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Abstract—In the realm of Internet of Things (IoT)-driven 

healthcare, diverse technologies, including wearable medical 

devices, mobile applications, and cloud-based health systems, 

generate substantial data streams, posing challenges in real-time 

operations, especially during emergencies. This study 

recommends a hybrid architecture utilizing Hadoop for real-time 

processing of extensive medical data within the IoT framework. 

By employing distributed machine learning models, the system 

analyzes health-related data streams ingested into Spark streams 

via Kafka threads, aiming to transform conventional machine 

learning methodologies within Spark's real-time processing, 

crafting scalable and efficient distributed approaches for 

predicting health statuses related to diabetes and heart disease 

while navigating the landscape of big data. Furthermore, the 

system provides real-time health status forecasts based on a 

multitude of input features, disseminates alert messages to 

caregivers, and stores this valuable information within a 

distributed database, which is instrumental in health data 

analysis and the production of flow reports. We compute a range 

of evaluation parameters to evaluate the proposed methods' 

efficacy. This assessment phase encompasses measuring the 

performance of the Spark-based machine learning algorithm in a 

distributed parallel computing environment. 

Keywords—Internet of Things; big data; hadoop; spark-based 

machine learning 

I. INTRODUCTION 

Over the past two decades, our epoch has come to be 
recognized as the era of big data, wherein digital data has 
assumed a pivotal role across various domains, encompassing 
society, research endeavors, and, particularly, the medical 
domain [1]. Big data denotes the characterization of copious 
data amassed from diverse sources, such as sensor networks, 
high-throughput apparatus, mobile applications, streaming 
devices, and data reservoirs spanning numerous industries, 
with a pronounced emphasis on the healthcare sector [2, 3]. 
Effectively managing, processing, presenting, and deriving 
insights from this diverse and voluminous data spectrum has 
posed substantial challenges using the extant technological 
toolset [4]. Efficiently deriving meaningful insights from this 
multitude of data, tailored to various user profiles, ranks among 
the paramount technological quandaries facing the domain of 
big data analytics [5, 6]. Presently, numerous data sources 
within healthcare, both clinical and non-clinical, are 
converging, with the digital medical history of patients being of 
paramount importance in healthcare analytics [7]. 

Consequently, three primary challenges surface in creating a 
distributed data system designed to handle extensive data 
volumes [8].  

The initial challenge stems from the complexity of 
collecting data from disparate sources due to its heterogeneous 
and vast nature. Second, the fundamental predicament revolves 
around storage, as big data systems must effectively store data 
while maintaining optimal performance. The final challenge 
pertains to big data analytics, especially real-time or near-real-
time analysis of vast datasets, incorporating forecasting, 
optimization, visualization, and modeling [9]. In light of the 
shortcomings of current data management systems in 
addressing real-time and heterogeneous data, a need emerges 
for a new processing paradigm [10]. Conventional relational 
database management systems, exemplified by MySQL, 
predominantly cater to structured data management, with 
limited support for unstructured or partially structured data. 
Furthermore, traditional RDBMS scaling strategies for parallel 
hardware management and fault tolerance often prove 
inadequate as data volumes expand [11]. 

To tackle these challenges, the research community has 
introduced a variety of projects to address large-scale and 
diverse data storage, including NoSQL database management 
systems suitable for scenarios where a relational model is not 
requisite. MapReduce, an amalgamation of Map and Reduce 
operations, serves as a parallel processing technique for 
handling vast distributed datasets in commodity clusters [12]. 
Yet, it is marred by its sluggishness when dealing with iterative 
algorithms. The Hadoop framework, a batch processing 
system, is employed for distributed data processing and 
storage, relying on the MapReduce model for programming 
[13]. The Hadoop Distributed File System (HDFS) offers a 
distributed storage solution that is highly resilient [14]. 
However, Hadoop is ill-suited for in-memory computing and 
real-time stream processing and does not uniformly apply the 
MapReduce paradigm to all challenges. The volume of 
processed data is a determinant of the speed of results. 
Conversely, stream computing prioritizes data velocity and 
involves continuous input and output. Big data streaming 
computing (BDSC) comprises real-time computing, distributed 
messaging, high throughput, and minimized processing 
latency. It is essential for extracting meaningful information 
from vast datasets, particularly in the healthcare realm. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

75 | P a g e  

www.ijacsa.thesai.org 

The swift advancement of large data analytics holds 
significant implications for advancing medical practices and 
academic research. Data collection, management, analysis, and 
assimilation tools designed to handle heterogeneous, 
unstructured, and structured data within contemporary 
healthcare systems have become accessible. BDSC is now 
integral to the landscape of big data analytics, facilitating the 
rapid exploration of the latent value of extensive healthcare 
data. Nevertheless, challenges persist due to the diverse data 
sources within the healthcare sector, necessitating the 
integration of data originating from relational databases, 
Hadoop, search engines, and other analytical systems. The 
application of machine learning to such extensive and high-
velocity data streams presents considerable challenges, as 
conventional machine learning algorithms are not well-suited 
for such massive data volumes and variable velocities. 
Furthermore, efficient analytical data processing is a pressing 
concern, necessitating effective data integration. While 
contemporary research predominantly relies on machine 
learning, real-time machine learning applications are absent for 
streaming big data. Moreover, most healthcare analytics 
solutions predominantly focus on Hadoop, a batch-oriented 
computational platform. 

