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Abstract—The automatic classification of multi-instruments 

plays a crucial role in providing services for music retrieval and 

recommendation. This paper focuses on automatic multi-

instrument classification. Firstly, instrument features were 

analyzed, and Mel-frequency cepstral coefficient (MFCC) and 

perceptual linear predictive coefficient (PLPC) were extracted 

from instrument signals. Features were selected using the 

entropy weight method. The optimal initial weight threshold of a 

back-propagation neural network (BPNN) was obtained by 

utilizing the sparrow search algorithm (SSA), achieving a SSA-

BPNN classifier. Experiments were conducted using the IRMAS 

dataset. The results demonstrated that the combination of MFCC 

and PLPC selected through the entropy weight method achieved 

the best performance in automatic multi-instrument 

classification. The method yielded high P value, recall rate, and 

F1 value, 0.72, 0.71, and 0.71, respectively. Moreover, it 

outperformed other algorithms such as support vector machine 

and XGBoost. These results confirm the reliability of the 

automatic multi-instrument classification method proposed in 

this paper, making it suitable for practical applications. 

Keywords—Neural network; musical instrument; automatic 
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I. INTRODUCTION 

Music serves as a medium for conveying emotions [1]. 
With the continuous progress and popularization of computer 
technology, an increasing amount of music information 
circulates and spreads on the internet, offering users a more 
convenient means to enjoy music. In order to enhance the user 
experience further, music information retrieval (MIR) has 
gradually emerged as a crucial area of research [2]. Through 
MIR, users can efficiently discover their preferred music. MIR 
research includes the identification and classification of 
musical instruments, genres, and styles [3]. Automatic 
classification of musical instruments refers to the use of 
intelligent algorithms to automatically classify different 
musical instruments through processing their signals. In multi-
instrument automatic classification, different instrument signals 
can easily interfere with each other, resulting in a decrease in 
classification effectiveness. 

Neural networks are a type of machine learning that possess 
strong self-learning capabilities, enabling them to derive useful 
conclusions from a series of complex and seemingly unrelated 
data. They have wide applications in fields such as speech 
recognition, image processing, and automation control, where 
they demonstrate certain advantages in handling complex data. 
Therefore, in order to further improve the accuracy of multi-
instrument automatic classification, this study focuses on 
researching neural networks. 

Based on the analysis of musical instrument signals, this 
article selected back-propagation neural network (BPNN) as 
the main algorithm. In order to further improve its 
performance, the sparrow search algorithm (SSA) was used to 
optimize BPNN. Finally, the performance of the proposed 
method was verified on the IRMAS dataset. 

The main contribution of this article lies in providing a 
more accurate method for automatic classification of multiple 
musical instruments, which also offers some new references for 
music signal classification and even speech signal 
classification. This is conducive to promoting the further 
application of neural network algorithms in the field of music 
research. 

II. LITERATURE REVIEW 

With the continuous development of machine learning and 
other technologies, an increasing number of algorithms have 
been applied in MIR research. 

In terms of music popularity prediction, Martin-Gutierrez et 
al. [4] introduced a deep learning architecture called 
HitMusicNet for predicting the popularity of music recordings. 
The experimental results demonstrated its superior predictive 
capabilities compared to existing techniques. Voetter et al. [5] 
presented two novel datasets to predict song popularity based 
on the data from AcousticBrainz, Billboard Hot 100, the 
Million Song dataset, and last.fm. They verified the usability of 
the designed dataset by performing experiments on different 
models. 

In terms of singer recognition, Rajesh and Nalini [6] 
conducted experiments to validate the effectiveness of their 
approach in singer recognition, which involved the integration 
of MFCC with chroma DCT-reduced pitch features. Kooshan 
et al. [7] developed a singer recognition system by integrating 
deep learning and feedforward neural networks. They utilized 
long short-term memory (LSTM) to identify vocal frames 
within music segments, followed by the application of another 
LSTM for singer identification. Experimental validation 
confirmed the superior performance of this approach compared 
to existing methods. 

