto system design.

A typical MBD design flow for implementing FPGA-
based video and image processing system is shown in Fig. 6.
this system is divided on two part,First part is to generate a
complete video processing system based on Matlab/HDL
Coder . This generated vivado project system is without
encryption and decryption IPs.The second part is designing
with VHDL language the top level for encryption and
decrytion block.After Encryption and decryption IPs
simulation and verification. Theese IPs are added to the full
complete vivado project for real time video process-
ing.Finally the final combined system for video encryption and
decryption is implemented and verified on zynq7000 paltform.

VI. RTL DESIGN IMPLEMENTATION

A. Simulation

To validate the accuracy of the encryptions and decryption
implementation, a testbench has been created to compare two
distinct ciphertexts generated by this implementation with the
expected true ciphertexts provided in reference. The
implementation successfully passes the verification process,
and a snapshot of the waveform produced from the simulation
using the vivado 2017.4 simulator is shown in Fig. 7.

B. Synthesis and FPGA Implementation

In the third and final phase (see Fig. 8), the Simulink HDL
Coder transforms the Software-Hardware model of the video
processing system into an IP core that is compliant with the
AXI4 streaming bus and is in the form of HDL (VHDL) source

code. Encryption and decryption IP designed with VHDL
language are integrated using Vivado to the full System to
generate the RTL video encryption and decryption design as
presented in Fig. 8.

In order to confirm the functionality of this IP core in a
real-time, practical setting, a Hard- ware–Software co-design
(HW–SW) has been directly implemented on a 170MHz Xilinx
Zynq-7000 AP SoC XC7Z020- CLG484 FPGA. A Full Vivado
project is generated for the HW-SW by the Simulink HDL
coder. The Xilinx Vivado tool (version 2017.4), along with all
the hardware and software add-ons, can be used to implement
this project. Additionally, a single bus connects the Sobel core
and the Color transform IP core. The video processing system
Vivado project now includes the AES encryption-decryption
based on VHDL as an IP. The RTL design for our crypto-
video system is shown in Fig. 8.

Fig. 7. RTL simulation for AES encryption.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

730 | P a g e

www.ijacsa.thesai.org

Fig. 8. RTL video encryption and decryption design.

C. Resource Utilization

The proposed system used the Zynq-7000 SOC to
implement the cores of our video processing system. Table I
lists the materials that were utilized. BRAM is used to store
data values, firmware, and instruction memory.

The architecture of the processor, which includes control
signals, internal registers, and mi- crocode, is defined by the
consumed LUTs and DFFs. Our suggested system core
operates best at about 296MHz with a throughput of 95FPS.
The Zynq7000 SOC’s resources are impacted by the intricacy
of the applied design. The suggested architecture operates with
a 1080-1920 frame input resolution. These findings support the
Vivado-based reconfigurable SOC platform.Table I provides a
breakdown of the resources used by the system, including
Block RAM (BRAM) for data storage and Look-Up Tables
(LUTs) and Flip-Flops (DFFs) for the processor
architecture. This information is crucial for understanding the
resource footprint of the design and its feasibility for different
Zynq-7020 models.

D. Encryption / Decryption Time Test

Encryption and dcreyption speed is crucial. The timer is
implemented to precisely track encryption and decryption
cycles, determining the exact number of operations needed for
each process. This granular data allows us to optimize
performance and ensure efficient data protection.

where, Nc, the total encryption cycles for the image, is
calculated by multiplying the clock cycle duration (Tcycle =
1/FPGAFreq) by the total execution time.

For a 512x512 image, the proposed encryption decryption
algorithm required approximately 53.96 million cycles (75ms)
and decryption required 54.85 million cycles (80ms). This
compares favorably to other solutions in the literature (see
Table II).

