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Abstract—The development of communication networks has 

made information security more important than ever for both 

transmission and storage. Since the majority of networks involve 

images, image security is becoming a difficult challenge. In order 

to provide real-time image encryption and decryption, this study 

suggests an FPGA implementation of a video cryptosystem that 

has been well-optimized based on high level synthesis. The 

MATLAB HDL coder and Vivado Tools from Xilinx are used in 

the design, implementation, and validation of the algorithm on 

the Xilinx Zynq FPGA platform. Low resource consumption and 

pipeline processing are well-suited to the hardware architecture. 

For real-time applications involving secret picture encryption 

and decryption, the suggested hardware approach is widely 

utilized. This study suggests an implementation of the 

encryption-decryption system that is both very efficient and area-

optimized. A unique high-level synthesis (HLS) design technique 

based on application-specific bit widths for intermediate data 

nodes was used to realize the proposed implementation. For 

HLS, MATLAB HDL coder was used to generate register 

transfer level RTL design. Using Vivado software, the RTL 

design was implemented on the Xilinx ZedBoard, and its 

functioning was tested in real time using an input video stream. 

The results produced are faster and more area- efficient (target 

FPGA has fewer gates than before) than those of earlier solutions 

for the same target board. 

Keywords—Security; encryption; decryption; AES; HDL coder; 

high level synthesis; FPGA; Zynq7000 

I. INTRODUCTION 

The development of strong, computationally light, and 
efficient encryption algorithms is therefore necessary to sup- 
port the ongoing increase in data volume and throughput in 
Internet of Things applications, as well as video streaming, 
real-time video processing, mobile transmissions, and other 
related activities. This is because network security has become. 
A constant topic for business activities due to the 
advancements of information technology (IT) applications 
involving sensitive data [1,2]. For governments, banks, and 
high-security systems worldwide, the Advanced Encryption 
Standard (AES) continues to be the recommended encryption 
standard [3,4]. The last encryption technique is the most often 
used; it is utilized in 5G systems, WiMAX, Gigabit Ethernet, 
and Worldwide Interoperability for Microwave Access [5,6,7]. 
Furthermore, this algorithm can be effectively implemented on 
both software and hardware platforms; AES software versions 
give poorer physical security but require fewer resources [8, 9]. 

However, the increasing need for secure data transmissions 
at high speeds and volumes while maintaining physical 
security makes hardware implementation of the AES algorithm 
imperative [10,11]. The primary challenge with applications 
utilized in these domains is to ensure real-time system 
operation [2]. Implementing real-time functionality on a 
general-purpose computer is often unfeasible due to the 
inherent limitations of memory, CPU, and peripheral devices. 
Typically, numerous actions are executed on every pixel in the 
majority of image processing programs. The sequential 
execution of these operations by general-purpose processors 
has detrimental effects on both resource use and performance 
[2,3]. Nevertheless, FPGAs (Field Programmable Gate Arrays) 
possess the potential to function in a parallel manner in relation 
to hardware, setting them apart from conventional CPUs. 
Operations in FPGAs are partitioned into segments, allowing 
for concurrent execution of many operations [12,13]. Fig. 1 
presents a complete system for real-time image and video 
processing using an embedded system. 

The landscape of smart video encryption is evolving 
rapidly, demanding sophisticated analysis of live video streams 
to accurately identify objects, scenes, and critical events. This 
has led to the integration of advanced analysis mechanisms into 
the traditional image processing pipelines of modern video 
cameras [14]. However, the stringent constraints of real-time 
processing and low power consumption inherent in camera 
modules limit the complexity and number of operations that 
can be feasibly implemented [15]. To address this challenge, 
researchers have focused on a select few pre-processing tasks 
like motion estimation, image segmentation, and robust video 
encryption [15]. 