In terms of music recommendation, Feng et al. [8] 
proposed to model and combine melody, chord, and rhythm 
features and utilized a multilayer perceptron for music 
recommendation. The experimental results indicated a 3.52% 
improvement over the best baseline. Elbir et al. [9] developed 
an innovative deep neural network that utilizes the acoustic 
attributes of music to classify genres and provide music 
recommendations. 
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In the domain of instrument recognition and classification, 
Chatterjee et al. [10] proposed employing a convolutional 
siamese networks along with its residual variation to identify 
instruments based on scalograms derived from audio 
recordings. They conducted experiments using two publicly 
accessible datasets to validate their approach. Wise et al. [11] 
developed an attention-enhanced convolutional neural network 
specifically designed for accurately classifying a wide range of 
19 orchestral instruments, and they substantiated the 
effectiveness of this technique through experimental 
evaluations. 

III. INSTRUMENT FEATURE EXTRACTION 

Different musical instruments emit distinct vibration 
frequencies, which, in turn, yield different sounds. Timbre 
represents the subjective, natural perception of these vibrations 
by humans. To achieve the automatic classification of various 
musical instruments, it is essential to extract features that 
reflect the timbral characteristics of the musical instrument 
sound signal. Currently, in the realm of speech signal 
recognition, a predominant reliance on time-domain and 
frequency-domain features is observed. These feature types are 
relatively straightforward and easy to analysis. However, they 
fall short in adequately characterizing timbre, resulting in 
suboptimal classification performance. This paper primarily 
focuses on the analysis of two categories of features derived 
from the human auditory system for musical instrument feature 
extraction. 

MFCC is a feature obtained by simulating the auditory 
characteristics of the human ear [12], which has a good 
performance in speech recognition [13]. It is extracted in the 
following way. 

1) Pre-emphasis, frame-by-frame, and windowing 

operations are performed on the original instrument audio 

signal to get pre-processed signal   ( ). 

2) A fast Fourier transform (FFT) is performed on   ( ), 

and  

 (   )     [  ( )]                          (1) 

is obtained. 

3) The energy spectrum is calculated: 

  (   )  [  ( )] .         (2) 

4) A filtering operation is performed on  (   ) . The 

spectrum energy is obtained through a group of triangular 

filters:  

 (   )  ∑  (   )  ( )   
   ,              (3) 

where,   ( )  represents the transfer function of the 
triangular filter. 

5) The final MFCC is obtained by discrete cosine 

transform (DCT): 
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where,   is the filter order. 

PLPC is also a feature that mimics the auditory 
characteristics of the human ear [14] and is extracted as follows: 

1) FFT is also performed on   ( ) to convert it to the 

frequency domain to obtain  (   ) .  (   )  is 

calculated. 

2)  (   ) is converted to the Bark domain: 

 ( )     {
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  ]
   

},                 (5) 

where,   is the value of the signal frequency in the Bark 
domain and   is the angular frequency. 

3) The critical bands in the Bark domain are considered as 

a group of filters, and the function of each filter is: 
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The output of each critical band is obtained:  

 ( )  ∑  (    )
   
    ( )      (    ( )).   (7) 

4) Equal loudness curve pre-emphasis is carried out on 

 ( ):  

 ( )   [  ( )] ( ),   (8) 

where,   ( )  corresponds to central frequency   ( )  of 
each filter,   ( ) refers to the equal loudness curve,  

 [  ( )]  
      

 ( )(     
 ( )         )

(     
 ( )        )

 
 (     

 ( )        )
.     (9) 

5) Finally, the simulation of human ear hearing is realized 

by converting from intensity to loudness: 

 ( )   ( )    .                                (10) 

In the context of speech recognition tasks, MFCC is usually 
set as 13 dimensions along with their corresponding first-order 
and second-order difference coefficients, resulting in a total of 
39 dimensions. Additionally, PLPC usually employs 24 filters 
to yield 24 dimensions. If both the 39-dimensional MFCC and 
the 24-dimensional PLPC features are utilized for automatic 
multi-instrument classification, the cumulative dimensionality 
reaches 63 dimensions. To mitigate the potential complexity 
and computational load associated with this higher 
dimensionality, this paper uses an entropy weight method [15] 
to optimize these features. 

