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Abstract—In order to furnish diverse resource requirements 

in cloud computing, numerous resources are integrated into a 

data centre. How to deliver resources in a timely and accurate 

manner to meet user expectations is a significant concern. 

However, the resource demands of users fluctuate greatly and 

frequently change regularly. It's possible that the resource 

provision won't happen on time. Furthermore, because some 

physical resources are shut down to save energy, there may 

occasionally not be enough of them to meet user requests. 

Therefore, it's critical to offer resource provision proactively to 

ensure positive user involvement using cloud computing. To 

enable resource provision in advance, it is essential to accurately 

estimate future resource demands. Using machine learning 

techniques, we offer a unique approach in this study that tries to 

identify key features, accelerating the forecast of cloud resource 

consumption. Finding the classification method with the greatest 

fit and maximum classification accuracy is crucial when 

predicting cloud resource consumption. The attribute selection 

method is used to decrease the dataset. The categorization 

process is then given the reduced data. The hybrid attribute 

selection method used in the investigation, which combines the 

bio-inspired algorithm genetic algorithm, the pulse-coupled 

neural network, and the particle swarm optimization algorithm, 

improves classification accuracy. The accuracy of prediction 

employing this technique is examined using a variety of 

performance criteria. When it comes to predicting the demand 

for cloud resources, the experimental results show that the 

suggested machine learning method performs more effectively 

than traditional machine learning models. 

Keywords—Cloud computing; resource demand; machine 

learning; cloud resource demand prediction; bio-inspired algorithm 

I. INTRODUCTION 

With the benefits of characteristic features like resource 
pool and a pay-as-you-go paradigm, cloud computing has 
found widespread use in a variety of industries. Infrastructure 
as a Service (IaaS) is a brand-new cloud service paradigm 
which offers clients virtual machines as resources (VMs). 
Accurate and timely allocation of VMs to client tasks in IaaS 
service model is a major concern. Some cloud providers 
continue to offer VMs statically, which results in increased 
operational cost for customers and reduced resource usage for 
cloud providers. A better alternative is to create VMs 
dynamically in response to the current resource demands. 

However, resource demands fluctuate significantly at times 
and change continuously throughout time. Users can quickly 
apply for numerous VMs, for instance. This causes these VMs 
to take a very lengthy time to create. Due to some of the 
physical resources being shut down to save energy, even those 
that are currently in operation may not be enough to meet user 
requests. For this reason, developing a proactive resource 
provision is essential to guaranteeing that customers get a 
positive cloud computing experience. In response to 
anticipated resource demands, proactive resource provision 
might offer resources in advance. However, if overestimated, 
this can be a resource waster. 

It goes without saying that if the resource demand is 
estimated to be less than the actual requirements, user demand 
of the resources are not met. Therefore, the main challenge is 
to effectively forecast future resource demands to reduce 
overestimation and underestimation. An overview of the 
challenges and approaches for forecasting usage of resources in 
cloud computing can be found in the study [1]. To prevent 
resource over-provisioning, Chen et al. [2] developed a forecast 
method exclusively for burst workload. To eliminate bursts and 
sounds, this technique employs the Fast Fourier Transform 
(FFT) algorithm, which increases prediction accuracy. A cloud 
workload prediction model is put out by Roy et al. [3]. This 
model predicts future workload using autoregressive moving 
average method of the second order (ARMA) and then uses a 
performance model of the average app response time to 
forecast resource requirements. 

Using ensemble models, two self-adaptive resource 
demand prediction techniques are proposed [4, 5]. In order to 
increase prediction accuracy, Xu et al. [6] propose the GFSS-
ANFIS/SARIMA prediction model, which integrates Seasonal 
Autoregressive Integrated Moving Average Model (ARIMA) 
and Generalized Fuzzy Soft Sets with Adaptive Neuro Fuzzy 
Inference System. Data mining and statistical techniques are 
used in Verma et al. [7] resource prediction framework for 
multi-tenant service clouds to forecast resource demands in 
order to minimize resources and provisioning time. To obtain 
precise performance forecasts in hybrid clouds, Imai et al. [8] 
suggest a model which has workload-tailored elastic compute 
unit (WECU) as a computing power unit. Brown's quadratic 
exponential smoothing approach is used by Mi et al. [9] to 
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forecast activities ahead and adjust resources as needed in a 
data center. 

