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Abstract—The paper explores the application of 

Convolutional Neural Networks (CNNs), specifically ResNet-18, 

in revolutionizing the identification of diseases in tomato crops. 

Facing threats from pathogens like Phytophthora infestans, 

timely disease detection is crucial for mitigating economic losses 

and ensuring food security. Traditionally, manual inspection and 

labour-intensive tests posed limitations, prompting a shift to 

CNNs for more efficient solutions. The study uses a well-

organized dataset, employing data preprocessing techniques and 

ResNet-18 architecture. The model achieves remarkable results, 

with a 91% F1 score, indicating its proficiency in distinguishing 

healthy and unhealthy tomato leaves. Metrics such as accuracy, 

sensitivity, specificity, and a high AUC score on the ROC curve 

underscore the model's exceptional performance. The 

significance of this work lies in its practical applications for early 

disease detection in agriculture. The ResNet-18 model, with its 

high precision and specificity, presents a powerful tool for crop 

management, contributing to sustainable agriculture and global 

food security. 
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I. INTRODUCTION  

Tomato (Solanum Lycopersicon) holds an important place 
in agriculture, food and cooking worldwide. Known for its 
bright red color and its many uses in dishes such as 
Mediterranean pastas, Asian curries, and American tomato 
sauces, the tomato has become an important part of world 
cuisines [1]. In addition to its gastronomic importance, tomato 
is an important agricultural product that makes a significant 
contribution to global food production [2].  

Despite the diversity and importance of tomatoes, tomatoes 
face many disease threats, such as late blight caused by 
Phytophthora infestans and fungal diseases that cause molds. 
The impact of these diseases on the tomato crop poses a 
constant risk to agriculture and can lead to severe economic 
and food shortages [3] [4]. Timely and accurate identification 
of these diseases is important for effective control and 
prevention [5] [6].  

The method of detecting tomato diseases has always relied 
on manual inspection and laborious experiments that have their 
limitations. Depending on the interpreter, visual inspection 
may not be necessary for early detection of disease [7] [8] [9] 
[10] [11] [12]. While the tests are accurate, they are time-

consuming and expensive, making it difficult to meet the 
urgent needs of today's agriculture. To solve these problems, 
artificial intelligence (AI) has been transformed into agriculture 
in recent years, especially thanks to advances in deep learning.  

Deep learning is a category of machine learning that uses 
multiple layers of artificial neural networks to solve complex 
problems. In deep learning, convolutional neural networks 
(CNN) have become powerful tools for data visualization and 
have become relevant in many fields [13] [14] [15] [16]. CNNs 
are characterized using convolutional techniques and are good 
at extracting relevant features from images, making them ideal 
for tasks such as image recognition and classification.  

This change also extends to agriculture, where CNNs 
provide a way to quickly and accurately identify diseases, 
pests, and overall crop health. While this change applies to 
many crops, we focus on early detection of tomato leaf 
diseases. Against this problem, ResNet-18 architecture stands 
out as a light source that measures computational power and 
accuracy. Our research uses the ResNet-18 architecture to 
explore the potential of deep learning to transform the tomato 
plants system and even the permaculture system [17] [18] [19] 
[20] [21].  

Our work set out on a journey to combine the fundamental 
world of tomatoes with the transformative power of deep 
learning. The stakes are high as we try to provide fast, effective 
solutions to ongoing challenges like growing healthy tomatoes, 
benefiting farmers, fields, and people around the world who 
depend on this versatile and important fruit. In the following 
sections, we will describe the process, results and conclusions 
of our research, which leads to a general discussion about 
permaculture and its important role in shaping the future of 
intelligence [22][23][24][25]. 

II. LITERATURE SURVEY 

These days, there is a lot of research being done in the 
broad field of image processing applications for plant disease 
detection and classification. For the prompt identification of 
plant diseases, these applications are helpful. For any plant, 
diseases like fungus, bacteria, and viruses can be fatal. In 
Sabrol et al.'s [26] study, tomato late blight, Septoria spot, 
bacterial spot, bacterial canker, tomato leaf curl, and healthy 
tomato plant leaf and stem images are categorized into five 
categories. The categorization process involves removing 
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characteristics related to color, shape, and texture from images 
of healthy and unhealthy tomato plants. Following the 
segmentation step comes the feature extraction. It is extracted 
and put into the classification tree from segmented images. 

A three-compact convolutional neural network (CNN) 
pipeline for the automatic detection of tomato leaf diseases has 
been proposed by Attallah et al. [28]. In order to obtain a more 
streamlined and sophisticated representation, deep features are 
extracted from the last fully connected layer of the CNNs using 
transfer learning. Then, in order to take use of each CNN 
structure, it combines features from the three CNNs. It then 
selects and creates an extensive feature set of smaller 
dimensions using a hybrid feature selection technique. The 
process for identifying tomato leaf diseases uses six classifiers.  
In order to confirm the suggested pipeline's ability to compete, 
the experimental results are also compared with earlier studies 
on the classification of tomato leaf diseases. 