Information entropy is related to the probability of an event 
occurring. When it is applied to feature optimization, the 
greater the information entropy, the more disordered the 
distribution of that feature value is. For a       original 
feature set, it is assumed that the feature vector corresponding 
to the   -th feature item is    , the process of feature 

optimization is presented in Fig. 1. 
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Fig. 1. The feature optimization process based on entropy weight method. 

The specific calculation process is as follows: 

1) Standardized eigenvalue: 

        
 

          (   )

   (   )    (   )
.  (11) 

2) The information entropy is calculated:  

 (  )   ∑   (     )     (     )  
    ,  (12) 

where,   (     )  refers to the percentage of different 

eigenvalues in the corresponding term,   (     )  
  (     )

  (  )
, 

  (  )  ∑   (     )  
    . 

3) The feature term weight is calculated:  

    
   (  )

   ∑  (  )
  
    

.     (13) 

4) A threshold is set, and feature items with weights 

greater than the threshold are retained as subsequent features 

used for automatic multi-instrument classification. 

IV. AUTOMATIC CLASSIFICATION METHOD BASED ON 

NEURAL NETWORKS 

Back-propagation neural network (BPNN) has excellent 
performance and is most widely used in automatic 
classification tasks [16]. Therefore, in this paper, BPNN is 
chosen as a classifier for automatic classification of multi-
instrument. A simple BPNN structure is presented in Fig. 2. 

x1

x2

xm

y1

y2

yq

Input layer Hidden layer Output layer

 
Fig. 2. The BPNN structure. 

It is hypothesized that the number of nodes in the input 
layer, hidden layer, and output layer of BPNN is      . 
The output of the hidden layer during training can be written 
as: 

     (∑    
      

 
   ).   (14) 

The output of the output layer can be written as: 

     (∑    
      

 
   ).   (15) 

where,   and   denote the weight and threshold of each 
layer. 

The global error function can be written as: 

  
 

 
∑ (     )

  
   ,  (16) 

where,    is the desired output. The BPNN continuously 
corrects the weight threshold according to the error until the 
error meets the requirements. However, the performance of 
BPNN is easily affected by the initial weight threshold, so it 
can be tempting to become trapped in the local optimum. In 
order to solve this problem, this paper uses the sparrow search 
algorithm (SSA) [17] to optimize the BPNN. 

SSA is a sparrow-inspired algorithm that utilizes the 
foraging behavior of sparrows, which exhibits excellent global 
optimization performance and is used to calculate the optimal 
initial weight thresholds for BPNN. During the foraging 
process, some sparrows are responsible for finding the foraging 
area and direction, the rest of the sparrows feed, and some 
sparrows will sound an alarm when danger is detected. The 
population is categorized into discoverers, followers, and 
alerts, and their positions are updated as follows. 

1) Discoverer: 

    
    {

    
     ( 

 

      
)       

    
          

, (17) 

where,   is a random number in [0,1],   is an alert value in 
(0,1], and     is the threshold at which the shift occurs,   is a 
random number obeying a normal distribution,   is a     
matrix,       means that the area is dangerous and the 
finder needs to move to a safe area, and       means that 
the area is safe and sparrows can look for food. 
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3) Follower: 
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, (18) 

where,        is the worst position of the individual,    is 
the best position of the discoverer,      (   )  ,   is a 
    matrix, randomly assigned as -1 or 1. 