The resource prediction method used by Minarolli et al. 
[10] incorporates the cross relation of asset utilization among 
VMs that are part of the same application. Bankole et al. [11] 
proposed three performance prediction models that employ 
neural networks (NN), linear regression (LR), and support 
vector regression (SVR) methods independently. The 
experimental findings demonstrate that SVR is the favored 
model, outperforming other models in terms of prediction 
accuracy. Similar to this, certain machine learning techniques, 
such as the multi-layer perceptron (MLP) [12], Support vector 
regression (SVR) [12], deep belief network (DBN) [13], and 
artificial neural network (ANN) [14], are used to forecast 
resource utilizations. There are two categories of prediction. 
The former involves statistical methods and the latter employs 
machine learning techniques. Even though machine learning 
methods can produce predictions with a higher degree of 
accuracy, it requires setting up the training model and 
extracting the features from a humungous amount of data. 
Though sampling data might occasionally change greatly and 
be insufficient as inputs for machine learning techniques. The 
prediction accuracy of statistical methods is often poor for non-
stationary and non-linear data. 

One such well-known metaheuristic method based on 
swarm-intelligence is particle swarm optimization (PSO), 
which has demonstrated its superiority in resolving a variety of 
real-world optimization issues from fluid mechanics, wireless 
sensor networks, engineering, applied sciences and academia 
[15]. Despite its success in locating competitive solutions, the 
PSO still has trouble sustaining strong exploration and is 
susceptible to becoming stuck in local optima, which leads to 
an insufficient exploration-exploitation tradeoff [16]. These 
flaws have an impact on the subsequent quality of the 
scheduling solution. Additionally, the "No Free Lunch 
Theorem (NFL)" [17] establishes the impossibility of finding a 
single metaheuristic algorithm capable of efficiently solving all 
optimization issues. These facts serve as powerful impetuses 
for the current research project, which proposes a hybrid PSO-
based scheduling solution to get over the constraints of regular 
PSO by combining it with genetic algorithm (GA) and pulse 
coupled neural networks (PCNN). 

The remainder of the paper is organized as below. Section 
II includes an overview of prior studies in the same field. The 
methodology, system workflow, feature extraction, and 
demand prediction employed in the proposed approach are 
covered in Section III. Section IV includes the performance 
analysis of the proposed hybrid solution. Section V provides a 
conclusion, marking the end of the paper. 

II. RELATED WORK 

To solve cloud based scheduling (CBS) difficulties, current 
research uses heuristics and metaheuristics, such as shortest job 
first (SJF), First come first served (FCFS), Max-min, Min-min, 
Minimum completion time (MCT), Minimum execution time 
(MET), and Suffrage [18]. Heuristics offer problem-specific 
solutions and are apt for solving minor problems. In contrast, 
ensemble methods (MHs), are simple, iterative, adaptable, 
highly speculative, algorithms that direct a subordinated 

heuristic through smart mechanism [19]. For complicated and 
larger scheduling issues, metaheuristics-based scheduling 
solutions have outperformed problem-specific heuristics [20]. 
However, MHs typically have a few flaws, such as premature 
convergence, getting stuck in neighboring best value, an 
absence diversity, and imbalance among the examination and 
development stages of the energy spectrum [21]. If these flaws 
are applied to work scheduling issues, the results can be 
undesirable. 

