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Abstract—On a global scale, traffic problems are an essential 

factor affecting urban operations, particularly challenging the 

frequent occurrence of traffic congestion and accidents. The 

solution to the problem requires real-time and accurate 

prediction of traffic flow. This article mainly explores the 

application of the Internet of Things and deep learning in traffic 

flow prediction, aiming to solve the problem where existing 

methods cannot meet the requirements of real-time and 

accuracy. IoT devices, such as road sensors and in-vehicle GPS 

devices, which provides rich information for traffic flow 

prediction. With the ability of deep learning, it can not only learn 

and abstract a large amount of complex traffic data but also 

handle traffic flow prediction tasks in various complex situations. 

During the model construction process, the complexity of the 

road network was fully considered, practical algorithms were 

designed to fuse multi-source data, and the structure of the model 

was optimized to meet the needs of real-time prediction. The 

experimental results show that the absolute error of the test 

results is generally less than 6km/h, which can better reflect the 

traffic speed of the road section in the future. 

Keywords—Internet of things; deep learning algorithm; short 

term traffic flow; prediction model 

I. INTRODUCTION 

With increase in serious urban transportation problems, 
seriously affecting the functional operation of cities and the 
quality of life of citizens. Among them, the frequent 
occurrence of traffic congestion and accidents has become a 
common problem worldwide [1, 2]. Traffic flow prediction is 
crucial for urban traffic management [3, 4], as it can accurately 
and effectively predict traffic flow. Traffic management 
departments can arrange traffic police forces in advance, 
dispatch traffic lights reasonably, and effectively guide 
vehicles based on the prediction results, thereby alleviating 
traffic congestion and improving urban road capacity [5]. For 
example, when it is predicted that the traffic flow in a specific 
area will significantly increase, traffic control or evacuation 
work can be carried out in advance to avoid traffic congestion. 
For drivers and passengers, knowing the traffic flow situation 
in the future in advance can provide important references for 
their travel decisions, reduce waiting time, and improve travel 
efficiency [6]. Therefore, traffic flow prediction is also 
significant for the research and development. In areas such as 
autonomous driving, traffic signal optimization, and travel 
recommendation, accurate traffic flow prediction results are all 
needed [7]. 

In the information age of the 21st century, deep learning 
has seen significant growth in many fields. Traffic flow 

prediction, as a critical challenge, is gradually benefiting from 
these two technologies. The Internet of Things, also known as 
the extension of the Internet, connects various objects in the 
physical world, enabling them to collect and exchange data. 
The Internet of Things technology has played a considerable 
role in traffic flow prediction [8]. The use of IOT makes it 
possible to obtain large amounts of data, which greatly 
improves the accuracy and real-time nature of data sources. 
Deep learning, as an artificial intelligence algorithm, has also 
played an enormous role in traffic flow prediction. Deep 
learning can learn and understand a large amount of complex 
data and abstract valuable features [9, 10]. It has been 
successfully applied to traffic flow prediction. The application 
of deep learning enables traffic flow prediction models to 
understand and process complex traffic data, thereby 
improving the accuracy of predictions. Although the Internet of 
Things and deep learning have been successfully applied in 
traffic flow prediction, their potential still needs to be fully 
explored [11,12]. In terms of deep learning, how to design 
more effective models to handle more complex situations (such 
as traffic congestion, accidents, etc.) is also an important 
research direction. Therefore, constructing traffic flow 
prediction models based on the Internet of Things and deep 
learning is an essential direction in current traffic research. 