Recognizing the growing complexity of computer vision 
systems, designers are increasingly turning to higher-level 
programming and synthesis tools to expedite the development 
process and overcome hardware limitations. Two prominent 
tools in this arena are Simulink Hardware Description 
Language (HDL) Coder and Xilinx High-Level Synthesis 
(HLS) [16, 17]. Xilinx HLS stands out for its exceptional 
suitability for designing large-scale computer vision systems. It 
boasts the ability to seamlessly integrate pre-existing standard 
algorithms and offers comprehensive functional verification, 
ensuring accuracy and efficiency [17]. Additionally, HDL 
Coder empowers rapid synthesis and verification of diverse 
image processing methods, ranging from picture statistics 
gathering and custom filtering to color space conversion [16]. 
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Fig. 1. Embedded real time image and video processing system. 

Nevertheless, there is no specific support for picture 
segmentation tasks in the present toolbox version. To 
accomplish this, a Simulink model is created that increases this 
toolbox’s capacity and supports this essential feature. While 
academics have recently proposed a number of advanced 
methods for image encryption, implement” encryption 
decryption algorithm” implemented [14, 15] into our proposed 
hardware in order to minimize the use of logic resources. 
Moreover, it has been shown that switching from moving 
averaging to weighted averaging reduces the amount of logic 
resources needed without sacrificing the accuracy of the 
results. As a result, the following can be used to summarize the 
contributions of the completed work: Creation of a 
synthesizable Simulink model for the AES-based 
cryptosystem, which isn’t yet accessible as an intrinsic block in 
the Simulink HDL Coder/Vision HDL Coder toolbox 
(MATLAB R2018b). By substituting the weighted average for 
the moving average, which necessitates an expensive division 
operation, logic resource conservation is achieved. In 
comparison to earlier methods, this work presents a real-time 
implementation of video encryption and decryption on a Xilinx 
ZedBoard and shows that it is faster and uses less space on the 
FPGA. A unique high-level design technique was used to 
create the design, which synthesizes the design with 
intermediate signal widths limited by the application (input 
stimulus). The rest of this essay is structured as follows: An 
introduction to high- level synthesis is given in Section I. 
Related work is given in Section II. FPGA High level synthesis 
is given in Section III. The AES Encryption and Decryption 
architecture is explained in Section IV. Image and video 
acceleration is given in Section V. RTL design implementation 
mentioned in Section VI. Finally Section VII concludes the 
paper. 

II. RELATED WORK 

Recently, numerous researchers have undertaken 
investigations on cryptographic algorithms inside the realm of 
Internet of Things (IoT). Reference [18] introduced a dynamic 
pass- word access approach for uniformly storing the key 

matrix on all nodes. The sender did not need to transmit a basic 
key, but rather the storage coordinates of the key matrix. The 
receiver then extracted the key from the matrix based on these 
coordinates, therefore enhancing the security of key 
transmission. Reference [19] introduced a Very Large-Scale 
Integration (VLSI) design that incorporates a 64-bit data path 
for the lightweight cipher present. This architecture achieves 
excellent performance, low power consumption, and a compact 
footprint on FPGA, resulting in a high throughput rate. In order 
to fulfill the security demands of various application contexts, 
distinct techniques are necessary for the encryption and 
decryption system to handle data. Reference [20] developed a 
customizable encryption system that allowed users to choose 
their preferred encryption method from a range of options 
specified in the FPGA configuration file, hence enhancing the 
flexibility of the system. Reference [21] suggested a hybrid 
protocol architecture for Short Message Services (SMS) that 
incorporates AES and Rivest Cipher 4 (RC4) algorithms to 
enhance the security of smart houses. This solution offered 
secure communication in the IoT context, ensuring 
confidentiality and randomness. However, it incurred a certain 
level of cost in terms of both time and space. Hossain et al. In 
study [21] author developed a flexible encryption method on 
the FPGA. Users have the option to choose between the AES, 
Data Encryption Standard (DES), and 3DES algorithms for 
encryption, based on their specific needs. This design enhanced 
system adaptability, but incurred wastage of logic resources. 
The advent of dynamically reconfigurable technology offered a 
superior option to achieve a balance between system flexibility 
and hardware resource usage. 