The research has also advocated the use of combination 
heuristics to address the drawbacks of solo metaheuristics [22]. 
Several whale optimization algorithms (WOA)-based 
scheduling approaches have already been put out for 
scheduling bag-of tasks (BoT) applications to get results that 
are almost optimal and are motivated by the humpback whales' 
hunting method. These solutions include those that employ 
conventional, customized, and fusion of WOA techniques [23]. 
A standard WOA, Gaussian model, and opposition-based 
learning (OBL) approaches are combined and used in a cloud 
scheduling solution called GCWOAS2 [24] to provide 
effective task-resource couples. One more current study paper 
[23] proposes a combination metaheuristic approach dubbed 
OWPSO to address the shortcomings of the original WOA by 
combining OBL and PSO algorithms. The authors of [25] 
proposed random double adaptive WOA (RDWOA) 
employing the  Bee optimization algorithm techniques for 
arranging cloud workloads to decrease implementation cost 
and time. 

The increase and decrease operators might be augmented to 
the typical WOA to enhance search efficiency, according to 
authors in [26], who also proposed utilizing two advanced 
optimization algorithms. In study [27], authors proposed an 
Improved WOA for Cloud task scheduling (IWC) algorithm 
that makes use of the local weight method to enhance 
neighboring explore effectiveness and prevent the basic 
WOA's early convergence. WOA and harmony search 
algorithm (HS) were hybridized to create WHOA by the 
authors of [28] in order to reduce execution costs and energy 
usage. The WOA-based cloud task scheduling solution, which 
simultaneously optimizes makepan and energy usage, was 
proposed by Sharma and Garg [29]. To schedule BoT 
applications over clouds, the whale-Scheduler technique was 
recommended, yielding the best makespan and execution cost 
[30]. There have been many different GA-based scheduling 
approaches proposed in the past, including the basic GA 
method [31], improved GA strategies employing modified 
mutation as well as crossover procedures, and fusion of GA 
results that combine classic GA among additional 
methodologies [32]. 

Numerous studies have greatly improved scheduling 
efficiency over cutting-edge heuristics by using basic variants 
of SOS and particular improvements to Symbiotic Organism 
Search (SOS) algorithms utilizing chaotic sequences with 
dissent learning [33]. To overcome CBS concerns and achieve 
different QoS objectives, researchers have suggested 
conventional ant colony optimization (ACO) as well as other 
altered ACO-based optimization techniques [34]. In numerous 
researches, classic PSO algorithms, modified PSO variations, 
and hybrid PSO variants have all been applied to handle CBS 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

775 | P a g e  

www.ijacsa.thesai.org 

situations in order to achieve a variety of objectives, including 
minimizing computation time and complexity and addressing 
load balance challenges [35]. An adjustable inertia weighting 
method is suggested for the CBS problem to tradeoff between 
exploration and exploitation [36]. For maintaining population 
variety and enhancing solution quality, Chen and Long [37] 
proposed a fusion of optimization approach integrating PSO 
and ACO algorithms. A bi-objective PSO scheduler was used 
by the developers of [38] to improve system performance and 
lower execution costs. A multi-objective PSO strategy is used 
in two deadline-constrained scheduling techniques to enhance 
QoS metrics values [39]. 

A non - linear and non PSO was employed by the authors 
of Ref. [40] to lessen the time for scheduling the workload. 
Several strategies for workload allocation in a cloud have been 
suggested, using both a standard Cuckoo Search (CS) 
implementation [41] as well as modifications to the CS's basic 
structure and the incorporation of additional metaheuristics. 
Chhabra et al. proposed a fusion of CS method in [42] to 
enhance the exploration potential of standard CS and to 
achieve more appropriate scheduling than current generation 
heuristics. This metheuristic merged CS and DE algorithms. a 
solid metaheuristic in the form. GWO has been employed in 
the past to create almost ideal scheduling solutions to improve 
various QoS metrics. To optimize both makespan and energy, 
for instance, a MO-GWO technique was recommended [43]. 
Modified GWO is formulated in [44] with alterations on the 
fitness function to consider makespan and cost. In [45], mean 
GWO is studied to achieve better performance tackling 
scheduling concerns. It results in lower makespan and reduced 
energy usage. 