However, although the Internet of Things and deep learning 
have been applied in traffic flow prediction, they still need to 
overcome many challenges. Data quality issues, such as sensor 
failures, network transmission issues, incomplete data, etc., can 
all affect the availability and accuracy of data [13, 14]. In terms 
of model design and optimization, how to design and optimize 
the model based on specific traffic flow prediction tasks and 
how to improve the interpretability of the model are all issues 
that need to be addressed. Real-time prediction problems 
require the model to have efficient data processing and 
computational capabilities to meet the needs of real-time 
prediction. The complexity of road networks and how to 
effectively integrate various factors into the model is a 
challenging issue. For the fusion of multi-source data, in 
addition to traffic flow data, weather data, social event data, 
social media data, etc., can also be utilized. How to effectively 
integrate these diverse data and improve prediction accuracy is 
a new challenge. Therefore, the significance of studying the 
short-term traffic flow prediction model based on the Internet 
of Things and deep learning algorithm is that it can 
significantly improve the efficiency of urban traffic 
management, reduce traffic congestion, and reduce the 
incidence of traffic accidents. Through real-time and accurate 
traffic flow prediction, traffic management departments can 
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allocate resources reasonably, optimize traffic signal 
scheduling, and guide vehicles to drive effectively. At the same 
time, this research has a significant impact on the development 
of intelligent transportation systems, especially in the fields of 
autonomous driving and traffic signal optimization. 

II. APPLICATION OF IOT AND DEEP LEARNING 

A. Deep Learning Algorithm 

The architecture of the Temporal Convolutional Network 
(TCN) is designed based on the characteristics of the latest 
convolutional system used for sequential data. It takes a time 
series as input and models the temporal correlation in each 
temporal data. Unlike the traditional Recurrent Neural Network 
(RNN) which recourses along the time axis of a sequence and 
introduces a large number of learning parameters, making the 
model difficult to optimize. TCN combines simplicity, 
autoregressive prediction, and very long memory without the 
recursive mechanism of RNN, which facilitates parallelization, 
as shown in Fig. 1. Therefore, TCN can effectively combine 
computational advantages with representation capabilities to 
achieve efficient and good predictive performance [15]. Due to 
the above advantages, TCN can be well applied to analyse data 
with strict order and is widely used for predicting various 
scenarios. Therefore, TCN is suitable for modelling and 
analysing time-series data sensors monitor. By capturing 
simple patterns in sensor time series and generating more 
complex patterns in higher-level layers, TCN can better extract 
temporal features [16]. 

Graph Convolutional Neural Networks (GCN) are feature 
extractors designed based on graph data [17]. The essence of 
GCN is to apply convolution to graph neural networks, which 
can flexibly extract structural information of graph data and 
reduce computational complexity. Due to the good 
complementary relationship between node attribute 
information and structural information in graph data, GCN can 

use the network layer to simultaneously learn the data structure 
and attribute information in the graph and use the two to 
represent the relationship between nodes [18, 19]. 

B. Application of Deep Learning in Traffic Flow Prediction 

1) Reactive control of short-term traffic flow: The timing 

control method calculates the timing scheme based on 

historical traffic flow data and predetermined optimization 

objectives. The biggest drawback of this scheme is that it 

cannot adapt to the dynamic changes in traffic flow, resulting 

in limited control effectiveness. The reactive traffic signal 

control method adjusts the signal timing strategy based on 

existing traffic flow characteristics to improve control 

effectiveness without considering the impact of traffic flow 

prediction on control effectiveness [20, 21]. In recent years, 

green ratio optimization, phase difference optimization, 

mathematical programming, multi-objective optimization, 

dynamic programming and other methods have emerged in the 

field of reactive control [22]. Based on the analysis and 

research of the delay law of the vehicles at the intersection, an 

optimization model of phase difference adjustment of the wire 

control system is established. On the one hand, due to the lack 

of traffic flow forecasting mechanism, the control method 

does not consider the potential impact of the current control 

scheme on the future traffic conditions, so the control effect is 

limited. On the one hand, the control method lacks a traffic 

flow prediction mechanism. It needs to consider the potential 

impact of the current control plan on future traffic conditions, 

resulting in limited control effectiveness. On the other hand, 

most of these existing control methods adopt a single-machine 

computing environment, which cannot meet the real-time 

requirements of traffic optimization and control in the context 

of big data [23, 24]. 

 
Fig. 1. Deep learning applied to short-term traffic models. 
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Fig. 2. Construction process of short-term traffic network image samples. 