The growing elderly population and the rising prevalence 
of chronic illnesses have exacerbated the inadequacies of 
conventional healthcare practices. In tandem, medical IoT has 
increased, enabling continuous monitoring and real-time 
emergency interventions, especially in cardiac conditions. This 
proliferation has led to the generation of vast datasets by 
millions of sensors, challenging the capacity to process and 
respond to this data under critical conditions. To address these 
challenges, we have developed a healthcare framework 
exemplified by a real-time health status forecasting case study. 
NoSQL Cassandra, Spark streaming, Spark MLlib, Kafka data 
streaming, and Apache Zeppelin technologies underpin this 
system. Kafka's producers generate multiple message streams, 
which are filtered using Spark streaming, enriched through 
machine learning, and stored in NoSQL repositories, 
facilitating analytics and visualization. This endeavor has 
substantially improved the quality of patient monitoring within 
healthcare. 

The remaining portion of the paper is organized in the 
following fashion. Section II provides a comprehensive 
analysis of previous research in the field, which serves as a 
foundation for our suggested approach. Section III provides a 
detailed explanation of the hybrid architecture, with a focus on 
the incorporation of Hadoop, Spark, and distributed machine 
learning models. Section IV provides detailed explanations of 
the specific scenarios or use cases relevant to our proposed 
architecture. Subsequently, Section V provides the discussion 
of comprehensive examination, evaluating the architecture's 
advantages, constraints, possible uses, and comparative 
observations. Section VI explores the collected data, 
demonstrating the effects of adopting our architecture for 
predicting health status. Section VII ultimately ends by 
providing a concise overview of significant discoveries and 
proposing potential avenues for further study. 

II. RELATED WORKS 

A. Medical Big Data Challenges 

The concept of the 5Vs in big data, comprising Volume, 
Variety, Velocity, Veracity, and Value, aptly elucidates the 
sheer magnitude of data generated within the contemporary 
healthcare sector. The healthcare domain is burdened by a 
substantial and ever-expanding volume of data that necessitates 
comprehensive collection and analysis [15]. The notion of 
variety underscores the diverse range of data sources that must 
be tapped into within healthcare. Pertinently, healthcare data 
and the domain's knowledge demand real-time acquisition, 
encapsulated by the concept of velocity. The integrity and 
trustworthiness of healthcare data are encapsulated in the 
dimension of veracity. Ultimately, valuable insights can be 
gleaned through meticulous examination of the colossal 
healthcare dataset. Distributed sources of healthcare data 
encompass medical electronic records, health claims, diagnosis 
data, clinical imagery, streaming systems, and sensors affixed 
to patients' bedsides for continuous vital sign monitoring. 
These sources collectively generate vast amounts of data, 
surpassing the processing capabilities of conventional data 
handling systems. The myriad challenges associated with big 
data are illustrated in Fig. 1. In this research, our focus has 
been dedicated to the initial five pivotal challenges within big 
data, encompassing data integration, storage, analysis, and 
representation. 

 

Fig. 1. Big data challenges. 

B. Literature Study 

The amalgamation of Machine Learning (ML), Deep 
Learning (DL), Neural Networks (NN), Fuzzy Logic Systems 
(FLSs), Wireless Sensor Networks (WSNs), and Temporal 
Graphs (TGs) holds pivotal significance in the processing of 
large-scale medical data within the IoT landscape. ML and DL 
techniques empower healthcare systems to discern intricate 
patterns within vast datasets, enabling predictive analytics for 
disease diagnosis, treatment planning, and health status 
forecasting [16-18]. NN, a subset of ML, simulates the human 
brain's learning process, aiding in complex data analysis, 
especially in image recognition and signal processing tasks 
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within medical imaging and diagnostics [19, 20]. FLSs 
supplements decision-making processes by handling uncertain 
or imprecise data, crucial in medical scenarios where data 
might exhibit variability [21]. WSNs, integrated with IoT 
devices, facilitate real-time health monitoring, efficiently 
collecting and transmitting patient data for timely analysis [22]. 
Meanwhile, TGs provide an intricate understanding of dynamic 
patient interactions over time, aiding in disease progression 
modeling and personalized treatment plans [23]. The 
convergence of these technologies optimizes medical data 
processing, fostering precision medicine, remote patient 
monitoring, and efficient healthcare delivery, thereby 
revolutionizing patient care and augmenting medical research 
endeavors within the IoT-driven healthcare domain [24]. 