Elaziz et al. in [46] integrated the DE algorithm's effective 
local searching feature and Moth search (MS) method for 
better scheduling solution. The Bacterial Foraging 
Optimization (BFO)-based scheduling strategy has been 
recommended by Milan et al. [47] to optimize extent of 
imbalance, idle time, and overall execution time. The study in 
[48] proposes a novel approach to cloud computing scheduling 
problem solution: Water Pressure Change Optimization 
(WPCO). The phenomena of water density changing as 
pressure is increased due to changes in the physical properties 
of water serves as the inspiration for the novel WPCO 
technology. WPCO provides the best solution quality in 
comparison to the standard metaheuristics. According to the 
authors of [49], a scheduling strategy based on social group 
optimization algorithm (SGO) is proposed for a diverse cloud 
environment that can be used to resolve CBS issues with the 
highest possible throughput and the shortest possible 
makespan. 

Inadequate exploration and utilization process balancing, 
slow convergence, a failure to focus on schedule order 
optimization, a lack of products developed using standard 
workloads, a lack of numerical solutions to tune metaheuristic 
variables, and concurrent performance and energy consumption 
optimization are common problems or limitations of the 
current research studies based on metaheuristic approach for 
scheduling BoT applications over cloud systems. These flaws 
leave a lot of room for developing new metaheuristics or 

refining already-existing ones to increase the CBS problem's 
efficiency. 

III. PROPOSED APPROACH 

Fig. 1 depicts the planned work's entire organizational 
structure. It consists of two phases namely training and using 
the constructed model for prediction. The major goal of the 
training phase is to learn about the cloud resource requirements 
and how to predict resource demand from provided data sets. 
As a result, it is referred to as the training phase. At this point, 
a method called attribute selection is used to cut down on the 
amount of data that was collected. The correlating attributes are 
identified when the data set's dimensions are reduced. These 
characteristics are crucial for forecasting cloud resource 
consumption. 

 

Fig. 1. Organizational structure of the proposed approach. 

The steps of training and prediction are the same. The 
similar procedure was performed throughout prediction for the 
test data. Finally, the anticipated outcomes will be attained. In 
the following section, each procedure is thoroughly explained. 
The following list of modules contains the working stages of 
the planned work. 

1) Attribute Selection using PCGPSONN. 

2) Correlation feature extraction. 

3) Cloud Resource Demand Prediction using SVM. 

A. Attribute Selection using PCGPSONN 

Only the unique Pulse Coupled Genetic Particle Swarm 
Optimization Neural Network (PCGPSONN) is used to 
determine the cloud resource database's most crucial 
properties. The attributes must be carefully chosen for an 
accurate demand prediction of cloud resources. Low accuracy, 
prediction inaccuracy, or failure might result from the incorrect 
selection of these attributes. If the feature selection initial 
selection was incorrect, the approach will never reach the 
global minimum and more runs will only take the algorithm to 
a local minimum. The best position for each particle, Pg, as 
determined by the Genetic Particle Swarm Optimization 
(GPSO) algorithm, is searched for in this work using the Pulse 
Coupled Neural Network (PCNN) algorithm. 
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In GPSO method, the GA operators and the PSO update 
mechanism typically operate with the same population 
throughout initialization step. Uniformly distributed random 
numbers should be used to create the initial population of all its 
members. Therefore, the attribute selection process must go 
through more iterations because of this random distribution's 
sluggish convergence. However, in our suggested method, 
GPCNN solutions are used to allocate the PSO's initial 
population. GPCNN and PSO split the entire number of 
iterations evenly. GPCNN runs the first half of the iterations, 
and the answers are provided as the PSO's initial population. 
PSO is in charge of the final iterations. Thus, the issue of 
delayed convergence is resolved, and the attribute selection 
process requires fewer iterations. 

Additionally, the hybrid approach we suggest should 
include local and worldwide search. Then, for each particle, 
generate the best position Pg, and the attribute selection 
method is then given these best positions Pg to further refine 
the search process. Consequently, our hybrid strategy performs 
better than this approach. The PCGPSONN algorithm is 
displayed below. 

Algorithm of PCGPSONN: 

Input: 

 Attributes (X) and their values. 

 Population Size (pop_size): Number of individuals in 

the population. 

 Max Generations (max_gen): Maximum number of 

generations. 

