
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

74 | P a g e

www.ijacsa.thesai.org

Efficient Processing of Large-Scale Medical Data in

IoT: A Hybrid Hadoop-Spark Approach for Health

Status Prediction

Yu Lina
1
*, Su Wenlong

2

Hebei College of Industry and Technology, Hebei Shijiazhuang, 050091, China
1

Liaoning University, Liaoning Shenyang, 110036, China
2

Abstract—In the realm of Internet of Things (IoT)-driven

healthcare, diverse technologies, including wearable medical

devices, mobile applications, and cloud-based health systems,

generate substantial data streams, posing challenges in real-time

operations, especially during emergencies. This study

recommends a hybrid architecture utilizing Hadoop for real-time

processing of extensive medical data within the IoT framework.

By employing distributed machine learning models, the system

analyzes health-related data streams ingested into Spark streams

via Kafka threads, aiming to transform conventional machine

learning methodologies within Spark's real-time processing,

crafting scalable and efficient distributed approaches for

predicting health statuses related to diabetes and heart disease

while navigating the landscape of big data. Furthermore, the

system provides real-time health status forecasts based on a

multitude of input features, disseminates alert messages to

caregivers, and stores this valuable information within a

distributed database, which is instrumental in health data

analysis and the production of flow reports. We compute a range

of evaluation parameters to evaluate the proposed methods'

efficacy. This assessment phase encompasses measuring the

performance of the Spark-based machine learning algorithm in a

distributed parallel computing environment.

Keywords—Internet of Things; big data; hadoop; spark-based

machine learning

I. INTRODUCTION

Over the past two decades, our epoch has come to be
recognized as the era of big data, wherein digital data has
assumed a pivotal role across various domains, encompassing
society, research endeavors, and, particularly, the medical
domain [1]. Big data denotes the characterization of copious
data amassed from diverse sources, such as sensor networks,
high-throughput apparatus, mobile applications, streaming
devices, and data reservoirs spanning numerous industries,
with a pronounced emphasis on the healthcare sector [2, 3].
Effectively managing, processing, presenting, and deriving
insights from this diverse and voluminous data spectrum has
posed substantial challenges using the extant technological
toolset [4]. Efficiently deriving meaningful insights from this
multitude of data, tailored to various user profiles, ranks among
the paramount technological quandaries facing the domain of
big data analytics [5, 6]. Presently, numerous data sources
within healthcare, both clinical and non-clinical, are
converging, with the digital medical history of patients being of
paramount importance in healthcare analytics [7].

Consequently, three primary challenges surface in creating a
distributed data system designed to handle extensive data
volumes [8].

The initial challenge stems from the complexity of
collecting data from disparate sources due to its heterogeneous
and vast nature. Second, the fundamental predicament revolves
around storage, as big data systems must effectively store data
while maintaining optimal performance. The final challenge
pertains to big data analytics, especially real-time or near-real-
time analysis of vast datasets, incorporating forecasting,
optimization, visualization, and modeling [9]. In light of the
shortcomings of current data management systems in
addressing real-time and heterogeneous data, a need emerges
for a new processing paradigm [10]. Conventional relational
database management systems, exemplified by MySQL,
predominantly cater to structured data management, with
limited support for unstructured or partially structured data.
Furthermore, traditional RDBMS scaling strategies for parallel
hardware management and fault tolerance often prove
inadequate as data volumes expand [11].

To tackle these challenges, the research community has
introduced a variety of projects to address large-scale and
diverse data storage, including NoSQL database management
systems suitable for scenarios where a relational model is not
requisite. MapReduce, an amalgamation of Map and Reduce
operations, serves as a parallel processing technique for
handling vast distributed datasets in commodity clusters [12].
Yet, it is marred by its sluggishness when dealing with iterative
algorithms. The Hadoop framework, a batch processing
system, is employed for distributed data processing and
storage, relying on the MapReduce model for programming
[13]. The Hadoop Distributed File System (HDFS) offers a
distributed storage solution that is highly resilient [14].
However, Hadoop is ill-suited for in-memory computing and
real-time stream processing and does not uniformly apply the
MapReduce paradigm to all challenges. The volume of
processed data is a determinant of the speed of results.
Conversely, stream computing prioritizes data velocity and
involves continuous input and output. Big data streaming
computing (BDSC) comprises real-time computing, distributed
messaging, high throughput, and minimized processing
latency. It is essential for extracting meaningful information
from vast datasets, particularly in the healthcare realm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

75 | P a g e

www.ijacsa.thesai.org

The swift advancement of large data analytics holds
significant implications for advancing medical practices and
academic research. Data collection, management, analysis, and
assimilation tools designed to handle heterogeneous,
unstructured, and structured data within contemporary
healthcare systems have become accessible. BDSC is now
integral to the landscape of big data analytics, facilitating the
rapid exploration of the latent value of extensive healthcare
data. Nevertheless, challenges persist due to the diverse data
sources within the healthcare sector, necessitating the
integration of data originating from relational databases,
Hadoop, search engines, and other analytical systems. The
application of machine learning to such extensive and high-
velocity data streams presents considerable challenges, as
conventional machine learning algorithms are not well-suited
for such massive data volumes and variable velocities.
Furthermore, efficient analytical data processing is a pressing
concern, necessitating effective data integration. While
contemporary research predominantly relies on machine
learning, real-time machine learning applications are absent for
streaming big data. Moreover, most healthcare analytics
solutions predominantly focus on Hadoop, a batch-oriented
computational platform.