Similar to facial muscle movements forming different 
expressions, the spatiotemporal evolution of short-term traffic 
flow in the road network constitutes different forms of traffic. 
From a spatial perspective, short-term traffic network flows are 
interdependent and interrelated. Congestion on a road section 
may affect nearby or even further road sections. At the same 
time, in terms of time dimension, some similar but randomly 
fluctuating traffic flow characteristics will repeatedly appear on 
a road segment. Therefore, short-term traffic network flow 
feature learning needs to comprehensively consider the 
temporal and spatial characteristics, as well as periodic 
repeatability characteristics. As shown in Fig. 2, the 
construction process of short-term traffic network image 
samples is presented. 

2) Short-term traffic flow model predictive control: Based 

on the model predictive control (MPC) framework, the 

predictive model predicts the future traffic dynamics, and the 

potential control performance of the candidate scheme is 

calculated [25, 26]. In the current control cycle, the first 

element of the optimization sequence is applied to the traffic 

system model and restarts the next round of the rolling 

optimization process based on the feedback traffic status and 

prediction model. By comprehensively considering the 

cumulative impact trends, visionary control decisions are 

generated. Therefore, in urban expressway traffic control, 

MPC can synergistically adjust the traffic flow at the ramp 

entrance and exit. In highway traffic control, MPC can 

coordinate and solve problems such as speed restrictions, lane 

allocation, and release time of vehicle queues on on-ramps. 

The rolling time domain method of MPC can further plan the 

path selection problem of multiple travellers. Abstract 

boundary control and path guidance as economic MPC 

problems is to improve the mobility of urban networks. 

Furthermore, in the MPC framework, macro traffic flow and 

exhaust emission models are introduced to reduce the 

probability of traffic congestion and reduce pollution 

emissions. However, to apply the MPC control strategy to 

more complex traffic network systems, the contradiction 

between the time required optimizing the objective function in 

the prediction time domain and the real-time performance of 

online control still needs to be solved urgently [27]. 

In order to reduce the solving time of the MPC objective 
function, the entire road network is decomposed into several 
regional subnets to accelerate the calculation process. In 
addition, by parameterizing the macro traffic prediction model, 
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it reduces the time of online computation in the rolling time 
domain. Based on the improved macro traffic flow model, and 
quadratic programming provide a solution for improving the 
real-time performance of MPC in traffic flow control. 
However, they reduce the calculation time for solving the 
objective function in the prediction time domain. They can 
only roughly describe macroscopic traffic flow phenomena 
such as traffic density, traffic flow, occupancy rate, etc., which, 
to some extent, reduces the control effect. 

3) Deep reinforcement learning control for short-term 

traffic flow: Deep reinforcement learning is a feedback-based 

iterative learning method based on a deep learning evaluation 

mechanism. Deep learning involves constructing a 

hierarchical neural network that simulates human brain 

thinking. The development of deep learning to this day mainly 

includes CNN, deep belief networks DBN, DSAEs, and 

LSTM, each with its advantages and applicability. However, 

these deep learning methods focus on the learning of traffic 

flow characteristics at the segment level. When traffic control 

rises to the regional road network, the best control timing may 

be missed due to the inability to obtain the interconnectivity 

between segment traffic flows [28, 29]. 

The training of deep learning in the context of big data 
takes several days or even weeks, so reducing the time cost of 
model training while ensuring training accuracy has become a 
hot topic in academic and industrial research [30]. Distributed 
deep learning is a powerful tool to accelerate deep neural 
network training. By introducing predictive hierarchical 
caching strategy in distributed training, it can improve the 
cache hit rate of data, shorten synchronization time and 
network blocking times. Secondly, through the sparse gradient 
compression mechanism of entropy, the propagation gradient 
threshold can be determined dynamically and the data volume 
of the propagation gradient can be compressed to reduce the 
communication load. By quantifying the performance 
differences of each node and dynamically allocating the 
training batches of each node, the time of each iteration 
between nodes is approximately consistent, thereby improving 
the impact of gradient obsolescence on convergence in 
asynchronous parallel optimization [31]. 