 Crossover Probability (crossover_prob): Probability 

of crossover occurring. 

 Mutation Probability (mutation_prob): Probability of 

mutation occurring. 

 Particle Swarm Size (swarm_size): Number of 

particles in the swarm. 

 Inertia Weight (inertia_wt): Weight for the inertia 

term in PSO. 

 C1 and C2 (c1, c2): Constants for the cognitive and 

social components in PSO. 

Output: 

 Best Attribute (S): The best solution found. 

 Fitness Value (W): The fitness value corresponding 

to the best solution. 

 
1. Initialize Population: 

 Generate an initial population of solutions 
(pop_size) randomly. 

2. Loop through Generations: 

 Repeat for a specified number of generations 
(max_gen) or until a convergence criterion is met. 

 2.1 Evaluate Fitness: 

 Evaluate the fitness W of each solution X in the 
population. 

 2.2 Genetic Algorithm Steps: 

 Select solutions S1 for crossover based on their 
fitness. 

 Perform crossover with a certain probability 
(crossover_prob). 

 Mutate selected solutions with a certain 
probability (mutation_prob). 

 2.3 Particle Swarm Optimization (PSO) Steps: 

 Initialize a particle swarm (swarm_size) with 
positions and velocities. 

 Evaluate the fitness W of each particle X. 

 Update particle positions and velocities based on 
PSO equations. 

 Track the global best position S2 found by the 
swarm. 

 2.4 Combine Genetic and PSO Steps: 

 Replace the worst solutions S1 in the population 
with the best particles from the swarm S2. 

 2.5 Update Population: 

 Create a new population for the next generation by 
combining the modified population and the PSO 
swarm. 

3. Return Best Solution: 

 Return the best solution S found in the final 
population. 

4. Execute PCNN: 

 Execute PCNN with W and S 
 

PCNN algorithm 

Alpha_F = 0.1 Decay term for feeding 

Alpha_L = 1.0 Decay term for linking 

Alpha_T = 1.0 Decay term for threshold 

V_F = 0.5 Magnitude scaling term for feeding 

V_L = 0.2 Magnitude scaling term for linking 

V_T = 20.0 Magnitude scaling term for linking 

Beta = 0.1 Linking strength 

Num = 100 The number of iterations 

W= [0.5 1 0.5;1 0 1;0.5 1 0.5] Initial values for W 

M = [0.5 1 0.5;1 0 1;0.5 1 0.5] Initial values for M 

F = zeros(size(S)) Initial values for F 

L = F Initial values for L 

Y = F Initial values for Y 

U = F Initial values for U 
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T = Ones(size(S)) Initial values for T 

S = im2double(S) Normalizing to lie within [0,1] 

for n = 1:Num 

F = exp(_Alpha_F) *F + V_F*conv2(Y,W) + S Update the 
feeding input 

L = exp(_Alpha_L) * L + V_L*conv2(Y,M) Update the 
linking input 

U = F_ *(1 + Beta*L) Compute the internal activation 

Y = double(UiT) Update the output 

T = exp(_Alpha_T) *T + V_T*Y Update the threshold 
input 

End 

The genetic algorithm's fitness value is W in this case and S 
is the best quality of genetic algorithms. The proposed 
approach chooses seven of the 11 attributes that are present in 
the cloud resource dataset. Table I provides a description of the 
complete attributes. Table II provides descriptions of the 
chosen features. 