The growing elderly population and the rising prevalence
of chronic illnesses have exacerbated the inadequacies of
conventional healthcare practices. In tandem, medical IoT has
increased, enabling continuous monitoring and real-time
emergency interventions, especially in cardiac conditions. This
proliferation has led to the generation of vast datasets by
millions of sensors, challenging the capacity to process and
respond to this data under critical conditions. To address these
challenges, we have developed a healthcare framework
exemplified by a real-time health status forecasting case study.
NoSQL Cassandra, Spark streaming, Spark MLlib, Kafka data
streaming, and Apache Zeppelin technologies underpin this
system. Kafka's producers generate multiple message streams,
which are filtered using Spark streaming, enriched through
machine learning, and stored in NoSQL repositories,
facilitating analytics and visualization. This endeavor has
substantially improved the quality of patient monitoring within
healthcare.

The remaining portion of the paper is organized in the
following fashion. Section II provides a comprehensive
analysis of previous research in the field, which serves as a
foundation for our suggested approach. Section III provides a
detailed explanation of the hybrid architecture, with a focus on
the incorporation of Hadoop, Spark, and distributed machine
learning models. Section IV provides detailed explanations of
the specific scenarios or use cases relevant to our proposed
architecture. Subsequently, Section V provides the discussion
of comprehensive examination, evaluating the architecture's
advantages, constraints, possible uses, and comparative
observations. Section VI explores the collected data,
demonstrating the effects of adopting our architecture for
predicting health status. Section VII ultimately ends by
providing a concise overview of significant discoveries and
proposing potential avenues for further study.

II. RELATED WORKS

A. Medical Big Data Challenges

The concept of the 5Vs in big data, comprising Volume,
Variety, Velocity, Veracity, and Value, aptly elucidates the
sheer magnitude of data generated within the contemporary
healthcare sector. The healthcare domain is burdened by a
substantial and ever-expanding volume of data that necessitates
comprehensive collection and analysis [15]. The notion of
variety underscores the diverse range of data sources that must
be tapped into within healthcare. Pertinently, healthcare data
and the domain's knowledge demand real-time acquisition,
encapsulated by the concept of velocity. The integrity and
trustworthiness of healthcare data are encapsulated in the
dimension of veracity. Ultimately, valuable insights can be
gleaned through meticulous examination of the colossal
healthcare dataset. Distributed sources of healthcare data
encompass medical electronic records, health claims, diagnosis
data, clinical imagery, streaming systems, and sensors affixed
to patients' bedsides for continuous vital sign monitoring.
These sources collectively generate vast amounts of data,
surpassing the processing capabilities of conventional data
handling systems. The myriad challenges associated with big
data are illustrated in Fig. 1. In this research, our focus has
been dedicated to the initial five pivotal challenges within big
data, encompassing data integration, storage, analysis, and
representation.

Fig. 1. Big data challenges.

B. Literature Study

The amalgamation of Machine Learning (ML), Deep
Learning (DL), Neural Networks (NN), Fuzzy Logic Systems
(FLSs), Wireless Sensor Networks (WSNs), and Temporal
Graphs (TGs) holds pivotal significance in the processing of
large-scale medical data within the IoT landscape. ML and DL
techniques empower healthcare systems to discern intricate
patterns within vast datasets, enabling predictive analytics for
disease diagnosis, treatment planning, and health status
forecasting [16-18]. NN, a subset of ML, simulates the human
brain's learning process, aiding in complex data analysis,
especially in image recognition and signal processing tasks

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

76 | P a g e

www.ijacsa.thesai.org

within medical imaging and diagnostics [19, 20]. FLSs
supplements decision-making processes by handling uncertain
or imprecise data, crucial in medical scenarios where data
might exhibit variability [21]. WSNs, integrated with IoT
devices, facilitate real-time health monitoring, efficiently
collecting and transmitting patient data for timely analysis [22].
Meanwhile, TGs provide an intricate understanding of dynamic
patient interactions over time, aiding in disease progression
modeling and personalized treatment plans [23]. The
convergence of these technologies optimizes medical data
processing, fostering precision medicine, remote patient
monitoring, and efficient healthcare delivery, thereby
revolutionizing patient care and augmenting medical research
endeavors within the IoT-driven healthcare domain [24].

The exponential proliferation of healthcare data, coupled
with its profound insights, has positioned big data analytics,
particularly within the healthcare domain, as a formidable
challenge spanning multiple academic disciplines, including
data mining and machine learning. The advancement of data
collection in healthcare can be primarily attributed to strides in
scientific and technological innovation. The healthcare sector
primarily leverages three fundamental categories of digital data
for data collection: health research, operational processes
within healthcare organizations, and clinical records.
Traditional data mining techniques, which involve identifying
valuable patterns within vast databases, struggle to unearth
insights from the dispersed, extensive, and diverse datasets
prevalent in healthcare. Data mining techniques are pivotal in
transforming this data into actionable information. Numerous
studies in the medical field focus on prediction and
recommendation systems. These studies include experiments
on heart attack prediction and a comparative assessment of
different approaches. Breast carcinoma classification employs
a genetically tuned neural network model. Other research
endeavors encompass information retrieval and data mining
methodologies.