4) Distributed parallel processing of traffic flow big data: 

The rapid development of the Internet of Things and artificial 

intelligence has provided strong support for the 

interconnection of vehicles, pedestrians, traffic lights, roadside 

equipment, and traffic management centers. It is necessary to 

establish new theories and methods for traffic network flow 

adaptive control and achieve the next generation of data-

driven intelligent transportation systems (ITS). In the context 

of the Internet of Vehicles (IoV), the traffic flow data 

collected by multi-source heterogeneous sensors is rapidly 

increasing, and the era of big data in transportation has 

arrived. Cloud computing uses a universal computing model 

to deploy computing tasks to a computing resource pool, 

allowing users to transparently access computing resources, 

storage space, and information services according to their 

needs. It is one of the most effective methods for processing 

big data. It has the self-maintenance and management function 

of virtual computing resources and can dynamically acquire or 

release computing resources to adapt to dynamic application 

workloads. 

In a traffic control system, if all raw data is sent to a remote 
traffic control center for processing and analysis using cloud 
computing, it requires extremely high network bandwidth. In 
addition, when optimization decisions are returned from cloud 
computing centers to traffic signal controllers, local traffic 
dynamics may have undergone significant changes. This poses 
hidden dangers to the safety and real-time performance of 
traffic control. Edge computing is an expansion of cloud 
computing architecture, pushing some computing intelligence, 
data processing, storage, and services from the cloud to the 
network's edge. It enables analysis and processing to occur on 
the side of the data source, avoiding response delays or data 
security risks caused by long-distance, high-capacity data 
communication as much as possible. 

III. CONSTRUCTION OF SHORT-TERM TRAFFIC FLOW 

PREDICTION MODEL BASED ON IOT AND DEEP LEARNING 

ALGORITHMS 

A. Overall Architecture 

As shown in Fig. 3, the model predictive control 
architecture is deployed on a cloud computing platform to 
collaboratively control the signal timing strategies of various 
intersections from a global perspective in order to improve the 
traffic capacity of vehicles in the road network and alleviate 
traffic congestion. Establish information channels between 
transportation networks and cloud computing through 
communication technologies like the Internet and 5G. The 
location, speed, and intersection status of vehicles in the 
transportation network are collected through multi-source 
sensors and then uploaded to the cloud control center. The 
nonanalytical prediction model of the cloud control center 
predicts the trend of traffic flow changes in the future based on 
the traffic status collected at the current time, pre-set control 
requirements, and control the sequences generated by 
optimization algorithms and provides an evaluation of the 
cumulative control performance of the control sequence in the 
future. Using the distributed computing of cloud computing, 
multiple computing nodes participate in the calculation to 
accelerate the optimal control sequence solution. In the current 
control cycle, the first strategy in the optimal control sequence 
is selected and applied to the traffic network flow system. The 
rolling time domain method is used to continuously implement 
this process and effectively control the traffic flow of the road 
network. 
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Fig. 3. Overall architecture diagram. 

B. Short Term Traffic Flow Simulation Modelling 

In urban road networks, vehicles face complex road 
conditions on their driving routes, as shown in Fig. 4. 

1) Maximum speed limit: The maximum allowable driving 

speed depends on the road infrastructure and equipment. 

When the road conditions and driving equipment performance 

are good, the maximum driving speed can increase 

correspondingly. Otherwise, it is necessary to reduce the 

maximum driving speed to meet actual needs. 

2) District-specific speed limits: The urban road network 

has many special areas, such as hospitals, schools, military 

administration areas, and signalized intersections, where 

vehicles need to slow down appropriately. 

3) Temporary speed limit: When encountering sudden 

situations such as roadbed maintenance, abnormal weather, 

and traffic accidents, the relevant traffic management 

department will issue a temporary speed limit notice, and 

vehicles should slow down in advance and pass slowly when 

driving to the section. Vlim (x) dynamically divides the road 

into a series of sections with different speed restrictions. 