4) Watcher: 

    
    {

     
    |    

       
 |      

    
    (

|      
      

 |

       
)       

, (19) 

where,       is the global optimal position,   is the step 
control parameter,    refers to the fitness of the  -th sparrow,    

and    are the current best and worst fitness,   is a random 
number in (-1,1), and   is a constant. 

SSA finds the optimal weight threshold of BPNN by 
constantly updating the three positions. To improve the 
population diversity, this paper uses cubic mapping [18] to 
obtain the initialized population: 

        (    
 ),  (20) 

where,   is the control parameter. The SSA-BPNN 
algorithm is used to realize the classification of different 
musical instruments, and the flow chart is presented in Fig. 3. 
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Fig. 3. The SSA-BPNN algorithm-based automatic multi-instrument 

classification method. 

V. RESULTS AND ANALYSIS 

A. Experimental Setup 

The algorithm was developed and trained in the MATLAB 
2018b environment. The dataset used for the experiment was 

the IRMAS dataset [19], comprising a total of 6,705 WAV 
audio files. All audio files were in 16-bit stereo format and had 
a sampling rate of 44.1 kHz. A single performance clip of ten 
instruments, including cello, clarinet, and others, each with a 
duration of 3 s, was selected. The training set and test set 
configurations are detailed in Table I. 

TABLE I.  EXPERIMENTAL DATA SETS 

Musical Instrument 
Number in the Training 

Set 

Number in the Test 

Set 

Flute 451 163 

Organ 682 361 

Piano 721 995 

Trumpet 577 167 

Cello 388 111 

Clarinet 505 62 

Electric guitar 760 942 

Violin 580 211 

Saxophone 626 326 

Acoustic guitar 637 535 

The classification results were assessed using the precision 
(P), recall rate (R), and F1 value, calculated by: 

   
  

     
,   (21) 

   
  

     
,   (22) 

    
   

   
,    (23) 

where: 

  : number of samples retrieved and belonging to the 
positive category, 

  : number of samples retrieved but belonging to the 
negative category, 

  : number of samples not retrieved but belonging to the 
positive category. 

In automatic multi-instrument classification, the 
macroscopic values of P and R need to be considered: 

        
 

| |
∑   

 
   ,  (24) 

        
 

| |
∑   

 
   ,   (25) 

where,   refers to the number of labels,    and    are the 
corresponding P and R values calculated for each label  . By 
further calculation, the corresponding macro F1 value can be 
obtained. 

B. Result Analysis 

Firstly, the effect of feature selection on the multi-
instrument classification results was analyzed. In the case of 
using the SSA-BPNN model as a classifier but changing the 
algorithm's feature input, the classification results were 
compared, as shown in Table II. 
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TABLE II.  EFFECT OF FEATURE SELECTION ON MULTI-INSTRUMENT CLASSIFICATION RESULTS 

Musical 

Instrument 
 Flute Organ Piano Trumpet Cello Clarinet 

Electric 

Guitar 
Violin Saxophone 

Acoustic 

Guitar 

Macro-

value 

MFCC 

P 0.69 0.61 0.55 0.66 0.69 0.61 0.62 0.63 0.59 0.71 0.64 

R 0.66 0.64 0.65 0.62 0.66 0.71 0.65 0.61 0.71 0.61 0.65 

F1 0.67 0.62 0.60 0.64 0.67 0.66 0.63 0.62 0.64 0.66 0.64 

PLPC 

P 0.71 0.65 0.66 0.65 0.68 0.65 0.62 0.65 0.67 0.68 0.66 

R 0.65 0.67 0.66 0.64 0.66 0.68 0.71 0.68 0.72 0.66 0.67 

F1 0.68 0.66 0.66 0.64 0.67 0.66 0.66 0.66 0.69 0.67 0.67 

MFCC+PLPC 

P 0.71 0.65 0.65 0.68 0.74 0.68 0.71 0.61 0.68 0.68 0.68 

R 0.65 0.61 0.65 0.65 0.71 0.71 0.65 0.61 0.75 0.74 0.67 

F1 0.68 0.63 0.65 0.66 0.72 0.69 0.68 0.61 0.71 0.71 0.68 

MFCC + 

PLPC 
(entropy 

weight 

method) 