TABLE I. VIDEO ENCRYTION AND DECRYPTION RESOURCES

UTILISATION

Xilinx Platform Zynq 7000 XC7Z020-1CLG484C

Maximum Frequency 296.789MHz

LUT-FF Pairs 1104

LUTs as Logic 1104

LUTs as Memory 18

Slice Registers 264

RAM 36/18 1

Frame Rate 95FPS

TABLE II. PROPOSED SYSTEM TIME COMPARISON

IP Time (s)

Encryption Time 0,075

Decryption time 0,08

Image preprocessing time 0.035

Total 0.19

VII. CONCLUSION

Accurate implementation PPA details can be difficult, if not
impossible, to obtain during the algorithm development phase
in a normal design flow because doing so means putting a lot
of work on the implementation team to complete experimental
implementations. Algorithm developers employ imprecise
estimations for PPA prediction because of this difficult task.
The PPA objectives are frequently not met as a result of
algorithm developers’ inaccurate estimations. Algorithm
developers an quickly obtain precise PPA information using
the MATLAB connection with Stratus HLS, which enables
measurement- driven algorithm improvement. The solution
automates a large portion of the manual process from
MATLAB to implementation details with minimal disruption
to the current design flow. Additionally, this connection

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

731 | P a g e

www.ijacsa.thesai.org

automates the creation of more optimal RTL and micro-
architectural exploration, resulting in shorter design deadlines
and better PPA. According to preliminary findings, this process
will essentially become the norm for creating and executing
silicon-targeted algorithms. In this study, the application of
typical AES encryption is investigated on a Xilinx ZedBoard
equipped with a Zynq- 7000 SoPC. This effort concentrated on
the encryption side of AES128; however, it would not be
difficult to construct and test the decryption side as well. Xilinx
Vivado High Level Synthesis was used to implement the AES
after it was first coded in a high-level language. It will be easy
to swiftly implement our design and perform changes that
significantly raised the AES algorithm’s throughput thanks to
the Xilinx HLS tool. Additionally, HLS has the ability to
enable thorough examination of a design’s resource utilization
in comparison to high-level code placement, as well as
hardware testing during the early phases of design.future work
will explore expanding the HLS-MATLAB integration to
encompass the decryption side of AES as well as investigating
its application to a wider range of algorithms across diverse
domains. This continued exploration holds immense promise
for revolutionizing the way the proposed system is developed
and deployed efficiently, high-performance hardware solutions.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of
Scientific Research at Northern Border University, Arar, KSA
for funding this research work through the project number
“NBU-FFR-2024-1092-01”.

REFERENCES

[1] Li, L.; Li, S. High throughput AES encryption/decryption with efficient
reordering and merging techniques. In Proceedings of the 2017 27th
International Conference on Field Programmable Logic and
Applications (FPL), Gent, Belgium, 4–6 September 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 1–4.

[2] Babu, P., and Parthasarathy, E. (2021). Hardware acceleration of image
and video processing on Xilinx zynq platform. Intell. autom. soft
comput, 30(3).

[3] Elsayed, G., Soleit, E., and Kayed, S. (2023). FPGA design and im-
plementation for adaptive digital chaotic key generator. Bulletin of the
National Research Centre, 47(1), 122.

[4] Li, K., Li, H., and Mund, G. (2023). A reconfigurable and compact
subpipelined architecture for AES encryption and decryption. EURASIP
Journal on Advances in Signal Processing, 2023(1), 1-21.

[5] Visconti, P.; Capoccia, S.; Venere, E.; Vela´zquez, R.; Fazio,
R.d.10 Clock-Periods Pipelined Implementation of AES-128
Encryption- Decryption Algorithm up to 28 Gbit/s Real Throughput by
Xilinx Zynq UltraScale+ MPSoC ZCU102 Platform. Electronics 2020,
9, 1665. https://doi.org/10.3390/electronics9101665.

[6] Abd El-Maksoud, A. J., Abd El-Kader, A. A., Hassan, B. G., Rihan.

[7] N. G., Tolba, M. F., Said, L. A., ... and Abu-Elyazeed, M. F. (2020).
FPGA implementation of integer/fractional chaotic systems. Multimedia
Security Using Chaotic Maps: Principles and Methodologies, 199-229.

[8] Wang, D., Lin, Y., Hu, J., Zhang, C., and Zhong, Q. (2023). FPGA Im-
plementation for Elliptic Curve Cryptography Algorithm and Circuit

with High Efficiency and Low Delay for IoT Applications.
Micromachines, 14(5), 1037.