 
Fig. 4. Spatiotemporal constraints on vehicle motion. 
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C. Establishment of Short-term Traffic Flow Model 

Prediction Model 

Decompose the complete dataset D into R parts, with each 
part represented by Dr. (r=1, 2,.. R). Therefore, dataset D can 
be represented as a set of subsets of data, Dr., as shown in 
Formula (1): 

r r

r 1 r 1 n 1 n

R R ND U D U U D   
  (1) 

Among them, Nr represents the size of the r-th data subset, 
and Dr n represents the nth data on the r-th data subset. 

The objective function of parallel training of CNN-LSTM 
model is shown in Formula (2): 

r 1 r 1 1
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are the observation and prediction vectors for the n-th sample 

in the r-th dataset, respectively, The training of the CNN-
LSTM model based on the complete dataset D is to minimize 
the objective function described by the formula, thereby 
obtaining ideal weights and biases, known as global learning 
parameters. Furthermore, The weights and biases trained by 
minimizing local objective function Jr on data subset Dr are 
called local learning parameters. For parallel feature forward 
learning processes, the output values of different types of 
network layers are synchronously calculated in parallel based 

on corresponding data subsets. At time t, denoted by 

,

, , ( )r l

n j ca t
, 

the CNN layer extracts local feature values based on the data 
subset Dr. The calculation Formula (3) is as follows: 

1
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Among them, c represents the convolutional layer of the 
CNN-LSTM model: 

 
Fig. 5. Structural diagram of LSTM. 
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As shown in Fig. 5, in the LSTM module, the output values 
of forgetting gates (such as formulas), input gates (such as 
formulas), cellular states (such as formulas), output gates (such 
as formulas), and implicit states (such as formulas) at time t are 

represented by 

,

, , ,fga ( )r l

n j lm t
,

,

, , , ( )r l

n j lm iga t
,

,

, , , ( )r l

n j lm cga t
,

,

, , , ( )r l

n j lm oga t
, and, respectively. The calculation formulas for 

these locally activated feature values are shown in (4) - (9): 
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Let 

,

, , ( )r l

n j fa t
 represent the network output of the fully 

connected layer at time t, and the calculation Formula is shown 
in (10): 

1
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Among them, f represents the fully connected layer. When 
layer l is a fully connected layer, i represents the i-th input 

neuron, j represents the j-th output neuron. 

, 1

, , ( )r l

j i fw t

and 
,

,

r l

j fb
 represent the weight and bias of layer l (which is a fully 

connected layer) on the r-th data subset, respectively, and 

1l

f
N



 
represents the number of neurons in the previous layer; σ(·) 
represents the RELU activation function. 

Based on the classical gradient descent criterion, the 
relationship between global learning parameters and local 
learning parameters in the parallel error backpropagation 
process is derived layer by layer. The calculation formulas for 

updating the global learning parameters , , ( )l

j i fw t
 and 

, ( )l

j fb t
 in the fully connected layer at time step t are shown 

in Formulas (11) - (12): 
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Among them, the local weights and biases in the fully 
connected layer are calculated as shown in Formulas (13) - 
(14): 
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The global adaptive learning rate of parallel training of the 
CNN-LSTM model can be obtained by calculating the local 
gradient sum, as shown in Formulas (15) - (16): 

( )
( )

rlt
G t







              (15) 

( ) ( 1) (1 ) ( )G t G t g t            (16) 

Among them, G(t) represents the sum of squares of 

gradients with attenuation factors; 


Similar to the 
attenuation factor in the momentum gradient descent method, it 
represents the impact of past gradients on current parameter 
updates, typically taking a value of 0.9; Lr represents the basic 
learning rate; μ It is a minimal constant that prevents the 
denominator from being zero. The adaptive learning rate has 
advantages over the traditional fixed learning rate, because it 
can adjust the learning rate according to the gradient of the 
parameter itself, so as to achieve better convergence effect. 
Regardless of whether the training data set D is evenly divided 
or inevenly divided, the adaptive learning rate ensures that the 
convergence results are almost identical to the serial training 
method. Therefore, the parallel training theory of the CNN-
LSTM model ensures that the global learning features of the 
large dataset can be obtained from the parallel learning of each 
decomposed data subset. 