Many studies are devoted to creating specialized hardware 
accelerators that can be utilized to carry out specific tasks in 
applications related to image and video processing. To 
showcase the system's functionality, spatial filters were 
implemented on the embedded platform Zedboard [22]. The 
paper examines a recent study on a hardware accelerator for 
video processing, which was developed on an Altera Cyclone 
IV FPGA. The accelerator is engineered to possess reduced 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

726 | P a g e  

www.ijacsa.thesai.org 

processing and memory bandwidth demands. The research 
findings are detailed in citation [23, 24]. Platforms Based 
Design (PBD) analyzes the Virtex-5 FPGA's performance in 
real time while processing images and videos by looking for 
commonalities and differences among different design criteria. 
To implement an effective architectural solution, the Xilinx 
ML-507 platform runs a PBD. This system is capable of real-
time 60 fps video capturing in VGA resolution [5]. On the 
Xilinx Zynq7000 System on a Chip (SoC), different designs 
have been constructed using the Histogram of Oriented 
Gradients, or HOG, method. These designs can process images 
with a resolution of 1920 x 1080 pixels and achieve a frame 
rate of 39.6 frames per second: [6]. The authors demonstrated 
how to use the OpenCV function on an ARM processor for 
hardware implementation. The several classifications of 
hardware accelerated systems that employ Field-Programmable 
Gate Arrays (FPGAs) for image analysis are concisely listed in 
reference [2]. FPGAs have the capability to perform concurrent 
execution of several threads, allowing them to effectively 
handle a diverse array of applications, including those 
commonly encountered in the automotive industry. When it 
comes to driver assistance systems (DA), most researchers 
have highlighted the improvements in image and video 
processing [14]. Claus et al. [15] proposed the utilization of 
dynamic partial reconfiguration (DPR) in driver assistance 
(DA) systems, employing Multiple Processor System-on-Chip 
(MPSoC) architecture, to enhance security in various driving 
situations. The "Autovision" architecture was designed to 
demonstrate the benefits of DPR by utilizing hardware 
accelerated engines. Several observations focus on the 
development of hardware-based real-time lane identification 
for advanced driving assistance systems. Using the Hough 
Transform, real-time lane detection is implemented at a clock 
speed of 100 MHz on the Xilinx Zynq-7000 platform. Thanks 
to its 480 × 270-pixels resolution, it can run at 130 fps per 
second. The implementation is performed via the Vivado HLS 
tool [16]. FPGAs are well-suited for complex video and image 
processing workloads, such as K-means clustering. 

 The process of dividing an image into segments and 
compressing it without any loss of data is referred to as picture 
segmentation and compressing without loss [17]. Edge 
detection is an advanced image processing technique mostly 
used in surveillance systems. The article authored by 
Kowalczyk et al. [8] examines the practical execution of 4K 
streaming of videos on Xilinx devices. A high-definition video 
streaming system utilizing quick prototyping has been 
developed, employing an FPGA-based edge detection design 
[9]. The research presents a comparative analysis and 
investigation into edge recognition filters implemented on 
Field-Programmable Gate Arrays (FPGAs) for real-time 
processing of video and images techniques [10]. Babu et al. 
[11] present a succinct analysis of the various classifications of 
FPGA architecture and their corresponding applications. 

III. FPGA HIGH-LEVEL SYNTHESIS FOR IMAGE 

PROCESSING SYSTEM WITH MATLAB HDL CODER 

After the text edit has been completed, the paper is ready 
for the template. Duplicate the template file by using the Save 
As command and use the naming convention prescribed by 
your conference for the name of your paper. In this newly 

created file, highlight all of the contents and import your 
prepared text file. You are now ready to style your paper; use 
the scroll down window on the left of the MS Word Formatting 
toolbar. 

Fig. 2 displays the simplified block diagram of the 
proposed system architecture. The design is suitable for both 
image and video encryption and decryption, as it allows for the 
sequential streaming of information for each pixel. However, 
when it comes to video processing, the method may require a 
single pixel or several pixels. 