P 0.75 0.66 0.68 0.79 0.81 0.72 0.71 0.64 0.71 0.71 0.72 

R 0.68 0.62 0.68 0.71 0.75 0.75 0.75 0.66 0.78 0.75 0.71 

F1 0.71 0.64 0.68 0.75 0.78 0.73 0.73 0.65 0.74 0.73 0.71 
 

According to the data in Table II, when MFCC was used as 
the feature, the multi-instrument classification yielded a P 
value of 0.71, an R value of 0.65, and an F1 value of 0.64. In 
contrast, when PLPC was employed as the feature, the multi-
instrument classification produced a P value of 0.66, which 
was 0.02 larger than that when using MFCC. The R value was 
0.67, which was 0.02 larger than that when using MFCC. The 
F1 value was 0.67, which was 0.03 larger than that when using 
MFCC. These results suggested that PLPC was more effective 
in the context of automatic multi-instrument classification 
when compared to MFCC. It can be attributed to the fact that 
PLPC is better at simulating the human ear's perception of 
sound, making it closer to actual music perception. 

Subsequently, both MFCC and PLPC were simultaneously 
input into the SSA-BPNN model, resulting in a P value of 0.68, 
which showed an increase of 0.02 compared to inputting PLPC 
alone. The R value was 0.67, the same as when inputting PLPC 
alone, and the F1 value reached 0.68, which was an increase of 
0.01 compared to inputting PLPC alone. These outcomes 
suggested that the enhancement in classification performance 
achieved by inputting both sets of features into the SSA-BPNN 
model simultaneously was not substantial. It may be because 
the large number of features affects the algorithm classification 
performance. 

In the final step, the MFCC+PLPC features, selected 
through the entropy weight method, were employed. This 
configuration yielded a P value of 0.72, an R value of 0.71, and 
an F1 value of 0.71. These results surpassed the previous three 
feature input combinations, underscoring the effectiveness of 
utilizing the entropy weighting method for feature 
optimization. This approach enhances the automatic 
classification capability of the SSA-BPNN method for multi-
instrumental instruments while simultaneously reducing the 
number of feature dimensions. 

Then, also using MFCC+PLPC after the entropy weighting 
method selection as features, the effect of different classifiers 
on the multi-instrument classification results was compared. 
The SSA-BPNN algorithm was compared with other classifiers, 
including: 

1) Support vector machine (SVM) [20], 

2) XGBoost [21], 

3) Traditional BPNN [22], 

4) BPNN optimized using genetic algorithms (GA): GA-

BPNN [23], 

5) BPNN optimized using particle swarm algorithm 

(PSO): PSO-BPNN [24]. 

The results are presented in Fig. 4. 

 
Fig. 4. The effect of the classifier on the automatic multi-instrument 

classification results. 

From Fig. 4, it is evident that the BPNN algorithm 
exhibited superior classification performance compared to the 
SVM and XGBoost algorithms. The BPNN algorithm achieved 
a P value of 0.65, which were improved by 0.12 compared to 
the SVM algorithm and 0.04 compared to the XGBoost 
algorithm. The R value for the BPNN algorithm was 0.61, 
representing a 0.09 increase compared to the SVM algorithm 
and a 0.02 increase compared to the XGBoost algorithm. The 
F1 value for the BPNN algorithm was 0.63, indicating an 
improvement of 0.11 compared to the SVM algorithm and an 
increase of 0.11 compared to the XGBoost algorithm. These 
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results underscored the advantages of using BPNN as a 
classifier. In the comparison of different weight threshold 
optimization methods, the GA-BPNN algorithm showed P 
value, R value, and F1 value scores below 0.7 for automatic 
multi-instrument classification, which did not demonstrate 
substantial improvement over the BPNN algorithm. The PSO-
BPNN algorithm achieved only a P value of 0.71, an R value 
of 0.68, and an F1 value of 0.69. Compared to the PSO-BPNN 
algorithm, the SSA-BPNN algorithm showed an increase of 
0.01 in P value, 0.03 in R value, and 0.02 in F1 value. This 
result highlighted the reliability of the classifier developed in 
this paper for automatic multi-instrument classification. 