Healthcare analytics encompass various applications, such
as epidemic forecasting, health decision support, and
recommendation systems, geared toward enhancing care
quality, reducing costs, and augmenting productivity. One
notable approach is utilizing a K-means clustering algorithm
operating in the cloud as a MapReduce task, utilizing
healthcare data for clustering. An alternative proposal suggests
a decentralized platform for managing electronic health records
personally, employing Hadoop and HBase. Predictive analysis
in healthcare involves forecasting diabetes and determining the
most suitable therapy using algorithms and the Hadoop
MapReduce environment. Big data contextual exchange among
healthcare systems through the Internet of Things (IoT) is
demonstrated through an intelligent care system built on
Hadoop. This system leverages an architecture with advanced
data processing capabilities to collect data from diverse linked
devices and transmit it to intelligent buildings. Real-time
analysis of electronically generated medical records and data
from medical equipment and mobile applications is described.
This system, incorporating Hadoop, MongoDB, and an
innovative treatment method, aims to enhance patient
information processing outcomes. The predominant focus in
most healthcare analytics solutions lies in Hadoop, which can

handle substantial data volumes from diverse sources in batch-
oriented processing. However, Hadoop's real-time processing
capabilities are limited, and Spark emerges as a swifter and
more efficient alternative, particularly for iterative machine
learning tasks. Both Hadoop and Spark, being Apache projects,
are integral to the big data landscape, with Spark generating
significant interest.

Several scalable machine learning algorithms aim to
address the diverse challenges within big data analytics. These
algorithms include a scalable Random Forest classification
model for diabetes risk prediction, logistic regression for
phishing URL detection, and a Markov chain-based system for
identifying abnormal patterns in the behaviors of elderly
individuals. Real-time management of medical emergencies
using IoT-based medical sensors is presented, along with a
paradigm for real-time analysis of extensive medical data using
Spark Streaming and Apache Kafka. A real-time health
forecasting system focusing on machine learning, particularly
Decision Trees, is developed to process data streams obtained
via socket streams. A novel strategy for cardiac disease
monitoring, centered on real-time decentralized machine
learning within the Spark environment, is proposed in one
study. Most of these studies either center on specific healthcare
data sources or predominantly deal with batch-oriented
computation. Healthcare generates a myriad of rapidly
accumulating data from diverse sources. Moreover, some
studies prioritize data storage and visualization, while others
emphasize powerful data analytics tools like data mining and
machine learning. Thus, the creation of an effective system for
managing remote health data streams necessitates real-time
healthcare analysis, which encompasses data collection, real-
time processing, and robust machine learning capabilities.

The two leading causes of global mortality in recent times
have been heart disease and diabetes. Continuous monitoring
and early detection of these ailments can significantly reduce
mortality rates. The availability of wearable health monitors,
the adoption of IoT medical technology within healthcare
systems, and the surge in patient conditions further underscore
the potential of big data technologies for real-time health
condition prediction. Real-time prediction can streamline
healthcare visits and empower patients and healthcare
providers to anticipate potential illnesses. Furthermore, the
proposed system includes an alert mechanism, ensuring that
emergency services are promptly notified when a patient's
condition deviates from the norm, facilitating rapid
interventions during emergencies.

III. PROPOSED ARCHITECTURE

Within the scope of this research, a system for data
processing and monitoring is introduced, amalgamating Kafka
and Spark streams. This system operates by first processing
data received from connected devices and subsequently storing
this data for real-time analysis. The architectural layout of this
proposed system is elucidated in Fig. 2. The system
commences with the continuous generation of data messages
from Kafka generators. These data messages encompass
diverse disease names and are subsequently conveyed to a
Spark streaming application for immediate processing. Spark
Stream harnesses machine learning models to analyze various

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

77 | P a g e

www.ijacsa.thesai.org

health attributes acquired from the Kafka Stream, thereby
predicting health status. The results of this analysis are stored
in a NoSQL Cassandra database. In the proposed architecture,
Apache Zeppelin is instrumental in retrieving data from the
database and presenting it in a real-time dashboard featuring
data visualization in the form of graphs, charts, and data tables.
By leveraging this real-time data in an Internet of Things (IoT)

context, it becomes feasible to promptly scrutinize it, enabling
the timely dispatch of alert notifications to caregivers when
significant changes in a patient's condition arise. This real-time
monitoring capability facilitates immediate action and
intervention when necessary, ensuring patients receive timely
and responsive care.

Fig. 2. Proposed architecture.

The IoT encompasses a network of physical and virtual
entities equipped with electronics, intelligent wearables,
software, applications, sensors, and network connectivity, all
designed to collect and exchange data among themselves and
with data center systems. The data generated by ubiquitous
wearable health monitors, commonly found in households, is
characterized by its substantial volume and random nature.
Stimulating user activity trends or gathering essential data
necessitates analysis through a robust big data analytics
system. Forecasts indicate that, by 2020, IoT-related
technologies within the healthcare sector will constitute a
significant portion, accounting for forty percent of all IoT-
related technologies. The integration of information technology
in healthcare, particularly health informatics, is poised to bring
about a paradigm shift, significantly reducing inefficiencies,
containing costs, and, ultimately, saving lives. Real-time
monitoring facilitated by the IoT can be a lifesaver in medical
emergencies, encompassing conditions such as diabetes, heart
disease, and various chronic disorders. Numerous sources are
presently accessible for the continuous monitoring of health
indicators. The workflow of the proposed system, involving
multiple data sources, is outlined in Fig. 3. This system aims to
harness the power of IoT to provide real-time monitoring and
timely interventions in healthcare, thereby enhancing the
quality of care and potentially saving lives in critical situations.