The exponential proliferation of healthcare data, coupled 
with its profound insights, has positioned big data analytics, 
particularly within the healthcare domain, as a formidable 
challenge spanning multiple academic disciplines, including 
data mining and machine learning. The advancement of data 
collection in healthcare can be primarily attributed to strides in 
scientific and technological innovation. The healthcare sector 
primarily leverages three fundamental categories of digital data 
for data collection: health research, operational processes 
within healthcare organizations, and clinical records. 
Traditional data mining techniques, which involve identifying 
valuable patterns within vast databases, struggle to unearth 
insights from the dispersed, extensive, and diverse datasets 
prevalent in healthcare. Data mining techniques are pivotal in 
transforming this data into actionable information. Numerous 
studies in the medical field focus on prediction and 
recommendation systems. These studies include experiments 
on heart attack prediction and a comparative assessment of 
different approaches. Breast carcinoma classification employs 
a genetically tuned neural network model. Other research 
endeavors encompass information retrieval and data mining 
methodologies. 

Healthcare analytics encompass various applications, such 
as epidemic forecasting, health decision support, and 
recommendation systems, geared toward enhancing care 
quality, reducing costs, and augmenting productivity. One 
notable approach is utilizing a K-means clustering algorithm 
operating in the cloud as a MapReduce task, utilizing 
healthcare data for clustering. An alternative proposal suggests 
a decentralized platform for managing electronic health records 
personally, employing Hadoop and HBase. Predictive analysis 
in healthcare involves forecasting diabetes and determining the 
most suitable therapy using algorithms and the Hadoop 
MapReduce environment. Big data contextual exchange among 
healthcare systems through the Internet of Things (IoT) is 
demonstrated through an intelligent care system built on 
Hadoop. This system leverages an architecture with advanced 
data processing capabilities to collect data from diverse linked 
devices and transmit it to intelligent buildings. Real-time 
analysis of electronically generated medical records and data 
from medical equipment and mobile applications is described. 
This system, incorporating Hadoop, MongoDB, and an 
innovative treatment method, aims to enhance patient 
information processing outcomes. The predominant focus in 
most healthcare analytics solutions lies in Hadoop, which can 

handle substantial data volumes from diverse sources in batch-
oriented processing. However, Hadoop's real-time processing 
capabilities are limited, and Spark emerges as a swifter and 
more efficient alternative, particularly for iterative machine 
learning tasks. Both Hadoop and Spark, being Apache projects, 
are integral to the big data landscape, with Spark generating 
significant interest. 

Several scalable machine learning algorithms aim to 
address the diverse challenges within big data analytics. These 
algorithms include a scalable Random Forest classification 
model for diabetes risk prediction, logistic regression for 
phishing URL detection, and a Markov chain-based system for 
identifying abnormal patterns in the behaviors of elderly 
individuals. Real-time management of medical emergencies 
using IoT-based medical sensors is presented, along with a 
paradigm for real-time analysis of extensive medical data using 
Spark Streaming and Apache Kafka. A real-time health 
forecasting system focusing on machine learning, particularly 
Decision Trees, is developed to process data streams obtained 
via socket streams. A novel strategy for cardiac disease 
monitoring, centered on real-time decentralized machine 
learning within the Spark environment, is proposed in one 
study. Most of these studies either center on specific healthcare 
data sources or predominantly deal with batch-oriented 
computation. Healthcare generates a myriad of rapidly 
accumulating data from diverse sources. Moreover, some 
studies prioritize data storage and visualization, while others 
emphasize powerful data analytics tools like data mining and 
machine learning. Thus, the creation of an effective system for 
managing remote health data streams necessitates real-time 
healthcare analysis, which encompasses data collection, real-
time processing, and robust machine learning capabilities. 

The two leading causes of global mortality in recent times 
have been heart disease and diabetes. Continuous monitoring 
and early detection of these ailments can significantly reduce 
mortality rates. The availability of wearable health monitors, 
the adoption of IoT medical technology within healthcare 
systems, and the surge in patient conditions further underscore 
the potential of big data technologies for real-time health 
condition prediction. Real-time prediction can streamline 
healthcare visits and empower patients and healthcare 
providers to anticipate potential illnesses. Furthermore, the 
proposed system includes an alert mechanism, ensuring that 
emergency services are promptly notified when a patient's 
condition deviates from the norm, facilitating rapid 
interventions during emergencies. 

III. PROPOSED ARCHITECTURE 

Within the scope of this research, a system for data 
processing and monitoring is introduced, amalgamating Kafka 
and Spark streams. This system operates by first processing 
data received from connected devices and subsequently storing 
this data for real-time analysis. The architectural layout of this 
proposed system is elucidated in Fig. 2. The system 
commences with the continuous generation of data messages 
from Kafka generators. These data messages encompass 
diverse disease names and are subsequently conveyed to a 
Spark streaming application for immediate processing. Spark 
Stream harnesses machine learning models to analyze various 
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health attributes acquired from the Kafka Stream, thereby 
predicting health status. The results of this analysis are stored 
in a NoSQL Cassandra database. In the proposed architecture, 
Apache Zeppelin is instrumental in retrieving data from the 
database and presenting it in a real-time dashboard featuring 
data visualization in the form of graphs, charts, and data tables. 
By leveraging this real-time data in an Internet of Things (IoT) 

context, it becomes feasible to promptly scrutinize it, enabling 
the timely dispatch of alert notifications to caregivers when 
significant changes in a patient's condition arise. This real-time 
monitoring capability facilitates immediate action and 
intervention when necessary, ensuring patients receive timely 
and responsive care. 