VI. DISCUSSION 

The automatic classification of multiple musical 
instruments is an important area of research in audio signal 
processing [25], and it also has significant implications for both 
theoretical and practical applications. Through the automatic 
classification of multiple musical instruments, it can provide 
strong support for MIR [26], helping users conveniently find 
music they are interested in. In music composition, it can be 
used to automatically separate different instrument tracks, 
providing flexible post-production techniques for music 
producers. In cultural preservation, it enables the analysis of 
multiple instruments in traditional music [27], contributing to 
better protection and inheritance of musical culture. However, 
music performance often involves a wide variety of complex 
instruments, which poses significant challenges for automatic 
classification. Further research is needed to enhance the 
effectiveness of multi-instrument automatic classification. 

In current research on the automatic classification of 
multiple musical instruments, improving classification 
accuracy mainly relies on optimizing feature extraction and 
classification algorithms. In terms of feature extraction, this 
paper utilized entropy weighting to optimize MFCC and PLPC 
features, reducing dimensionality while enhancing accuracy. 
Regarding the classification algorithm, SSA was employed to 
optimize BPNN parameters for better performance. The 
experiments conducted on the IRMAS dataset revealed that the 
feature selection optimization method, based on entropy 
weighting, effectively enhanced the accuracy of multi-
instrument automatic classification. The obtained P value was 
0.72, the R value was 0.71, and the F1 value was 0.71, which 
were higher than those achieved by other feature combinations. 
This result indicated that the features selected through entropy 
weighting could better represent the characteristics of different 
instruments, thereby improving the discrimination effect of the 
SSA-BPNN method for various instruments. The analysis of 
the classifier revealed that the SSA demonstrated excellent 
performance in optimizing the parameters of BPNN and it 
could enhance classification accuracy and obtain results better 
than the other classifiers. This makes it applicable in practical 
scenarios. 

VII. CONCLUSION 

This paper proposed an approach for the automatic 
classification of multiple instruments. The MFCC and PLPC 
features were optimized using the entropy weighting method. 
An SSA-BPNN method was designed as the classifier. 
Through experiments, it was found that the features optimized 

by the entropy weighting method delivered optimal 
performance in the automatic classification of multiple 
instruments, with a P value of 0.72, an R value of 0.71, and an 
F1 value of 0.71, outperforming alternative methods like the 
SVM algorithm. 

This method can accurately classify multiple musical 
instruments and can be further applied in practical music data 
processing. 

The findings of this study demonstrate that the SSA-BPNN 
method, as designed, can achieve a relatively high level of 
accuracy in automatically classifying multiple instruments. 
This provides valuable theoretical insights for optimizing 
features, refining neural network algorithms, and improving 
parameter optimization methods. Moreover, it opens up new 
avenues for future research on automatic classification of 
multiple instruments. From a practical standpoint, the proposed 
method holds potential for application in real-world scenarios 
involving music data processing and even speech data 
processing. 

However, this study also has certain limitations. For 
instance, the effectiveness of the proposed method has not been 
validated on a larger dataset, and there is potential for further 
optimization in feature selection. In future research, it is 
imperative to conduct additional investigations into feature 
combinations and optimization methods, explore strategies to 
enhance the classification accuracy of the model, and examine 
the applicability of this approach in domains such as artist 
classification and music genre categorization. 
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