The system comprises a range of video processing 
processes that can be controlled by specific algorithms, 
resulting in the faster execution of certain filters on the 
integrated blocks of the Xilinx SoC platform. The output is 
directly transferred to a video processing component and 
display component. In addition, the processed output is 
produced and displayed outside on an HDMI monitor. Xilinx 
implements various video processing accelerators in the 
programmable logic (PL) based on the design. 

Fig. 2 shows the design schematic for the proposed system. 
This method is applicable to video and image processing due to 
the sequential processing of the input pixels. When encrypting 
and decrypting embedded videos, mega pixels are required. 
Built on the embedded Xilinx SoC platform blocks, it can run 
complex algorithms faster thanks to a video block that can be 
configured with unique algorithms. The video processing block 
and display component directly accept the output from the 
video and picture systems [16]. The Xilinx Zynq 7000 platform 
systems are utilized for the implementation of several FPGA 
video and image processing accelerators [5,14]. The Advanced 
Extensible Interface (AXI) in the architecture shown in Fig. 1 
connects the processor responsible for transferring the 
incoming video to the video processing pipeline system. The 
ARM CPU and the USB camera communicate over interfaces 
and exchange data. The memory controller contains the frame 
data. The HDMI display exhibits the method when the video IP 
core has finished executing it on the frame. The pipeline is 
being maintained for future versions [10]. 

The necessity to create intricate DSP systems that call for 
specialized arithmetic units, such the addition-compare- select 
unit for the Viterbi decoder, gave rise to the MBD approach for 
FPGAs. A more refined degree of FPGA-based circuit 
optimization is needed for these computing units [17]. This 
degree of optimization is typically linked to conventional 
digital design systems for processing images and videos. In 
essence, model-based design describes the real- time 
interactions that a system will have with the analog 
environment. The bulk of these apps make use of the widely 
used Unified Modeling Language (UML). The methods by 
which these tools establish and describe a system differ. These 
tools may employ various implementation tactics, some of 
which may prove to be less effective than others. However, 
they assure rapid system prototyping, ensuring punctuality. 
Some factors that affect the choice of a tool are its level of 
flexibility, its availability as pre-built libraries and blocks, and 
its general understanding. 
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Fig. 2. Crypto-video system on FPGA based on Zynq7000 platform. 

Matlab, Simulink Realtime Workshop, Arti-Real Time 
Studio, and Rhapsody from Ilogix are among the UML-based 
tools [15]. These instruments are used in the creation of 
embedded multiprocessor environments. There are two types 
of tools that facilitate the creation of HDL code for FPGA: 
block-based tools and C language-based tools that utilize 
blocks to produce HDL code from block diagrams. Following 
that, the HDL code is utilized by the hardware of the synthesis 
tool in order to put the system design into action on the FPGA 
computer. Synplify DSP, Xilinx System Generator, DSP 
Builder Altera, and Simulink HDL Coder are some of the tools 
that are predicated on the Simulink and MATLAB 
environments. The majority of these tools are based on these 
environments. These technologies ensure a sophisticated 
modeling environment for signal processing algorithms. 
Combining the IP cores from FPGA manufacturers with blocks 
from the Simulink library results in the creation of HDL code 
that is singular to the platform in question. The designer 
benefits from more freedom through the utilization of tools 
such as Simulink HDL Coder, which seamlessly incorporates 
MATLAB functions and m-block files. The designer generates 
a Simulink model and subsequently transforms it into the 
FPGA environment with these tools. 

The second group of MBD tools uses C to construct a 
system design abstraction. Among these are the Handel-C from 
Celoxica and the Catapult C from Mentor Graphics. A popular 
tool for developing embedded systems on FPGA, the Simulink 
HDL coder is the main engine behind these products [9]. 

MathWorks introduced its hardware/software workflow for 
Zynq-7000, with a specific focus on Model-Based Design 
(MBD), in September 2013, as stated in references [10, 11]. 
According to the depicted process in Fig. 3, Simulink is 
utilized with HDL toolkit to create models that may effectively 
demonstrate a fully dynamic system. These encompass a 
Simulink model designed for algorithms specifically tailored 
for the Xilinx Zynq SoC platform. Additionally, it enables the 
rapid creation of software-hardware implementations for the 
Zynq platform directly from the algorithm and system 
architecture. 