IV. MODEL EXPERIMENT AND RESULT ANALYSIS 

Fig. 6 shows the trend of CP curves for MAE indicators 
using different prediction methods. For the prediction tasks of 
traffic network flow in 5min, 15min, 30min, and 60min, the 
CNN-LSTM prediction method has 100%, 85.71%, 85.71%, 
and 71.4% of MAE errors controlled within 20 for 
expressways, respectively. Compared to other prediction 
methods, the CP curve of the CNN-LSTM prediction method is 
always located at the top left of the graph in different traffic 
network flow prediction tasks, indicating that the CNN-LSTM 
method has more advantages in improving the accuracy of 
traffic network flow prediction. The universal ability measures 
the adaptability of the CNN LSTM model to prediction tasks in 
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different traffic scenarios. As can be seen from the figure, 
MAE prediction error of CNN-LSTM method in different 
traffic network flow prediction tasks is mainly kept between 
12.31 and 19.05. This shows that CNN-LSTM model has 
competitive adaptability in various prediction scenarios under 
the same prediction time domain. However, the MAE indices 
of DTR and SVR methods fluctuate greatly under different 
prediction tasks. These two prediction models are susceptible 
to differences in the prediction time domain, so their predictive 
universal ability could be better in different traffic scenarios. 
CNN-LSTM is more stable than other methods in terms of 
universal prediction ability. Through comparison, it was further 
found that the prediction accuracy of the CNN-LSTM method 
in larger prediction time domain tasks is lower than that in 
smaller prediction time domain tasks. This is because under the 
same training cycle, as the prediction time domain increases, 
the difficulty of predicting the future multi-step traffic dynamic 
evolution trend increases. In the future, the deep learning 
model structure will be improved to enhance the feature 

extraction ability of traffic network flow in larger prediction 
time domains. 

MPC online optimization is carried out rolling, and the end 
of the current control cycle starts the subsequent predictive 
time domain optimization. Therefore, short-term traffic 
network flow predictive control based on the rolling time 
domain includes multiple predictive time domain optimization 
processes. Fig. 7 shows the computational efficiency of 
predicting time domain optimization for each control cycle. 
The MPC control scheme based on Spark cloud parallel 
optimization takes much less time at each control time step 
than the single machine serial optimization MPC control 
scheme. Especially for single-machine computing 
environments, all chromosomes sequentially call the traffic 
network flow prediction model circularly to obtain evaluation 
values for control effectiveness. This calculation method 
requires a high computational time cost for non-analytical 
micro prediction models. 

 
Fig. 6. Cumulative distribution traffic flow prediction. 
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Fig. 7. Computational efficiency of predicting time-domain optimization for each control cycle. 

On the contrary, on the Spark cloud, multiple chromosomes 
are divided into several subpopulations and distributed to 
various worker nodes. The more nodes there are, the fewer 
chromosomes are assigned to each worker node, resulting in a 
more minor computational task. The chromosomes on all 
worker nodes call the traffic network flow prediction model to 
obtain the control effect evaluation values of chromosomes in a 
parallel manner, thereby reducing optimization time. As shown 
in Fig. 7, at the beginning of the simulation, the acceleration 
ratio of parallel optimization based on Spark cloud is lower 
than that of single-machine serial optimization. With the 
deepening of the simulation, the efficiency of the late parallel 
computation is improved significantly and remains stable. This 
is because Spark initially takes some time to load the data. 
However, after data is cached to the memory, Spark can 

directly obtain data from the memory when it is invoked again, 
which improves computing efficiency. 

From Fig. 8, it can be observed that the prediction results of 
the nonparametric regression algorithm are better than those of 
the BP neural network method. However, the improved 
algorithm in this paper has a particular improvement in 
prediction accuracy compared to the basic nonparametric 
regression algorithm, and the absolute error of the prediction 
results is generally below 6km/h, which can better reflect the 
future traffic speed situation of the road segment. In summary, 
it can be seen that the improved prediction method in this paper 
shows good prediction ability in the overall traffic speed fitting 
and specific prediction results. Compared with the general 
algorithm, this method has obvious improvement in prediction 
accuracy. 