The escalating volume of data generated within healthcare
systems has surpassed the capabilities of Spark alone for data
management. In response to this challenge, Kafka, designed
explicitly for managing streaming data, has been seamlessly
integrated into our system. The data collection component in
the proposed system architecture plays a pivotal role in
gathering health-related data from various sources and multiple
medical conditions, employing a range of devices coupled with
telemedicine and telehealth services. This data collection group
continually gathers, organizes, and manages clinical data
related to patients. It facilitates categorizing streaming data
according to the relevant domain (e.g., specific medical
conditions), where records are subsequently published. Apache
Kafka, operating as publishes-subscribe messaging system
designed for distributed streaming, is a central component in
this data management strategy. It is built to be a replicated,
distributed, and partitioned service. Health monitoring devices
feed real-time data into Kafka via Kafka producers. The
fundamental concept that Kafka introduces for a stream of
records is termed a "topic." Kafka servers use these topics to
store incoming messages from publishers for a defined period
before releasing them to the relevant data stream. Each topic is
subdivided into multiple partitions, each capable of storing data
in diverse formats.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

78 | P a g e

www.ijacsa.thesai.org

Fig. 3. The workflow of the proposed architecture.

Fig. 4. The Kafka communications system.

Consumers of Kafka access information as it becomes
available by subscribing to one or more topics. The Kafka
communication infrastructure is depicted in Fig. 4. To ensure
the efficient operation of Kafka, ZooKeeper, a centralized
service, plays a vital role by providing group services,
distributed synchronization, configuration information
maintenance, and naming services. Distributed applications use
these services extensively, although implementing and
maintaining them comes with inherent challenges, such as
dealing with recurring defects and race conditions. Typically,
applications initially underinvest in these services due to the
complexity of their implementation, rendering them fragile in
the face of change and difficult to manage. Consequently,
resolving these issues and enhancing the robustness of
distributed applications is an ongoing endeavor within
distributed systems.

This case study involves two data producer programs that
simulate connected devices, utilizing Apache Kafka to generate
data events. Apache Spark, an open-source, high-speed
distributed processing engine, plays a central role in this
system. Spark's most notable feature is its capability for in-
memory calculations, significantly enhancing its processing
speed. Furthermore, Spark offers user-friendly features, an
advanced framework for large-scale analysis, and the ability to
execute disk-based computing when dealing with datasets that
exceed available memory. A key concept employed by Spark is
Resilient Distributed Datasets (RDDs), which are distributed,
immutable collections of items. To achieve parallelization,
Spark internally spreads the RDD data across multiple nodes
within the cluster. RDDs can store input and intermediate data
in memory, reducing the cost of input-output operations
associated with reading from or writing to system files. This

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

79 | P a g e

www.ijacsa.thesai.org

feature enables efficient data reuse, which is particularly
beneficial for iterative machine learning algorithms. Once data
is transformed into an RDD, two fundamental types of
operations can be performed:

 Transformations: These operations involve applying
mapping, filtering, and more to existing RDDs to
generate new RDDs.

 Actions: These operations compute a result using an
RDD, which is then returned or saved to an external
storage system.

Spark also includes an ML library, MLlib, which
encompasses popular machine learning techniques such as
classification, regression, clustering, and more. To handle real-
time data from sources like Kafka and Twitter, Spark
streaming builds upon the Spark API. The batch-processing
Spark engine divides incoming data streams into less than one-

second segments, creating discretized streams (DStreams) as
high-level abstractions. Each mini-batch within the DStream
collection is patterned after a Spark RDD. In this study, Spark
is employed for streaming data processing, with Spark
streaming managing the Kafka data stream, and MLlib is used
to implement machine learning algorithms. Spark adheres to a
master-worker architecture for distributed processing. Each
Spark application can establish one master process, the
executor in Spark, and several worker processes referred to as
drivers. These drivers, like the master, are responsible for
evaluating, allocating, scheduling, and supervising the tasks
among the executors. The driver also maintains the necessary
data consistency throughout the program. In contrast, the
executors are solely responsible for executing the code
assigned by the driver and transmitting the results back to the
driver, as depicted in Fig. 5. This architecture ensures the
efficient distribution of tasks and data processing within the
Spark application.

Fig. 5. Master-worker architecture.

The classification of data collected from diverse sources for
various diseases necessitates using classification models
capable of discerning user characteristics in the presence or
absence of a disease. In this research, two classification models
have been employed, each briefly introduced below:

1) K-Nearest Neighbor (KNN): KNN is a versatile

supervised learning method that can serve as a classification

and regression algorithm. It determines the distance between

the test data point and all training data points and selects the K

training data points closest to the test data. Based on their

distances, the test data point is then assigned to the class that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

80 | P a g e

www.ijacsa.thesai.org

most of these K neighbors belong to. This method, represented

in Method 1, can be briefly described by Algorithm 1.

Algorithm 1 KNN Algorithm

1: procedure KNN(Instance, TestData, K)

2: C ← Size(TestData)

3: Dist[C][2] ← 0
4: for i in TestData do

5: d ← EclideanDistance(i, Instance)

6: Dist[i][1] ← d
7: Dist[i][2] ← Class(i)

8: end for

9: Srt ← Sort(dist[:][1]) ▷ Sort 2nd column based on that
10: Sel ← Srt[1 : K][2]

11: Cls ← Mode(Sel)
12: return Cls

13: end procedure

2) Support Vector Machine (SVM): SVM is another

supervised machine learning method primarily used for

classification, although it can also handle regression tasks. In

SVM, each data point is represented as a point in an n-

dimensional space, where "n" represents the number of

features available for classification. Each feature corresponds

to a specific coordinate within this space. SVM aims to

identify the hyperplane that optimally separates the two

classes in the data. Support vectors represent individual data

points within this multi-dimensional space, and the SVM

classifier seeks to identify the hyperplane or line that

maximally divides the two classes. To achieve this, the SVM

algorithm considers certain assumptions about the data,

aiming to find the best hyperplane:

 Maximizing margin: SVM strives to find the
hyperplane that maximizes the margin or the distance
between the hyperplane and the nearest data points of
both classes. This maximized margin ensures robust
separation.