Based on the values of the attribute weights, PCGPSONN 
chooses the attribute. Instead of using binary presentation, a 
population of 200 clients used real-valued representation since 
the parameter coefficients were expressed using real-valued 
numbers rather than just 0 and 1. Seven separate attribute 
weight sets totaling 28 qualities made up each individual. The 
beginning population's members were chosen using machine 
learning techniques and expert-set weights. More precisely 
specified is the initial population. The PCGPSONN used a 
uniform crossover with discrete recombination for offspring 
creation and a roulette-wheel selection for parent selection. 
80.0% of the time was spent on the crossover, and each gene's 
crossover points were selected separately and arbitrarily. The 
gene underwent mutation with a likelihood of 1.0% and was 
uniformly carried out by selecting a random value at random 
from the range and setting it as the new value at the present 
place. Additionally, elitism was employed during runs to 
preserve the greatest person among the population. The weight 
set that performed the best during evolution was something we 
did not want to lose. If the total population was higher than 21 
at the culmination of the generation, a strategy for survivor 
screening was used. Those with the lowest categorization 
accuracy were removed from the population after the 
individuals were graded according to their accuracy. After 20 
generations, the PCGPSONN algorithm concluded, or sooner if 
the best classification accuracy remained constant during a 
period of 10 iterations. Additionally, the examination came to 
an end if every member of the population were the same. The 
proposed PCGPSONN approach is contrasted with the GPSO 
and GPCNN approaches to demonstrate its efficacy. Tables III 
and IV display the GPSO and GPCNN results, respectively. 

The selected attribute list of GPSO is shown in Table III. In 
GPSO approach first genetic algorithm is completed to get the 
fitness values of all attributes and then it is given to the PSO 
approach to complete the attribute selection process. 

TABLE I.  FEATURES OF CLOUD RESOURCE DATASET 

S.No Feature name 

1 Timestamp 

2 Disk read throughput 

3 Disk write throughput 

4 Network transmitted throughput 

5 Provisioned capacity for CPU 

6 Use of CPU [MHZ] 

7 Use of CPU [%] 

8 Provisioned Memory capacity [KB] 

9 Memory consumed [KB] 

10 Network received throughput [KB/s] 

11 CPU cores 

TABLE II.  SELECTED FEATURES BY PCGPSONN 

S.No Feature name 

1 Provisioned capacity for CPU 

2 Use of CPU [MHZ] 

3 Use of CPU [%] 

4 Provisioned Memory capacity [KB] 

5 Memory consumed [KB] 

6 Network received throughput [KB/s] 

7 CPU cores 

TABLE III.  SELECTED ATTRIBUTES BY GPSO 

S.No Feature name 

1 Disk read throughput 

2 Disk write throughput 

3 Network transmitted throughput 

4 Provisioned capacity for CPU 

5 Use of CPU [MHZ] 

6 Use of CPU  [%] 

7 Memory capacity provisioned [KB] 

8 Memory usage [KB] 

9 Network received throughput [KB/s] 

10 CPU cores 

Table IV displays the GPCNN's chosen attribute list. When 
using the GPCNN strategy, all attributes' fitness values are first 
obtained using a genetic algorithm, and they are then given to 
the PCNN approach for double threshold operation during the 
attribute selection phase. 

TABLE IV.  SELECTED ATTRIBUTES BY GPCNN 

S.No Feature name 

1 Disk read throughput 

2 Disk write throughput 

3 CPU capacity provisioned 

4 Use of CPU [MHZ] 

5 Use of CPU [%] 

6 Memory capacity provisioned [KB] 

7 Memory usage [KB] 

8 Network received throughput [KB/s] 

9 CPU cores 
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B. Correlation Feature Extraction 

The degree to which two or more variables vary together is 
shown by a statistical metric known as correlation. It describes, 
in layman's terms, how much one variable changes in reaction 
to a slight variation in another. In accordance with the direction 
of the change, it might have positive, negative, or zero values. 
An independent attribute's strong significance in affecting the 
output is shown by a high correlation value between it and a 
dependent attribute. Finding the connection between the 
dependent and all of the independent variables in a multiple 
regression setup with numerous parameters is required to 
produce a more accurate and useful model. It is important to 
always keep in mind that additional characteristics do not 
necessarily translate into greater accuracy. Irrelevant 
characteristics would add unnecessary noise to our model and 
the accuracy could fall. 

The Pearson r correlation method used in this study can be 
used to identify correlation between two attributes. The 
Pearson r correlation is the most often used correlation statistic 
to assess the degree of relationship between two linearly 
related characteristics. It is possible to determine the Pearson 
correlation between any two qualities, x, and y using: 

      
            

√    
  (   )

 √    
  (   )

 
                       ()

 

Fig. 2. Correlation Feature extracted values using Pearson correlation 

method. 