 

Fig. 3. Model based design prototyping with MATLAB / HDL coder. 

The development of the suggested real-time video 
processing system is bifurcated into two components: 1) 
Designing the architecture of a video processing system, and 2) 
Designing algorithms for video processing. The initial section 
examines the primary elements that contribute to the video 
processing system on the Zynq platform, specifically focusing 
on the AXI4 Interfaces utilized for efficient data transmissions. 
The subsequent section delves into the strategies and 
enhancements implemented for constructing video processing 
algorithms using Vivado HLS [25]. The proposed approach is 
founded upon the following fundamental principle: 

 The utilization of Simulink simulation by system de- 
signers and algorithm developers serves two purposes. 
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The designer’s task is building models for an entire 
system, encompassing communications, image, and 
video processing components. The second purpose is to 
enable the division of the model into hardware and 
software components and achieve a favorable balance 
for high-level synthesis. 

 The Xilinx Zynq 7000 platform can be equipped with 
high-speed I/O cores and IP cores through the 
utilization of HDL code generation from HDL coder 
TM. 

 The Zynq Cortex-A9 cores can be programmed using 
the embedded coder from Simulink, which facilitates 
quick iteration of embedded software development. 

 The ARM processor system and programmable logic 
with support for Xilinx Zynq 7000 may generate 
automatic AXI4 interface cores. 

 Integration with subsequent processes, such as soft- 
ware compilation, generating the executable for the 
ARM, and creating bit streams using Xilinx imple- 
mentation tools like Vivado, allows for a fast prototype 
process. These jobs can be directly downloaded to Zynq 
7000 platform boards. 

IV. FUNDAMENTALS OF THE AES-128 ENCRYPTION / 

DECRYPTION ALGORITHM 

Similar to the Data Encryption Standard (DES), the AES 
algorithm presented in Fig. 4 operates as a block cipher at the 
bit level. Each block length is set at 128 bits, whereas the key 
length can be any value between 128 and 256 bits [20]. Every 
128-bit data block is divided into 16 bytes, which are then 
mapped onto a 4 × 4 array called state. Every byte in the state 
represents a 2 x 8 cardinality Galois Field (GF) element. The 
algorithm consists of n rounds, or iterations, depending on the 
length of the key. For a key length of 128 bits, 192 bits, or 256 
bits, the number of rounds is 10, 12, or 14. With the exception 
of the final round, each encryption round consists of the 
following four operations: 

 Substitute Bytes 

 Shift Rows 

 Mix Columns 

 
Fig. 4. AES encryption and decryption process. 

 Add Round Key 

Every operation is executed in turn throughout each round, 
with the exception of the first Add Round Key; the Mix 
Columns action is skipped in the last round (see Fig. 5). 

 
Fig. 5. AES 128 encryption algorithm. 

The Substitute Bytes step is a non-linear transformation in 
which the relationship between the key and the cipher-text is 
hidden by replacing each byte in the state array with the entry 
of a fixed 8-bit Substitution Box (Sbox), which is implemented 
as a lookup table with 2 8 words of 8 bits each. To prevent 
assaults based on basic algebraic features, the Sbox utilized is 
constructed from the multiplicative inverse over GF(28) and 
paired with an invertible geometric transformation, yielding a 
16 × 16 bytes table (see Fig. 5). Based on the most and least 
significant nibbles of the 8-bit input data, the permutation is 
obtained T The bytes in each row are circularly shifted by a 
specified offset during the Shift Rows step’s operation on the 
state array’s rows. Every byte in the second row is moved one 
position to the left; similarly, the third and fourth rows are 
shifted by two and three bytes to the left, respectively. The first 
row remains unmodified. In the Mix Columns phase, each 
column of the state array is mixed linearly by treating it as a 
polynomial over GF(28). Each column is then multiplied, 
modulo z4 + 1, by a fixed polynomial (c(z) = 03z3 + 01z2 + 
01z + 02). The relationship between the plain text and the 
ciphertext must be concealed using both the Mix Columns and 
Shift Rows methods. 