 Support vectors: The data points closest to the
hyperplane, known as support vectors, significantly
influence the determination of the optimal hyperplane.

 Kernel functions: SVM can employ kernel functions to
map the data into higher-dimensional spaces when a
linear separation is not feasible. These functions allow
SVM to perform non-linear classification effectively.
As a classification algorithm, SVM provides the means
to efficiently distinguish between different classes
within a dataset by defining the most appropriate
hyperplane or decision boundary.

The suggested architecture addresses the complex issues
involved in forecasting real-time health status in healthcare
scenarios powered by the IoT. The applicability of this is
emphasized by numerous essential features designed to tackle
these particular challenges. The architecture's scalability is a
fundamental aspect that allows it to easily handle large and
growing datasets often encountered in healthcare. The ability to
effortlessly increase resources with data expansion guarantees

consistent performance. The ability to analyze data in real-time
is another important aspect, allowing for quick intake, analysis,
and understanding of streaming healthcare data.

Furthermore, the architecture's distinctive advantage resides
in its implementation of distributed machine learning models
specifically created to handle the vastness and complexities of
medical data. This enables the simultaneous execution of tasks
to enhance the efficiency of training models, hence improving
the accuracy and speed of health status forecasts. Moreover,
the architecture has exceptional proficiency in incorporating
various IoT devices and dissimilar data sources, merging
distinct data streams for thorough analysis. By prioritizing
security and privacy safeguards, adapting to different data
speeds from IoT sensors, and maximizing resource efficiency,
it effectively tackles the complex difficulties often seen in
healthcare situations powered by IoT. In conclusion, these
architectural characteristics together enable the system to
effectively negotiate the intricacies of real-time health status
prediction, establishing it as an optimal framework for
handling the distinct requirements of healthcare data analysis in
IoT contexts.

IV. SCENARIO DESCRIPTIONS

In Scenario 1, Fig. 6 illustrates three hyperplanes labeled A,
B, and C. The key principle to selecting the appropriate
hyperplane is to choose the one that best separates the two
classes. In this scenario, hyperplane B does an excellent job of
achieving this separation.

Fig. 6. Three sample hyper-planes.

Scenario 2 presents three hyperplanes (A, B, and C) in Fig.
7. The goal is to choose the hyperplane that maximizes the
distance between the closest data point of any class and the
hyperplane. This distance is referred to as the margin, as shown
in Fig. 8. Hyperplane A has a larger margin than B and C,
making it the right choice. Opting for a hyperplane with a
larger margin enhances robustness and minimizes the chances
of misclassification.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

81 | P a g e

www.ijacsa.thesai.org

Fig. 7. Three hyper-planes that could separate two classes.

Fig. 8. Comparison of three hyper-planes with margins in scenario 2.

In Scenario 3, although hyperplane B has a larger margin
than A, SVM prioritizes proper classification of the classes
before maximizing the margin. Hyperplane B makes a
classification error, whereas A correctly categorizes
everything. Therefore, hyperplane A is selected as the
appropriate choice (see Fig. 9).

Fig. 9. Evaluation of hyperplanes A and B in scenario 3.

Scenario 4 involves an outlier, represented by the star,
residing in the region of the circle class, making it impossible
to separate the two classes using a straight line. However, the
SVM algorithm can disregard outliers and identify the

hyperplane with the maximum margin. As a result, SVM
classification is robust against outliers (see Fig. 10).

Fig. 10. Robustness of SVM against outliers in scenario 4.

In Scenario 5, when a linear hyperplane is insufficient to
categorize two classes, a new feature, z = x^2 + y^2, is
introduced to create a three-dimensional representation of the
data points, as shown in Fig. 11 and Fig. 12. This new feature,
z, is a mathematical construct that enables the creation of a
linear hyperplane, making it possible for SVM to classify the
two classes effectively. The SVM algorithm employs the
"kernel trick" to automatically find this hyperplane. The SVM
kernel is a function that transforms non-separable problems
into separable ones by projecting data from a low-dimensional
input space into a higher-dimensional space. This is
particularly valuable for addressing problems with non-linear
separations. It performs intricate data transformations before
determining how to split the data based on the provided labels
or outputs. The hyperplane appears as a circle in the original
input space, as depicted in Fig. 13. The kernel trick allows
SVM to handle complex, non-linear separations and enables
the classification of data that cannot be linearly separated in the
original feature space.

Fig. 11. Introduction of a new feature in scenario 5.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

82 | P a g e

www.ijacsa.thesai.org

Fig. 12. Three-dimensional representation with additional feature (z) in

scenario 5.

Fig. 13. Application of SVM kernel trick for non-linear separation in scenario

5.

V. DISCUSSION

To ensure high data availability and avoid a single point of
failure, it is essential to store the results and data streams
generated by each user in a distributed manner. Distributed
databases outperform traditional database systems in terms of
performance and scalability. Apache Cassandra is an open-
source, distributed, and free NoSQL database system designed
to handle massive volumes of data, whether structured,
unstructured, or semi-structured, across multiple computers.
Cassandra's architecture greatly enhances its scalability,
operational capabilities, and continuous accessibility. It also
offers rapid write and read rates when used with Spark.
Distributed databases provide several valuable features:

 Affordability and ease of use: Distributed databases are
cost-effective and straightforward.

 Data transfer speed: They offer significantly faster data
transport than traditional databases.

 Scalability: Distributed databases can be scaled easily
by adding columns, accelerating the processing of
larger and more data.

 Cluster scalability: Distributed databases can expand
their cluster capacity by adding more nodes without a
specific distribution. After processing data with Spark,
the output data is stored in a table using Cassandra and
a primary key. This database can be accessed later for
real-time monitoring, reporting, and analysis of
historical data.