Pearson correlation coefficient, often denoted as r, that 
calculate the Pearson correlation coefficients between each 
selected attributes which are derived from section 3.1 and the 
target variable (cloud resource demand). Using Pearson 
correlation coefficient, the extracted correlation feature table is 
shown in Fig. 2. In the Fig. 2, the Pearson correlation ranges 
from -1 to 1, where: 

 r=1 indicates a perfect positive linear relationship. 

 r=−1 indicates a perfect negative linear relationship. 

 r=0 indicates no linear relationship. 

These extracted correlation feature values are given into the 
SVM to predict the cloud resource demand. 

C. Cloud Resource Demand Prediction using SVM 

The equations are an exception to the prescribed 
specifications of this template. You will need to determine w 
Regression analysis and classification are two applications of 
support vector machines, commonly referred to as support 

vector networks or SVMs, which are supervised learning 
models in machine learning. They examine data and identify 
patterns. Provided a set of training examples that have been 
labelled as falling into one of two categories, an SVM training 
process builds a model that places new examples into either 
group. The model is now a non-probabilistic binary linear 
classifier as a result of this. The objective of an SVM model is 
to generate as big of a gap as possible between the instances of 
the different categories by mapping the examples as points in 
space. Next, by mapping them into the same region and 
identifying which side of the gap they fall into, new instances 
are projected to fit into a particular category. SVMs can 
perform non-linear classification as well as linear classification 
by implicitly translating their inputs into feature spaces with 
many dimensions, a method known as the "kernel trick." 

The primary objective of SVM in cloud resource demand 
prediction is to find a hyperplane that best separates data points 
belonging to different classes. The hyperplane is chosen to 
maximize the margin, which is the distance between the 
hyperplane and the nearest data points from each class, known 
as support vectors. The hyperplane serves as the decision 
boundary that separates data points into different classes. The 
margin in SVM is the distance between the hyperplane and the 
nearest data points from each class (support vectors). SVM 
aims to maximize this margin. Support vectors are the data 
points that lie closest to the decision boundary. They play a 
crucial role in defining the optimal hyperplane. Train an SVM 
model in this work, using correlation features as input and 
cloud resource prediction value as the target variable. Use the 
trained SVM model to predict cloud resource prediction value 
for new, unseen data. 

The work flow of SVM for cloud resource prediction is 
shown in Fig. 3. 

 
Fig. 3. SVM algorithm. 
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IV. RESULTS 

The dataset used for designing and developing the cloud 
resource demand prediction using SVM comprises information 
on resource utilization over a period of one month. In total, 
there were 123 million observed instances involving 1250 
machines. The dataset which is used in this work is Real-time 
dataset named GoCJ. The GoCJ datasets used in our work is 
the publicly available dataset collected from 
https://data.mendeley.com/datasets/b7bp6xhrcd/1. The new 
proposed approach is implemented in Matlab. 

A. Examination Parameters 

A wide range of assessment criteria are available to assess 
the prediction algorithms' performance. This work considers 
the following elements. 

Detection Accuracy is: 

             (  )              (  )

                 (  )                  (  )
          (2) 

Error Rate is: 

                                    

                 
                (3) 

Precision rate: 

  

     
                                    (4) 

Recall rate: 

  

     
                         (5) 

B. Performance Analysis 

Using the performance measures indicated above, the 
classifier system's performance is analyzed and contrasted with 
that of other techniques. The tables and graphs below 
demonstrate this. 

1) Experiment No #1: Newly Developed Attribute 

Selection Approach Evaluation with Accuracy. 

We will evaluate the impact of every attribute selection 
strategy used in the work in this research. Eq. (2) to Eq. (5) are 
used to evaluate the effectiveness of this cloud resource 
demand prediction technique. A great attribute selection 
strategy is preferred to have a high value of Eq. (2). The 
PCGPSONN accuracy analysis is listed in Table V. 