 
Fig. 8. Error distribution over time series. 

V. CONCLUSIONS 

This article conducts in-depth research on short-term traffic 
flow prediction and constructs a prediction model based on the 
Internet of Things and deep learning algorithms. Through 

analysis of actual traffic data and model validation, we have 
drawn the following conclusions: 

Many real-time traffic data, including vehicle sensors, 
traffic cameras, and traffic lights, has been obtained using 
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Internet of Things technology. These data provide 
comprehensive and accurate traffic status information, 
providing an essential foundation for short-term traffic flow 
prediction. By comparing the experimental results, it was 
found that deep learning algorithms have better performance 
and accuracy in traffic flow prediction tasks compared to 
traditional machine learning algorithms. 

The prediction model proposed by this research institute 
based on the Internet of Things and deep learning algorithms 
provides strong support for actual traffic management and 
decision-making. This model can help traffic management 
departments better plan road resources, optimize traffic signal 
timing, and provide real-time traffic congestion information to 
drivers and traffic participants to improve traffic efficiency and 
reduce traffic congestion. 

ACKNOWLEDGMENT 

This study combines the Internet of Things technology and 
deep learning algorithm to build a short-term traffic flow 
prediction model, which effectively solves the problem of 
traffic congestion and frequent accidents. However, future 
research needs to further explore the combination of 5G 
communication technology, advanced edge computing 
technology and existing models to achieve more efficient data 
processing and transmission, improve the model's faster 
response to real-time data, improve the accuracy and real-time 
forecasting, and provide strong support for more intelligent and 
efficient traffic management and urban operation. 

FUNDING 

This work was supported by Science and Technology Plan 
Project of Zhejiang Provincial Department of Transportation: 
Research and System Development with Road Asset Digital 
Technology and System Development based on highly accurate 
map (No. 202203). 

REFERENCES 

[1] Xia M. Traffic congestion index calculation based on BP neural 
network[J]. Advances in Computer, Signals and Systems, 2021, 5(1). 

[2] Hassija V, Gupta V ,Garg S , et al. Traffic Jam Probability Estimation 
Based on Blockchain and Deep Neural Networks. IEEE Transactions on 
Intelligent Transportation Systems, 2020, PP(99). 

[3] Yaqin Y, Yue X, Yuxuan Z, et al. Dynamic multi-graph neural network 
for traffic flow prediction incorporating traffic accidents. Expert 
Systems With Applications, 2023, 234. 

[4] Xijun Z ,Jiwen L . Traffic flow prediction based on GRU-BP combined 
neural network. Journal of Physics: Conference Series, 2021, 1873(1). 

[5] Guo Y, Lu L. Application of a Traffic Flow Prediction Model Based on 
Neural Network in Intelligent Vehicle Management. International 
Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(3). 

[6] Yi L, Mingsheng L,Yunchi X, et al. Traffic flow prediction model based 
on gated graph convolution with attention. Journal of Physics: 
Conference Series, 2023, 2493(1). 

[7] Ameya A K, Shravan R, Ananya D , et al. Traffic flow prediction 
models – A review of deep learning techniques. Cogent Engineering, 
2022, 9(1). 

[8] Oreja M J, Gozalvez J. A Comprehensive Evaluation of Deep Learning-
Based Techniques for Traffic Prediction. IEEE Access, 2020, 8. 

[9] Yang L, Yaolun S,Yan Z, et al. WT-2DCNN: A convolutional neural 
network traffic flow prediction model based on wavelet reconstruction. 
Physica A: Statistical Mechanics and its Applications, 2022, 603. 

[10] Ismaeel G A, Janardhanan K ,Sankar M , et al. Traffic Pattern 
Classification in Smart Cities Using Deep Recurrent Neural Network. 
Sustainability, 2023, 15(19). 

[11] Qianqian Z, Nan C, Siwei L. FASTNN: A Deep Learning Approach for 
Traffic Flow Prediction Considering Spatiotemporal Features. Sensors, 
2022, 22(18). 