 Data replication and partitioning: Data is replicated
across various computers to enhance data availability
and fault tolerance.

TABLE I. UCI HEART DISEASE DATASET

No Attribute No
Attribute

Name
Description

1 3 Age Age of Patients

2 4 Sex 0/1(M/F)

3 9 CP Type of Chest Pain

4 10 TRestBPS
Blood Pressure when the

Patient is on

 Rest

5 12 Chol Blood Cholesterol

6 16 FBS Fasting Blood Sugar

7 19 RestECG
ElectroCardioGraphic when
Patient

 is on Rest

8 32 Thalach Heart Rate(Max)

9 38 Exang
Exercise Causes Angina (Y/N

=

 1/0)

10 40 OldPeak
Exercise-induced ST depression

in

 comparison to rest

11 41 Slope

The Peak Exercises in cline ST
section.

(UpSloping/Flat/DownSloping

= 1/2/3

12 44 CA Main Vessels Colored with

 Fluoroscopy in Number (0–3)

13 51 Thal
Normal/ Fixed defect/
Reversible

 Defect = 3/6/7

14 58 Num(Class)
Heart Disease Diagnosis (Status

of

Angiographic Disease) if

Diameter

Narrowing¡= 50% =0

Otherwise =1

Apache Zeppelin is an open-source data analysis
environment that works with Apache Spark. It is a web-based,
versatile notebook that facilitates interactive data analysis, real-
time data exploration, visualization, and collaboration.
Zeppelin supports an expanding list of programming languages
and interfaces, including SparkSQL, Hive, AngularJS, Scala,
Python, markdown, and Shell. Using Scala, it can create

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

83 | P a g e

www.ijacsa.thesai.org

dynamic, data-driven, and collaborative documents, among
other capabilities. Apache Zeppelin is valuable for writing,
organizing, and executing analytical code and visualizing
results across extensive workflows. Zeppelin can automatically
generate input forms in your notebook, provide simple
visualizations to present results, and allow colleagues to share
the notebook's URL. In real-time data retrieval from the
Cassandra database, a Zeppelin dashboard is developed to
display data in charts, tables, and other formats. This dashboard
updates its data every second, allowing authorized individuals,
such as doctors, healthcare companies, or external consultants,
to access the data regardless of their patient's or client's health
status.

In this research, two datasets obtained from well-known
data sources, Kaggle and UCI, were utilized. These datasets
pertain to medical conditions, specifically diabetes and heart
diseases. Table I provides an overview of the information
related to these datasets. It is worth noting that although the
Cleveland dataset contains 76 attributes, previous studies have
primarily focused on using only a subset of fourteen attributes.
Among the various datasets, the Cleveland dataset has been the
primary focus of machine learning researchers. The "Class"
field in these datasets indicates the presence or absence of a
particular medical condition, such as heart disease. The values
in the "Class" field range from zero (indicating no presence of
the condition) to four, with the Cleveland dataset primarily
concentrating on discriminating between the presence (values
1, 2, 3, 4) and absence (value 0) of heart disease.

The dataset used in this research was sourced from
Kaggle's Diabetes Dataset. Kaggle is a well-known platform
for data science competitions and provides a freely available
dataset that numerous authors have used in previous studies.
This dataset consists of ten features and 15,000 observations,
and it is employed to predict whether a patient has diabetes.
Table II offers an overview of the features included in this
dataset.

TABLE II. KAGGLE DIABETES DATASET DESCRIPTIONS

No Attribute Name Description

1 Patient ID Patient Identification Number

2 Pregnancies A patient gets diabetes after Pregnancy

3 Plasma Glucose Glucose amount in Blood

4
Diastolic Blood

Pressure
Blood Pressure when Patient is on Rest

5 Triceps Thickness Body Fat

6
7

8

Serum Insulin Body
Mass Index(BMI)

Diabetes Pedigree

Insulin amount in Blood W eightinKG
Height2 inM 2) Diabetes History in

Family

9 Age Patient Age

10 Class Diabetic = 1, NonDibaetic = 0

VI. RESULTS

The proposed real-time health status forecasting system is
driven by a single-node cluster featuring a Core i7 CPU, 16 GB
of RAM, and the Ubuntu 20.04 operating system. This system
seamlessly integrates the trained model with Kafka streaming
data processing and runs on the Spark platform. As depicted in
Fig. 14, the application establishes a connection to Kafka
streaming and commences receiving data streams from various
Kafka producers. When it encounters streams related to health
characteristics, it retrieves the attribute values from each topic
within the illness events sent via Kafka streaming.
Subsequently, it employs the trained model to predict the
health state of the individuals. In parallel, the Cassandra
database records each forecasted health state in a table,
employing the identification (ID) as the primary key, which is
ideal for ensuring data redundancy and reliability. This stored
data can later be queried to examine historical information.

Fig. 14. Apply classification algorithms.

All the tests were conducted using a cluster configuration
consisting of one primary node and two worker nodes, each

running the Ubuntu 20.4 operating system within VMware
virtual environments. Several steps were undertaken to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

84 | P a g e

www.ijacsa.thesai.org

facilitate communication between the nodes and ensure the
proper functioning of the Spark application:

 User accounts and development environment setup:
Spark user accounts were created to simplify inter-
node communication. Scala and Java were installed.
Open SSH Server was set up. Key pairs were generated
to enable passwordless SSH configuration across the
nodes, ensuring that the Spark master can effectively
connect, launch, pause, and run tasks on multiple
worker nodes.