 

Fig. 2. Proposed architecture. 

The IoT encompasses a network of physical and virtual 
entities equipped with electronics, intelligent wearables, 
software, applications, sensors, and network connectivity, all 
designed to collect and exchange data among themselves and 
with data center systems. The data generated by ubiquitous 
wearable health monitors, commonly found in households, is 
characterized by its substantial volume and random nature. 
Stimulating user activity trends or gathering essential data 
necessitates analysis through a robust big data analytics 
system. Forecasts indicate that, by 2020, IoT-related 
technologies within the healthcare sector will constitute a 
significant portion, accounting for forty percent of all IoT-
related technologies. The integration of information technology 
in healthcare, particularly health informatics, is poised to bring 
about a paradigm shift, significantly reducing inefficiencies, 
containing costs, and, ultimately, saving lives. Real-time 
monitoring facilitated by the IoT can be a lifesaver in medical 
emergencies, encompassing conditions such as diabetes, heart 
disease, and various chronic disorders. Numerous sources are 
presently accessible for the continuous monitoring of health 
indicators. The workflow of the proposed system, involving 
multiple data sources, is outlined in Fig. 3. This system aims to 
harness the power of IoT to provide real-time monitoring and 
timely interventions in healthcare, thereby enhancing the 
quality of care and potentially saving lives in critical situations. 

The escalating volume of data generated within healthcare 
systems has surpassed the capabilities of Spark alone for data 
management. In response to this challenge, Kafka, designed 
explicitly for managing streaming data, has been seamlessly 
integrated into our system. The data collection component in 
the proposed system architecture plays a pivotal role in 
gathering health-related data from various sources and multiple 
medical conditions, employing a range of devices coupled with 
telemedicine and telehealth services. This data collection group 
continually gathers, organizes, and manages clinical data 
related to patients. It facilitates categorizing streaming data 
according to the relevant domain (e.g., specific medical 
conditions), where records are subsequently published. Apache 
Kafka, operating as publishes-subscribe messaging system 
designed for distributed streaming, is a central component in 
this data management strategy. It is built to be a replicated, 
distributed, and partitioned service. Health monitoring devices 
feed real-time data into Kafka via Kafka producers. The 
fundamental concept that Kafka introduces for a stream of 
records is termed a "topic." Kafka servers use these topics to 
store incoming messages from publishers for a defined period 
before releasing them to the relevant data stream. Each topic is 
subdivided into multiple partitions, each capable of storing data 
in diverse formats. 
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Fig. 3. The workflow of the proposed architecture. 

 

Fig. 4. The Kafka communications system. 

Consumers of Kafka access information as it becomes 
available by subscribing to one or more topics. The Kafka 
communication infrastructure is depicted in Fig. 4. To ensure 
the efficient operation of Kafka, ZooKeeper, a centralized 
service, plays a vital role by providing group services, 
distributed synchronization, configuration information 
maintenance, and naming services. Distributed applications use 
these services extensively, although implementing and 
maintaining them comes with inherent challenges, such as 
dealing with recurring defects and race conditions. Typically, 
applications initially underinvest in these services due to the 
complexity of their implementation, rendering them fragile in 
the face of change and difficult to manage. Consequently, 
resolving these issues and enhancing the robustness of 
distributed applications is an ongoing endeavor within 
distributed systems. 

This case study involves two data producer programs that 
simulate connected devices, utilizing Apache Kafka to generate 
data events. Apache Spark, an open-source, high-speed 
distributed processing engine, plays a central role in this 
system. Spark's most notable feature is its capability for in-
memory calculations, significantly enhancing its processing 
speed. Furthermore, Spark offers user-friendly features, an 
advanced framework for large-scale analysis, and the ability to 
execute disk-based computing when dealing with datasets that 
exceed available memory. A key concept employed by Spark is 
Resilient Distributed Datasets (RDDs), which are distributed, 
immutable collections of items. To achieve parallelization, 
Spark internally spreads the RDD data across multiple nodes 
within the cluster. RDDs can store input and intermediate data 
in memory, reducing the cost of input-output operations 
associated with reading from or writing to system files. This 
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feature enables efficient data reuse, which is particularly 
beneficial for iterative machine learning algorithms. Once data 
is transformed into an RDD, two fundamental types of 
operations can be performed: 

 Transformations: These operations involve applying 
mapping, filtering, and more to existing RDDs to 
generate new RDDs.  

 Actions: These operations compute a result using an 
RDD, which is then returned or saved to an external 
storage system. 