[9] Maazouz, M., Toubal, A., Bengherbia, B., Houhou, O., and Batel.

[10] N. (2022). FPGA implementation of a chaos-based image encryption
algorithm. Journal of King Saud University-Computer and Information
Sciences, 34(10), 9926-9941.

[11] Rajasekar, P.; Haridas, M. Efficient FPGA implementation of AES 128
bit for IEEE 802.16e mobile WiMax standards. Circuits Syst. 2016, 7,
371–380.

[12] Elsayed G, Kayed SI (2022) A comparative study between MATLAB
HDL Coder and VHDL for FPGAs design and implementation. J Int Soc
Sci Eng 4:92–98.

[13] Al-Musawi, W. A., Wali, W. A., and Al-Ibadi, M. A. (2021, July).
Implementation of Chaotic System using FPGA. In 2021 6th Asia-
Pacific Conference on Intelligent Robot Systems (ACIRS) (pp. 1-6).
IEEE.

[14] Del-Valle-Soto, C.; Vela´zquez, R.; Valdivia, L.J.; Giannoccaro,
N.I.; Visconti, P. An Energy Model Using Sleeping Algorithms for
Wireless Sensor Networks under Proactive and Reactive Protocols: A
Performance Evaluation. Energies 2020, 13, 3024.

[15] Noorbasha, F.; Divya, Y.; Poojitha, M.; Navya, K.; Bhavishya, A.; Rao,
K.; Kishore, K. FPGA design and implementation of modified AES
based encryption and decryption algorithm. Int. J. Innov. Technol.
Explor. Eng. 2019, 8, 132–136.

[16] Ghodhbani, R., Saidani, T., Alhomoud, A., Alshammari, A., and
Ahmed, R. (2023). Real Time FPGA Implementation of an Efficient
High Speed Harris Corner Detection Algorithm Based on High-Level
Synthesis. Engineering, Technology and Applied Science Research,
13(6), 12169-12174.

[17] Sikka, P., Asati, A. R., and Shekhar, C. (2021). Real time FPGA
implementation of a high speed and area optimized Harris corner
detection algorithm. Microprocessors and Microsystems, 80, 103514.

[18] Tsai, Y. H., Yan, Y. J., Hsiao, M. H., Yu, T. Y., and Ou-Yang, M.
(2023). Real-Time Information Fusion System Implementation Based on
ARM-Based FPGA. Applied Sciences, 13(14), 8497.

[19] Park, J.; Park, Y. Symmetric-Key Cryptographic Routine Detection in
Anti-Reverse Engineered Binaries Using Hardware Tracing. Electronics
2020, 9, 957.

[20] Ghodhbani, R., Horrigue, L., Saidani, T., and Atri, M. (2020). Fast
FPGA prototyping based real-time image and video processing with
high- level synthesis. International Journal of Advanced Computer
Science and Applications, 11(2).

[21] Bellemou, A.M.; Garc´ıa, A.; Castillo, E.; Benblidia, N.; Anane, M.; A´
lvarez-Bermejo, J.A.; Parrilla, L. Efficient Implementation on Low Cost
SoC-FPGAs of TLSv1.2 Protocol with ECCAES Support for Secure IoT
Coordinators. Electronics 2019, 8, 1238.

[22] MathWorks, inc: HDL CoderTM User’s GuideCOPYRIGHT 2012-
2015 (2012) https://www.mathworks.com/help/hdlcoder/ Accessed 20
Feb 2023.

[23] Guerrieri, A., Upegui, A., and Gantel, L. (2023). Applications Enabled
by FPGA-Based Technology. Electronics, 12(15), 3302.

[24] Sankar D, Lakshmi S, Babu C, Mathew K (2023) Rapid prototyping of
predictive direct current control in a low-cost fpga using hdl coder. Int J
Power Energy Syst 43(10):1–9. https://doi.org/10.2316/J.2023.203-
0437.

[25] Yoon, I., Joung, H., and Lee, J. (2016). Zynq-based reconfigurable
system for real-time edge detection of noisy video sequences. Journal of
Sensors, 2016.