 Software installation: Spark, Kafka, and Cassandra
were unpacked and installed on a single node. Two
themes and corresponding tables were created, one for
diabetic disease and the other for heart illness.

 Environment variables: The bashrc file was modified
to include essential environment variables like SPARK
and JAVA_HOME in the home directory.

 Node replication: To ensure uniformity and
consistency across various nodes, the setup folder of
the single-node cluster was duplicated multiple times,
with one node designated as the master and the others
as workers.

 Hostname and host configuration: The hostname and
hosts were modified on all nodes to facilitate proper
inter-node communication.

The primary stages for implementing the Spark application
in a Zeppelin notebook are as follows:

 Spark context and streaming context creation: An
instance of Spark contexts and streaming context was
created to access all Spark streaming functionalities.

 Direct stream creation: A direct stream was created
using the specified Kafka parameters and topics.

 Data extraction: The identifiers and characteristics of
each topic and stream were extracted.

 ML model utilization: The pre-trained ML model was
used to predict the health status.

 Data storage: All attributes and the predicted labels
were saved to the Cassandra keyspace and table.

 Streaming start: The Spark streaming context was
initiated using the start method, allowing real-time
health data processing.

The research allocated 25% of the data for testing purposes,
while the remaining 75% was used to train the machine
learning models. The datasets were divided into training and
test datasets randomly. To address the issue of the
computational cost of sorting feature values across large
distributed datasets, an approximate set of candidate splits was
identified over a sampled portion of the data. This method has

been shown to enable more accurate predictions by analyzing
the model error and the test data, effectively mitigating the
negative impacts of both underfitting and overfitting. One of
the most crucial and valuable measures for assessing the
performance of testing and treatment is the Receiver Operating
Characteristic (ROC) curve. The MLlib provides support for
ROC curve evaluation. On the other hand, classification
accuracy is determined by the ratio of all correct predictions to
all the prediction data. The classification accuracy for the
datasets in this study was assessed using the following
equation:

 (1)

Sensitivity and specificity are two critical metrics used to
assess classification models' performance, particularly in
medical diagnoses and other fields where accurate predictions
are crucial. These metrics are calculated as follows:

Sensitivity (True Positive Rate or Recall): Sensitivity is the
percentage of actual positives (e.g., patients with a specific
condition) that are correctly identified by the model. It
indicates the model's ability to detect true positive cases.

Specificity: Specificity is the percentage of actual negatives
(e.g., patients without the condition) that are correctly
identified by the model. It measures the model's ability to avoid
false positive predictions.

In these equations, true positives (TPs) are the cases
correctly classified as positive, true negatives (TNs) are the
cases correctly classified as negative, false positives (FPs) are
cases incorrectly classified as positive (when they are actually
negative), and false negatives (FNs) are cases incorrectly
classified as negative (when they are actually positive).

Sensitivity and specificity provide insights into the model's
performance in terms of both correctly identifying individuals
with the condition and correctly identifying individuals without
the condition. Balancing these two measures is important,
especially in situations, where missing a true positive (e.g., a
medical condition) or incorrectly identifying a false positive
(unnecessary treatment or diagnosis) has significant
consequences.

 (2)

 (3)

Our machine learning model's effectiveness was assessed
on two established datasets. The empirical results indicate that
our utilization of Spark for the execution of the proposed
methodology demonstrates notable efficiency and scalability
(see Fig. 14 and Fig. 15). Fig. 16 shows the specificity,
sensitivity, ROC curve and accuracy obtained in heart disease.
The findings further underscore that the proposed model
consistently delivers dependable and superior predictive
outcomes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

85 | P a g e

www.ijacsa.thesai.org

Fig. 15. Specificity, sensitivity, ROC Curve, and accuracy obtained in diabetes datasets in comparison to the other algorithms.

Fig. 16. Specificity, sensitivity, ROC Curve, and accuracy obtained in heart disease datasets in comparison to other algorithms.

VII. CONCLUSION

This study has demonstrated the successful application of a
machine learning model for real-time health status prediction
in the healthcare domain. By employing Apache Spark in
conjunction with Kafka streaming and Cassandra, we have
created an efficient and scalable system for processing and
analyzing healthcare data streams. The results of our empirical
tests on two distinct datasets reveal that our model consistently
provides reliable and high-quality predictions. However, the
current design also reveals inherent constraints in the
scalability of traditional data storage systems like Cassandra
when handling exponentially growing healthcare data. While
effective for many use cases, these systems might face
challenges in handling future data volume surges, potentially
leading to performance bottlenecks and increased resource
requirements. The ability to monitor and predict health
conditions in real-time is of paramount importance, particularly
in the context of chronic illnesses and emergencies. Our
proposed system offers a promising solution for continuous
health monitoring and early detection, potentially saving lives
and reducing healthcare costs. The key takeaway from our
research is the effectiveness of combining advanced

technologies like Spark, Kafka, and Cassandra to process and
analyze healthcare data streams. This approach opens up new
possibilities for healthcare analytics and real-time monitoring,
benefiting patients, healthcare providers, and the broader
medical community. In the future, we envision further
refinements and enhancements to our system, including the
integration of additional data sources and the development of
more sophisticated machine-learning algorithms. As the
healthcare sector continues to generate vast amounts of data,
the need for innovative solutions like the one presented in this
study will only grow, ushering in a new era of data-driven
healthcare.

REFERENCES

[1] M. Asch et al., "Big data and extreme-scale computing: Pathways to
convergence-toward a shaping strategy for a future software and data
ecosystem for scientific inquiry," The International Journal of High
Performance Computing Applications, vol. 32, no. 4, pp. 435-479, 2018.