Spark also includes an ML library, MLlib, which 
encompasses popular machine learning techniques such as 
classification, regression, clustering, and more. To handle real-
time data from sources like Kafka and Twitter, Spark 
streaming builds upon the Spark API. The batch-processing 
Spark engine divides incoming data streams into less than one-

second segments, creating discretized streams (DStreams) as 
high-level abstractions. Each mini-batch within the DStream 
collection is patterned after a Spark RDD. In this study, Spark 
is employed for streaming data processing, with Spark 
streaming managing the Kafka data stream, and MLlib is used 
to implement machine learning algorithms. Spark adheres to a 
master-worker architecture for distributed processing. Each 
Spark application can establish one master process, the 
executor in Spark, and several worker processes referred to as 
drivers. These drivers, like the master, are responsible for 
evaluating, allocating, scheduling, and supervising the tasks 
among the executors. The driver also maintains the necessary 
data consistency throughout the program. In contrast, the 
executors are solely responsible for executing the code 
assigned by the driver and transmitting the results back to the 
driver, as depicted in Fig. 5. This architecture ensures the 
efficient distribution of tasks and data processing within the 
Spark application. 

 

Fig. 5. Master-worker architecture. 

The classification of data collected from diverse sources for 
various diseases necessitates using classification models 
capable of discerning user characteristics in the presence or 
absence of a disease. In this research, two classification models 
have been employed, each briefly introduced below:  

1) K-Nearest Neighbor (KNN): KNN is a versatile 

supervised learning method that can serve as a classification 

and regression algorithm. It determines the distance between 

the test data point and all training data points and selects the K 

training data points closest to the test data. Based on their 

distances, the test data point is then assigned to the class that 
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most of these K neighbors belong to. This method, represented 

in Method 1, can be briefly described by Algorithm 1.  

 

Algorithm 1 KNN Algorithm 

 

1: procedure KNN(Instance, TestData, K) 

2: C ← Size(TestData) 

3: Dist[C][2] ← 0 
4: for i in TestData do 

5: d ← EclideanDistance(i, Instance) 

6: Dist[i][1] ← d 
7: Dist[i][2] ← Class(i) 

8: end for 

9: Srt ← Sort(dist[:][1]) ▷ Sort 2nd column based on that 
10: Sel ← Srt[1 : K][2] 

11: Cls ← Mode(Sel) 
12: return Cls 

13: end procedure 

 

2) Support Vector Machine (SVM): SVM is another 

supervised machine learning method primarily used for 

classification, although it can also handle regression tasks. In 

SVM, each data point is represented as a point in an n-

dimensional space, where "n" represents the number of 

features available for classification. Each feature corresponds 

to a specific coordinate within this space. SVM aims to 

identify the hyperplane that optimally separates the two 

classes in the data. Support vectors represent individual data 

points within this multi-dimensional space, and the SVM 

classifier seeks to identify the hyperplane or line that 

maximally divides the two classes. To achieve this, the SVM 

algorithm considers certain assumptions about the data, 

aiming to find the best hyperplane:  

 Maximizing margin: SVM strives to find the 
hyperplane that maximizes the margin or the distance 
between the hyperplane and the nearest data points of 
both classes. This maximized margin ensures robust 
separation.  

 Support vectors: The data points closest to the 
hyperplane, known as support vectors, significantly 
influence the determination of the optimal hyperplane.  

 Kernel functions: SVM can employ kernel functions to 
map the data into higher-dimensional spaces when a 
linear separation is not feasible. These functions allow 
SVM to perform non-linear classification effectively. 
As a classification algorithm, SVM provides the means 
to efficiently distinguish between different classes 
within a dataset by defining the most appropriate 
hyperplane or decision boundary. 

The suggested architecture addresses the complex issues 
involved in forecasting real-time health status in healthcare 
scenarios powered by the IoT. The applicability of this is 
emphasized by numerous essential features designed to tackle 
these particular challenges. The architecture's scalability is a 
fundamental aspect that allows it to easily handle large and 
growing datasets often encountered in healthcare. The ability to 
effortlessly increase resources with data expansion guarantees 

consistent performance. The ability to analyze data in real-time 
is another important aspect, allowing for quick intake, analysis, 
and understanding of streaming healthcare data. 

Furthermore, the architecture's distinctive advantage resides 
in its implementation of distributed machine learning models 
specifically created to handle the vastness and complexities of 
medical data. This enables the simultaneous execution of tasks 
to enhance the efficiency of training models, hence improving 
the accuracy and speed of health status forecasts. Moreover, 
the architecture has exceptional proficiency in incorporating 
various IoT devices and dissimilar data sources, merging 
distinct data streams for thorough analysis. By prioritizing 
security and privacy safeguards, adapting to different data 
speeds from IoT sensors, and maximizing resource efficiency, 
it effectively tackles the complex difficulties often seen in 
healthcare situations powered by IoT. In conclusion, these 
architectural characteristics together enable the system to 
effectively negotiate the intricacies of real-time health status 
prediction, establishing it as an optimal framework for 
handling the distinct requirements of healthcare data analysis in 
IoT contexts. 

IV. SCENARIO DESCRIPTIONS 

In Scenario 1, Fig. 6 illustrates three hyperplanes labeled A, 
B, and C. The key principle to selecting the appropriate 
hyperplane is to choose the one that best separates the two 
classes. In this scenario, hyperplane B does an excellent job of 
achieving this separation. 