V. IMAGE AND VIDEO ACCELERATION WITH HIGH LEVEL 

SYNTHESIS 

The functional diagram of the suggested system design is 
displayed in Fig. 6. Since the input pixels are processed 
sequentially, the approach can be used to both image and video 
processing. Mega pixels are needed in the embedded video 
processing process. It is constructed from a video block that 
can be programmed with customized algorithms, speeding up 
complicated and resource- and time-consuming algorithms on 
the embedded Xilinx SoC platform blocks. A video processing 
block and a display component receive the output directly from 
the video and image systems [16]. The Xilinx Zynq 7000 
platform systems are used to implement the several FPGA 
video and image processing accelerators [5] One MBD tool 
that makes system modeling, analysis, and simulation possible 
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is Simulink HDL coder. It provides the designer with an 
organized graphical environment that enables the creation of 
highly complicated system designs. Moreover, the user of this 
application can generate adaptable custom blocks using 
MATLAB functions. utilizing Simulink blocks, the designer 
can produce bit-precise and synthesizable HDL code from the 
model by utilizing the Simulink HDL coder. Altera Quartus II, 

Synplify, and Xilinx Vivado are some of the tools that can be 
used to synthesis and map the obtained HDL code to the target 
FPGA board. There are numerous built libraries in the 
Simulink HDL coder [11]. Adders, multipliers, accumulators, 
integrators, multi-port switches, lookup tables, etc. are a few 
examples of these preset libraries. 

 
Fig. 6. FPGA crypto system design. 

A typical MBD design flow for implementing FPGA- 
based video and image processing system is shown in Fig. 6. 
this system is divided on two part,First part is to generate a 
complete video processing system based on Matlab/HDL 
Coder . This generated vivado project system is without 
encryption and decryption IPs.The second part is designing 
with VHDL language the top level for encryption and 
decrytion block.After Encryption and decryption IPs 
simulation and verification. Theese IPs are added to the full 
complete vivado project for real time video process- 
ing.Finally the final combined system for video encryption and 
decryption is implemented and verified on zynq7000 paltform. 

VI. RTL DESIGN IMPLEMENTATION 

A. Simulation 

To validate the accuracy of the encryptions and decryption 
implementation, a testbench has been created to compare two 
distinct ciphertexts generated by this implementation with the 
expected true ciphertexts provided in reference. The 
implementation successfully passes the verification process, 
and a snapshot of the waveform produced from the simulation 
using the vivado 2017.4 simulator is shown in Fig. 7. 

B. Synthesis and FPGA Implementation 

In the third and final phase (see Fig. 8), the Simulink HDL 
Coder transforms the Software-Hardware model of the video 
processing system into an IP core that is compliant with the 
AXI4 streaming bus and is in the form of HDL (VHDL) source 

code. Encryption and decryption IP designed with VHDL 
language are integrated using Vivado to the full System to 
generate the RTL video encryption and decryption design as 
presented in Fig. 8. 

In order to confirm the functionality of this IP core in a 
real-time, practical setting, a Hard- ware–Software co-design 
(HW–SW) has been directly implemented on a 170MHz Xilinx 
Zynq-7000 AP SoC XC7Z020- CLG484 FPGA. A Full Vivado 
project is generated for the HW-SW by the Simulink HDL 
coder. The Xilinx Vivado tool (version 2017.4), along with all 
the hardware and software add-ons, can be used to implement 
this project. Additionally, a single bus connects the Sobel core 
and the Color transform IP core. The video processing system 
Vivado project now includes the AES encryption-decryption 
based on VHDL as an IP. The RTL design for our crypto-
video system is shown in Fig. 8. 

 
Fig. 7. RTL simulation for AES encryption. 
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Fig. 8. RTL video encryption and decryption design. 

C. Resource Utilization 

The proposed system used the Zynq-7000 SOC to 
implement the cores of our video processing system. Table I 
lists the materials that were utilized. BRAM is used to store 
data values, firmware, and instruction memory. 