[12] Yuanmeng Z, Jie C, Hong Z, et al. A deep learning traffic flow 
prediction framework based on multi-channel graph convolution. 
Transportation Planning and Technology, 2021, 44(8). 

[13] Zhao Z, Hao Y, Xianfeng Y. A Transfer Learning–Based LSTM for 
Traffic Flow Prediction with Missing Data. Journal of Transportation 
Engineering, Part A: Systems, 2023, 149(10). 

[14] Bernardo G, José C, Helena A. A survey on traffic flow prediction and 
classification. Intelligent Systems with Applications, 2023, 20. 

[15] Chen C ,Ziye L ,Shaohua W , et al. Traffic Flow Prediction Based on 
Deep Learning in Internet of Vehicles. IEEE Transactions On Intelligent 
Transportation Systems, 2021, 22(6). 

[16] Jiang L, Luofeng J. Traffic Flow Prediction Method Based on Deep 
Learning. Journal of Physics: Conference Series, 2020, 1646 (1). 

[17] Hong Z, Sunan K ,XiJun Z , et al. Dynamic Spatial–Temporal 
Convolutional Networks for Traffic Flow Forecasting. Transportation 
Research Record, 2023, 2677(9). 

[18] Emerging Technologies; Research Conducted at Beijing Institute of 
Technology Has Updated Our Knowledge about Emerging Technologies 
(A hybrid deep learning based traffic flow prediction method and its 
understanding). Computers, Networks & Communications, 2018. 

[19] Wu Y, Tan H, Qin L, et al. A hybrid deep learning based traffic flow 
prediction method and its understanding. Transportation Research Part 
C, 2018, 90. 

[20] Yingya G, Yufei P, Run H, et al. Capturing spatial–temporal correlations 
with Attention based Graph Convolutional Network for network traffic 
prediction. Journal of Network and Computer Applications, 2023, 220. 

[21] Siyuan F, Shuqing W, Junbo Z, et al. A macro–micro spatio-temporal 
neural network for traffic prediction. Transportation Research Part C, 
2023, 156. 

[22] Bo W, L. H V, Inhi K, et al. Distributional prediction of short-term 
traffic using neural networks. Engineering Applications of Artificial 
Intelligence, 2023, 126(PC). 

[23] Rui H, Cuijuan Z, Yunpeng X, et al. Deep spatio-temporal 3D dilated 
dense neural network for traffic flow prediction. Expert Systems with 
Applications, 2024, 237(PA). 

[24] Xian Y, Yin-Xin B, Quan S. STHSGCN: Spatial-temporal 
heterogeneous and synchronous graph convolution network for traffic 
flow prediction. Heliyon, 2023, 9(9). 

[25] Robert J ,Young T K ,Emily G , et al. Tailoring Mission Effectiveness 
and Efficiency of a Ground Vehicle Using Exergy-Based Model 
Predictive Control (MPC). Energies, 2021, 14(19). 

[26] Artificial Neural Network; Findings on Artificial Neural Network 
Discussed by Investigators at Ryerson University. Internet Networks & 
Communications, 2017. 

[27] Sunday S O. The Application of Model Predictive Control (MPC) to 
Fast Systems such as Autonomous Ground Vehicles (AGV). IOSR 
Journal of Computer Engineering, 2014, 16(3). 

[28] Yaqin Y, Yue X, Yuxuan Z, et al. Dynamic multi-graph neural network 
for traffic flow prediction incorporating traffic accidents. Expert 
Systems with Applications,2023,234. 

[29] Yi X, Liangzhe H, Tongyu Z, et al. Generic Dynamic Graph 
Convolutional Network for traffic flow forecasting. Information Fusion, 
2023, 100. 

[30] Dongran Z, Jun L. Multi-view fusion neural network for traffic demand 
prediction. Information Sciences,2023,646. 

[31] Xiaoxiao S, Xinfeng W, Boyi H, et al. Multidirectional short-term traffic 
volume prediction based on spatiotemporal networks. Applied 
Intelligence, 2023, 53(20). 