 

Fig. 6. Three sample hyper-planes. 

Scenario 2 presents three hyperplanes (A, B, and C) in Fig. 
7. The goal is to choose the hyperplane that maximizes the 
distance between the closest data point of any class and the 
hyperplane. This distance is referred to as the margin, as shown 
in Fig. 8. Hyperplane A has a larger margin than B and C, 
making it the right choice. Opting for a hyperplane with a 
larger margin enhances robustness and minimizes the chances 
of misclassification. 
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Fig. 7. Three hyper-planes that could separate two classes. 

 

Fig. 8. Comparison of three hyper-planes with margins in scenario 2. 

In Scenario 3, although hyperplane B has a larger margin 
than A, SVM prioritizes proper classification of the classes 
before maximizing the margin. Hyperplane B makes a 
classification error, whereas A correctly categorizes 
everything. Therefore, hyperplane A is selected as the 
appropriate choice (see Fig. 9). 

 

Fig. 9. Evaluation of hyperplanes A and B in scenario 3. 

Scenario 4 involves an outlier, represented by the star, 
residing in the region of the circle class, making it impossible 
to separate the two classes using a straight line. However, the 
SVM algorithm can disregard outliers and identify the 

hyperplane with the maximum margin. As a result, SVM 
classification is robust against outliers (see Fig. 10). 

 

Fig. 10. Robustness of SVM against outliers in scenario 4. 

In Scenario 5, when a linear hyperplane is insufficient to 
categorize two classes, a new feature, z = x^2 + y^2, is 
introduced to create a three-dimensional representation of the 
data points, as shown in Fig. 11 and Fig. 12. This new feature, 
z, is a mathematical construct that enables the creation of a 
linear hyperplane, making it possible for SVM to classify the 
two classes effectively. The SVM algorithm employs the 
"kernel trick" to automatically find this hyperplane. The SVM 
kernel is a function that transforms non-separable problems 
into separable ones by projecting data from a low-dimensional 
input space into a higher-dimensional space. This is 
particularly valuable for addressing problems with non-linear 
separations. It performs intricate data transformations before 
determining how to split the data based on the provided labels 
or outputs. The hyperplane appears as a circle in the original 
input space, as depicted in Fig. 13. The kernel trick allows 
SVM to handle complex, non-linear separations and enables 
the classification of data that cannot be linearly separated in the 
original feature space. 

 

Fig. 11. Introduction of a new feature in scenario 5. 
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Fig. 12. Three-dimensional representation with additional feature (z) in 

scenario 5. 

 

Fig. 13. Application of SVM kernel trick for non-linear separation in scenario 

5. 

V. DISCUSSION 

To ensure high data availability and avoid a single point of 
failure, it is essential to store the results and data streams 
generated by each user in a distributed manner. Distributed 
databases outperform traditional database systems in terms of 
performance and scalability. Apache Cassandra is an open-
source, distributed, and free NoSQL database system designed 
to handle massive volumes of data, whether structured, 
unstructured, or semi-structured, across multiple computers. 
Cassandra's architecture greatly enhances its scalability, 
operational capabilities, and continuous accessibility. It also 
offers rapid write and read rates when used with Spark. 
Distributed databases provide several valuable features: 

 Affordability and ease of use: Distributed databases are 
cost-effective and straightforward.  

 Data transfer speed: They offer significantly faster data 
transport than traditional databases.  

 Scalability: Distributed databases can be scaled easily 
by adding columns, accelerating the processing of 
larger and more data.  

 Cluster scalability: Distributed databases can expand 
their cluster capacity by adding more nodes without a 
specific distribution. After processing data with Spark, 
the output data is stored in a table using Cassandra and 
a primary key. This database can be accessed later for 
real-time monitoring, reporting, and analysis of 
historical data.  

 Data replication and partitioning: Data is replicated 
across various computers to enhance data availability 
and fault tolerance. 

TABLE I. UCI HEART DISEASE DATASET 

No Attribute No 
Attribute 

Name 
Description 

1 3 Age Age of Patients 

2 4 Sex 0/1(M/F) 

3 9 CP Type of Chest Pain 

4 10 TRestBPS 
Blood Pressure when the 

Patient is on 

   Rest 

5 12 Chol Blood  Cholesterol 

6 16 FBS Fasting Blood Sugar 

7 19 RestECG 
ElectroCardioGraphic when 
Patient 

   is on Rest 

8 32 Thalach Heart Rate(Max) 

9 38 Exang 
Exercise  Causes  Angina  (Y/N  

= 

   1/0) 

10 40 OldPeak 
Exercise-induced ST depression 

in 

   comparison to rest 

11 41 Slope 

The Peak Exercises in cline ST 
section. 