As is evident from Table V, the PCGPSONN has an 
accuracy of 96.29. The accuracy of attribute selection is shown 
in Fig. 4. 

TABLE V.  NEWLY DEVELOPED ATTRIBUTE SELECTION APPROACH 

EVALUATION WITH ACCURACY 

GPSO GPCNN PCGPSONN 

93.14 94.23 96.29 

 

Fig. 4. Accuracy of feature selection strategies. 

2) Experiment No #2: Newly Developed Attribute 

Selection Approach Evaluation with Precision Rate. 

Precision tells the proportion of instances that the models 
predicted as positive and were actually positive out of all the 
instances it predicted as positive. A high precision indicates 
that when the model predicts a positive outcome, it is likely to 
be correct. The PCGPSONN Precision rate analysis is listed in 
Table VI. 

TABLE VI.  NEWLY DEVELOPED ATTRIBUTE SELECTION APPROACH 

EVALUATION WITH PRECISION RATE 

GPSO GPCNN PCGPSONN 

90.21 91.35 93.10 

As is evident from Table VI, the PCGPSONN has Precision 
rate of 93.1, which is better than other approaches. As a result, 
the PCGPSONN classifier is thought to be the best for 
choosing attributes. The Precision rate of attribute selection is 
shown in Fig. 5. 

 
Fig. 5. Precision rate of attribute selection strategies. 
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3) Experiment No #3: Newly Developed Attribute 

Selection Approach Evaluation with Recall Rate. 

Recall depicts the proportion of actual positive instances 
that were correctly predicted by the model out of all the actual 
positive instances. A good attribute selection strategy is 
preferred to have a high value of Eq. (4). The PCGPSONN 
Recall rate analysis is listed in Table VII. 

TABLE VII.  NEWLY DEVELOPED ATTRIBUTE SELECTION APPROACH 

EVALUATION WITH RECALL RATE 

GPSO GPCNN PCGPSONN 

90.11 91.35 92.85 

As is evident from Table VII, the PCGPSONN has Recall 
rate of 93, which is better than other approaches. The Recall 
rate of attribute selection is shown in Fig. 6. 

 

Fig. 6. Recall rate of attribute selection strategies. 

As can be seen from the accompanying figure, the 
PCGPSONN's Recall Rate is better than other methods. 
Therefore, the PCGPSONN is the best for choosing attributes. 

4) Experiment No #4: Newly Developed Attribute 

Selection Approach Evaluation with Error Rate. 

Error rate, in the context of machine learning, is a metric 
that represents the proportion of incorrectly classified instances 
in a model's predictions. It is the complement of accuracy. The 
PCGPSONN error rate analysis is listed in Table VIII. 

TABLE VIII.  NEWLY DEVELOPED ATTRIBUTE SELECTION APPROACH 

EVALUATION WITH ERROR RATE 

GPSO GPCNN PCGPSONN 

6.86 5.77 0.03703704 

As is evident from Table VIII, the PCGPSONN has an 
error rate of 0.037. The error rate of attribute selection is 
shown in Fig. 7. 

As can be seen from the associated figure, the 
PCGPSONN's error rate is lower than other methods. 
Therefore, the PCGPSONN is the best for choosing attributes. 

 

Fig. 7. Error rate of feature selection strategies. 

V. CONCLUSION 

Demands on cloud resources can be sudden, intense, and 
volatile. The reactive resource providing approach may result 
in sluggish or insufficient resource delivery. Thus, to guarantee 
resource availability, it is imperative to predict resource 
demands. To process the raw data and produce a fresh and 
original prediction for Cloud resource demands, machine 
learning techniques were applied in this study. We were able to 
develop a more accurate model for cloud resource demand 
prediction in this study by effectively using a feature selection 
method based on data mining methodology. PCGPSONN 
showed to be quite accurate at predicting the demand for Cloud 
resource. The future direction of this research can be carried 
out with several machine learning approaches to enhance 
prediction techniques. Additionally, novel feature selection 
techniques can be used to develop a deeper comprehension of 
critical traits and enhance predictions of cloud resource 
consumption. 
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