The architecture of the processor, which includes control 
signals, internal registers, and mi- crocode, is defined by the 
consumed LUTs and DFFs. Our suggested system core 
operates best at about 296MHz with a throughput of 95FPS. 
The Zynq7000 SOC’s resources are impacted by the intricacy 
of the applied design. The suggested architecture operates with 
a 1080-1920 frame input resolution. These findings support the 
Vivado-based reconfigurable SOC platform.Table I provides a 
breakdown of the resources used by the system, including 
Block RAM (BRAM) for data storage and Look-Up Tables 
(LUTs) and Flip-Flops (DFFs) for the processor 
architecture. This information is crucial for understanding the 
resource footprint of the design and its feasibility for different 
Zynq-7020 models. 

D. Encryption / Decryption Time Test 

Encryption and dcreyption speed is crucial. The timer is 
implemented to precisely track encryption and decryption 
cycles, determining the exact number of operations needed for 
each process. This granular data allows us to optimize 
performance and ensure efficient data protection. 

                
  

        
 

where, Nc, the total encryption cycles for the image, is 
calculated by multiplying the clock cycle duration (Tcycle = 
1/FPGAFreq) by the total execution time. 

For a 512x512 image, the proposed encryption decryption  
algorithm required approximately 53.96 million cycles (75ms) 
and decryption required 54.85 million cycles (80ms). This 
compares favorably to other solutions in the literature (see 
Table II). 

TABLE I.  VIDEO ENCRYTION AND DECRYPTION RESOURCES 

UTILISATION 

Xilinx Platform Zynq 7000 XC7Z020-1CLG484C 

Maximum Frequency 296.789MHz 

LUT-FF Pairs 1104 

LUTs as Logic 1104 

LUTs as Memory 18 

Slice Registers 264 

RAM 36/18 1 

Frame Rate 95FPS 

TABLE II.  PROPOSED SYSTEM TIME COMPARISON 

IP Time (s) 

Encryption Time 0,075 

Decryption time 0,08 

Image preprocessing time 0.035 

Total 0.19 

VII. CONCLUSION 

Accurate implementation PPA details can be difficult, if not 
impossible, to obtain during the algorithm development phase 
in a normal design flow because doing so means putting a lot 
of work on the implementation team to complete experimental 
implementations. Algorithm developers employ imprecise 
estimations for PPA prediction because of this difficult task. 
The PPA objectives are frequently not met as a result of 
algorithm developers’ inaccurate estimations. Algorithm 
developers an quickly obtain precise PPA information using 
the MATLAB connection with Stratus HLS, which enables 
measurement- driven algorithm improvement. The solution 
automates a large portion of the manual process from 
MATLAB to implementation details with minimal disruption 
to the current design flow. Additionally, this connection 
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automates the creation of more optimal RTL and micro-
architectural exploration, resulting in shorter design deadlines 
and better PPA. According to preliminary findings, this process 
will essentially become the norm for creating and executing 
silicon-targeted algorithms. In this study, the application of 
typical AES encryption is investigated on a Xilinx ZedBoard 
equipped with a Zynq- 7000 SoPC. This effort concentrated on 
the encryption side of AES128; however, it would not be 
difficult to construct and test the decryption side as well. Xilinx 
Vivado High Level Synthesis was used to implement the AES 
after it was first coded in a high-level language. It will be easy 
to swiftly implement our design and perform changes that 
significantly raised the AES algorithm’s throughput thanks to 
the Xilinx HLS tool. Additionally, HLS has the ability to 
enable thorough examination of a design’s resource utilization 
in comparison to high-level code placement, as well as 
hardware testing during the early phases of design.future work 
will explore expanding the HLS-MATLAB integration to 
encompass the decryption side of AES as well as investigating 
its application to a wider range of algorithms across diverse 
domains. This continued exploration holds immense promise 
for revolutionizing the way the proposed system is developed 
and deployed efficiently, high-performance hardware solutions. 
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