(UpSloping/Flat/DownSloping 

= 1/2/3 

12 44 CA Main Vessels Colored with 

   Fluoroscopy in Number (0–3) 

13 51 Thal 
Normal/  Fixed  defect/  
Reversible 

   Defect = 3/6/7 

14 58 Num(Class) 
Heart Disease Diagnosis (Status 

of 

   
Angiographic Disease) if 

Diameter 

   
Narrowing¡= 50% =0 

Otherwise =1 

Apache Zeppelin is an open-source data analysis 
environment that works with Apache Spark. It is a web-based, 
versatile notebook that facilitates interactive data analysis, real-
time data exploration, visualization, and collaboration. 
Zeppelin supports an expanding list of programming languages 
and interfaces, including SparkSQL, Hive, AngularJS, Scala, 
Python, markdown, and Shell. Using Scala, it can create 
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dynamic, data-driven, and collaborative documents, among 
other capabilities. Apache Zeppelin is valuable for writing, 
organizing, and executing analytical code and visualizing 
results across extensive workflows. Zeppelin can automatically 
generate input forms in your notebook, provide simple 
visualizations to present results, and allow colleagues to share 
the notebook's URL. In real-time data retrieval from the 
Cassandra database, a Zeppelin dashboard is developed to 
display data in charts, tables, and other formats. This dashboard 
updates its data every second, allowing authorized individuals, 
such as doctors, healthcare companies, or external consultants, 
to access the data regardless of their patient's or client's health 
status. 

In this research, two datasets obtained from well-known 
data sources, Kaggle and UCI, were utilized. These datasets 
pertain to medical conditions, specifically diabetes and heart 
diseases. Table I provides an overview of the information 
related to these datasets. It is worth noting that although the 
Cleveland dataset contains 76 attributes, previous studies have 
primarily focused on using only a subset of fourteen attributes. 
Among the various datasets, the Cleveland dataset has been the 
primary focus of machine learning researchers. The "Class" 
field in these datasets indicates the presence or absence of a 
particular medical condition, such as heart disease. The values 
in the "Class" field range from zero (indicating no presence of 
the condition) to four, with the Cleveland dataset primarily 
concentrating on discriminating between the presence (values 
1, 2, 3, 4) and absence (value 0) of heart disease. 

The dataset used in this research was sourced from 
Kaggle's Diabetes Dataset. Kaggle is a well-known platform 
for data science competitions and provides a freely available 
dataset that numerous authors have used in previous studies. 
This dataset consists of ten features and 15,000 observations, 
and it is employed to predict whether a patient has diabetes. 
Table II offers an overview of the features included in this 
dataset. 

TABLE II. KAGGLE DIABETES DATASET DESCRIPTIONS 

No Attribute Name Description 

1 Patient ID Patient Identification Number 

2 Pregnancies A patient gets diabetes after Pregnancy 

3 Plasma Glucose Glucose amount in Blood 

4 
Diastolic Blood 

Pressure 
Blood Pressure when Patient is on Rest 

5 Triceps Thickness Body Fat 

6 
7 

8 

Serum Insulin Body 
Mass Index(BMI) 

Diabetes  Pedigree 

Insulin amount in Blood W  eightinKG 
Height2 inM 2 ) Diabetes History in 

Family 

9 Age Patient Age 

10 Class Diabetic = 1, NonDibaetic = 0 

VI. RESULTS 

The proposed real-time health status forecasting system is 
driven by a single-node cluster featuring a Core i7 CPU, 16 GB 
of RAM, and the Ubuntu 20.04 operating system. This system 
seamlessly integrates the trained model with Kafka streaming 
data processing and runs on the Spark platform. As depicted in 
Fig. 14, the application establishes a connection to Kafka 
streaming and commences receiving data streams from various 
Kafka producers. When it encounters streams related to health 
characteristics, it retrieves the attribute values from each topic 
within the illness events sent via Kafka streaming. 
Subsequently, it employs the trained model to predict the 
health state of the individuals. In parallel, the Cassandra 
database records each forecasted health state in a table, 
employing the identification (ID) as the primary key, which is 
ideal for ensuring data redundancy and reliability. This stored 
data can later be queried to examine historical information. 

 

Fig. 14. Apply classification algorithms. 

All the tests were conducted using a cluster configuration 
consisting of one primary node and two worker nodes, each 

running the Ubuntu 20.4 operating system within VMware 
virtual environments. Several steps were undertaken to 
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facilitate communication between the nodes and ensure the 
proper functioning of the Spark application: 

 User accounts and development environment setup: 
Spark user accounts were created to simplify inter-
node communication. Scala and Java were installed. 
Open SSH Server was set up. Key pairs were generated 
to enable passwordless SSH configuration across the 
nodes, ensuring that the Spark master can effectively 
connect, launch, pause, and run tasks on multiple 
worker nodes.  

 Software installation: Spark, Kafka, and Cassandra 
were unpacked and installed on a single node. Two 
themes and corresponding tables were created, one for 
diabetic disease and the other for heart illness.  

 Environment variables: The bashrc file was modified 
to include essential environment variables like SPARK 
and JAVA_HOME in the home directory.  

 Node replication: To ensure uniformity and 
consistency across various nodes, the setup folder of 
the single-node cluster was duplicated multiple times, 
with one node designated as the master and the others 
as workers.  

 Hostname and host configuration: The hostname and 
hosts were modified on all nodes to facilitate proper 
inter-node communication. 