[2] M. El Samad, S. El Nemar, G. Sakka, and H. El-Chaarani, "An
innovative big data framework for exploring the impact on decision-
making in the European Mediterranean healthcare sector," EuroMed
Journal of Business, vol. 17, no. 3, pp. 312-332, 2022.

[3] M. Karatas, L. Eriskin, M. Deveci, D. Pamucar, and H. Garg, "Big Data
for Healthcare Industry 4.0: Applications, challenges and future

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

86 | P a g e

www.ijacsa.thesai.org

perspectives," Expert Systems with Applications, vol. 200, p. 116912,
2022.

[4] S. S. Ghahfarrokhi and H. Khodadadi, "Human brain tumor diagnosis
using the combination of the complexity measures and texture features
through magnetic resonance image," Biomedical Signal Processing and
Control, vol. 61, p. 102025, 2020.

[5] K. Batko and A. Ślęzak, "The use of Big Data Analytics in healthcare,"
Journal of big Data, vol. 9, no. 1, p. 3, 2022.

[6] A. A. Zein, S. Dowaji, and M. I. Al-Khayatt, "Clustering-based method
for big spatial data partitioning," Measurement: Sensors, vol. 27, p.
100731, 2023.

[7] M. Mohtasebi et al., "Detection of low-frequency oscillations in neonatal
piglets with speckle contrast diffuse correlation tomography," Journal of
Biomedical Optics, vol. 28, no. 12, pp. 121204-121204, 2023.

[8] R. Nathan et al., "Big-data approaches lead to an increased
understanding of the ecology of animal movement," Science, vol. 375,
no. 6582, p. eabg1780, 2022.

[9] C. Acciarini, F. Cappa, P. Boccardelli, and R. Oriani, "How can
organizations leverage big data to innovate their business models? A
systematic literature review," Technovation, vol. 123, p. 102713, 2023.

[10] M. Andronie et al., "Big Data Management Algorithms, Deep Learning-
Based Object Detection Technologies, and Geospatial Simulation and
Sensor Fusion Tools in the Internet of Robotic Things," ISPRS
International Journal of Geo-Information, vol. 12, no. 2, p. 35, 2023.

[11] W. Li, "Big Data precision marketing approach under IoT cloud
platform information mining," Computational intelligence and
neuroscience, vol. 2022, 2022.

[12] M. Q. Bashabsheh, L. Abualigah, and M. Alshinwan, "Big data analysis
using hybrid meta-heuristic optimization algorithm and MapReduce
framework," in Integrating meta-heuristics and machine learning for
real-world optimization problems: Springer, 2022, pp. 181-223.

[13] G. S. Bhathal and A. Singh, "Big Data: Hadoop framework
vulnerabilities, security issues and attacks," Array, vol. 1, p. 100002,
2019.

[14] A. Adnan, Z. Tahir, and M. A. Asis, "Performance evaluation of single
board computer for hadoop distributed file system (hdfs)," in 2019
International Conference on Information and Communications
Technology (ICOIACT), 2019: IEEE, pp. 624-627.

[15] S. Vairachilai, A. Bostani, A. Mehbodniya, J. L. Webber, O.
Hemakesavulu, and P. Vijayakumar, "Body Sensor 5 G Networks
Utilising Deep Learning Architectures for Emotion Detection Based On
EEG Signal Processing," Optik, p. 170469, 2022.

[16] M. Bolhassani and I. Oksuz, "Semi-Supervised Segmentation of Multi-
vendor and Multi-center Cardiac MRI," in 2021 29th Signal Processing
and Communications Applications Conference (SIU), 2021: IEEE, pp.
1-4.

[17] S. P. Rajput et al., "Using machine learning architecture to optimize and
model the treatment process for saline water level analysis," Journal of
Water Reuse and Desalination, 2022.

[18] S. R. Abdul Samad et al., "Analysis of the Performance Impact of Fine-
Tuned Machine Learning Model for Phishing URL Detection,"
Electronics, vol. 12, no. 7, p. 1642, 2023.

[19] V. Monjezi, A. Trivedi, G. Tan, and S. Tizpaz-Niari, "Information-
Theoretic Testing and Debugging of Fairness Defects in Deep Neural
Networks," arXiv preprint arXiv:2304.04199, pp. 1571-1582, 2023
2023, doi: 10.1109/ICSE48619.2023.00136.

[20] W. Anupong et al., "Deep learning algorithms were used to generate
photovoltaic renewable energy in saline water analysis via an oxidation
process," Water Reuse, vol. 13, no. 1, pp. 68-81, 2023.

[21] M. Khodayari, J. Razmi, and R. Babazadeh, "An integrated fuzzy
analytical network process for prioritisation of new technology-based
firms in Iran," International Journal of Industrial and Systems
Engineering, vol. 32, no. 4, pp. 424-442, 2019.

[22] J. Zandi, A. N. Afooshteh, and M. Ghassemian, "Implementation and
analysis of a novel low power and portable energy measurement tool for
wireless sensor nodes," in Electrical Engineering (ICEE), Iranian
Conference on, 2018: IEEE, pp. 1517-1522, doi:
10.1109/ICEE.2018.8472439.

[23] Y. Lu, Z. Miao, P. Sahraeian, and B. Balasundaram, "On atomic cliques
in temporal graphs," Optimization Letters, vol. 17, no. 4, pp. 813-828,
2023.

[24] M. R. Moradi, S. R. N. Kalhori, M. G. Saeedi, M. R. Zarkesh, A.
Habibelahi, and A. H. Panahi, "Designing a Remote Closed-Loop
Automatic Oxygen Control in Preterm Infants," Iranian Journal of
Pediatrics, vol. 30, no. 4, 2020.