The primary stages for implementing the Spark application 
in a Zeppelin notebook are as follows: 

 Spark context and streaming context creation: An 
instance of Spark contexts and streaming context was 
created to access all Spark streaming functionalities.  

 Direct stream creation: A direct stream was created 
using the specified Kafka parameters and topics.  

 Data extraction: The identifiers and characteristics of 
each topic and stream were extracted.  

 ML model utilization: The pre-trained ML model was 
used to predict the health status.  

 Data storage: All attributes and the predicted labels 
were saved to the Cassandra keyspace and table.  

 Streaming start: The Spark streaming context was 
initiated using the start method, allowing real-time 
health data processing. 

The research allocated 25% of the data for testing purposes, 
while the remaining 75% was used to train the machine 
learning models. The datasets were divided into training and 
test datasets randomly. To address the issue of the 
computational cost of sorting feature values across large 
distributed datasets, an approximate set of candidate splits was 
identified over a sampled portion of the data. This method has 

been shown to enable more accurate predictions by analyzing 
the model error and the test data, effectively mitigating the 
negative impacts of both underfitting and overfitting. One of 
the most crucial and valuable measures for assessing the 
performance of testing and treatment is the Receiver Operating 
Characteristic (ROC) curve. The MLlib provides support for 
ROC curve evaluation. On the other hand, classification 
accuracy is determined by the ratio of all correct predictions to 
all the prediction data. The classification accuracy for the 
datasets in this study was assessed using the following 
equation: 

         
     

           
   (1) 

Sensitivity and specificity are two critical metrics used to 
assess classification models' performance, particularly in 
medical diagnoses and other fields where accurate predictions 
are crucial. These metrics are calculated as follows: 

Sensitivity (True Positive Rate or Recall): Sensitivity is the 
percentage of actual positives (e.g., patients with a specific 
condition) that are correctly identified by the model. It 
indicates the model's ability to detect true positive cases. 

Specificity: Specificity is the percentage of actual negatives 
(e.g., patients without the condition) that are correctly 
identified by the model. It measures the model's ability to avoid 
false positive predictions. 

In these equations, true positives (TPs) are the cases 
correctly classified as positive, true negatives (TNs) are the 
cases correctly classified as negative, false positives (FPs) are 
cases incorrectly classified as positive (when they are actually 
negative), and false negatives (FNs) are cases incorrectly 
classified as negative (when they are actually positive). 

Sensitivity and specificity provide insights into the model's 
performance in terms of both correctly identifying individuals 
with the condition and correctly identifying individuals without 
the condition. Balancing these two measures is important, 
especially in situations, where missing a true positive (e.g., a 
medical condition) or incorrectly identifying a false positive 
(unnecessary treatment or diagnosis) has significant 
consequences. 

            
  

     
  (2) 

          
  

     
  (3) 

Our machine learning model's effectiveness was assessed 
on two established datasets. The empirical results indicate that 
our utilization of Spark for the execution of the proposed 
methodology demonstrates notable efficiency and scalability 
(see Fig. 14 and Fig. 15). Fig. 16 shows the specificity, 
sensitivity, ROC curve and accuracy obtained in heart disease. 
The findings further underscore that the proposed model 
consistently delivers dependable and superior predictive 
outcomes.
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Fig. 15. Specificity, sensitivity, ROC Curve, and accuracy obtained in diabetes datasets in comparison to the other algorithms. 

 

Fig. 16. Specificity, sensitivity, ROC Curve, and accuracy obtained in heart disease datasets in comparison to other algorithms. 

VII. CONCLUSION 

This study has demonstrated the successful application of a 
machine learning model for real-time health status prediction 
in the healthcare domain. By employing Apache Spark in 
conjunction with Kafka streaming and Cassandra, we have 
created an efficient and scalable system for processing and 
analyzing healthcare data streams. The results of our empirical 
tests on two distinct datasets reveal that our model consistently 
provides reliable and high-quality predictions. However, the 
current design also reveals inherent constraints in the 
scalability of traditional data storage systems like Cassandra 
when handling exponentially growing healthcare data. While 
effective for many use cases, these systems might face 
challenges in handling future data volume surges, potentially 
leading to performance bottlenecks and increased resource 
requirements. The ability to monitor and predict health 
conditions in real-time is of paramount importance, particularly 
in the context of chronic illnesses and emergencies. Our 
proposed system offers a promising solution for continuous 
health monitoring and early detection, potentially saving lives 
and reducing healthcare costs. The key takeaway from our 
research is the effectiveness of combining advanced 

technologies like Spark, Kafka, and Cassandra to process and 
analyze healthcare data streams. This approach opens up new 
possibilities for healthcare analytics and real-time monitoring, 
benefiting patients, healthcare providers, and the broader 
medical community. In the future, we envision further 
refinements and enhancements to our system, including the 
integration of additional data sources and the development of 
more sophisticated machine-learning algorithms. As the 
healthcare sector continues to generate vast amounts of data, 
the need for innovative solutions like the one presented in this 
study will only grow, ushering in a new era of data-driven 
healthcare. 
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