The circumstances of a tomato plant have been determined 
using a basic CNN model that contains eight hidden layers. 
When compared to other traditional models, the suggested 
strategies produce optimal results [24] [27] [29] [30] [31]. The 
image processing system recognizes and categorizes tomato 
plant illnesses using deep learning techniques. Here, the author 
implemented a full system using CNN and the segmentation 
technique. To attain higher accuracy, a CNN model 
modification has been implemented. 

TABLE I. TABLE SUMMARIZING THE LIMITATIONS AND GAPS IN 

CURRENT RESEARCH ON IMAGE PROCESSING APPLICATIONS FOR PLANT 

DISEASE DETECTION AND CLASSIFICATION 

Limitation Description 

Limited Dataset Diversity 

o Focus on specific diseases or crops. 

o Lack of diversity may hinder 

model robustness. 

Generalization to New 

Diseases 

o Models might struggle with novel, 

unseen diseases. 

Transferability across 
Crops 

o Investigating the generalizability is 

essential. 

o Models designed for one crop may 
not adapt well to others. 

o Assessing cross-crop transferability 

is crucial 

Robustness to 

Environmental Factors 

o Impact of environmental variations 
on model performance. 

o Models may need to handle real-

world, uncontrolled conditions. 

Interpretability of Deep 

Learning Models 

o Complex models like CNNs often 

lack interpretability. 

o Understanding model decisions is 
important for user trust. 

Data Annotation 

Challenges 

o Manual annotation challenges 

affect dataset quality. 

o Exploring improved annotation 
methods is necessary. 

Real-time Application 

Challenges 

o Computational efficiency and 

hardware constraints for real-time 
deployment. 

o Exploring lightweight architectures 

and edge computing solutions. 

LeNet has been applied to the identification and 
classification of tomato illnesses while requiring the least 
amount of CPU processing power. Moreover, to increase 
classification accuracy, the automatic feature extraction 

technique has been used [32]. Table I provides a 
comprehensive summary of the limitations and gaps identified 
in current research on image processing applications for plant 
disease detection and classification. 

The work in this paper supports the ResNet-18 architecture 
and data preparation techniques on a well-organized dataset. 
With an impressive 91% F1 score, the model demonstrates its 
ability to differentiate between good and unhealthy tomato 
leaves. The model's outstanding performance is demonstrated 
by metrics like accuracy, sensitivity, specificity, and a high 
AUC score on the ROC curve. This work is significant because 
it has real-world applications for early disease identification in 
agriculture. The ResNet-18 model is a potent instrument for 
crop management that contributes to sustainable agriculture 
and global food security because of its high precision and 
specificity. 

III. METHODS 

A. Datasets 

The foundation of our classification model lies in the 
dataset of tomato leaf images, which we've organized into two 
primary categories: 'healthy' and 'unhealthy.' These categories 
represent the key labels for our classification task. 

1) Healthy data split: Within the 'healthy' category, we 

further partitioned the dataset into 'train' and 'test' subsets. The 

'healthy train' subset comprises a total of 1491 images. This 

subset is instrumental in training the model to recognize 

healthy tomato leaves effectively. It forms the basis for 

teaching the model the visual characteristics of undisturbed, 

healthy foliage. The 'healthy test' subset, on the other hand, 

consists of 100 distinct images. This collection serves as an 

independent assessment tool to gauge the model's 

performance. These images, being separate from the training 

data, help us evaluate how well the model generalizes to 

unseen healthy leaf samples. 

2) Unhealthy data split: The 'unhealthy' category is a bit 

more nuanced. It encompasses tomato leaves affected by 

various forms of blight, encompassing both early and late 

stages of the disease. These stages are categorized as 

'unhealthy' for our classification purpose. The 'unhealthy train' 

subset contains 2809 images. This vast and diverse collection 

offers a comprehensive training experience for the model to 

learn the intricacies of identifying blight in its various forms. 

The inclusion of both early and late stages ensures that the 

model grasps the entire spectrum of blight-related visual cues. 

The 'unhealthy test' subset, consisting of 100 images, is 

divided further into 29 images representing the early stages of 

blight and 71 images depicting the late stages. This 

differentiation helps us evaluate the model's proficiency in 

distinguishing between the progression of blight, which is a 

critical aspect of disease classification in the agricultural 

context. 
3) Data validation during training: It's imperative to 

ensure that our model generalizes well and doesn't over fit to 

the training data. To address this concern, we implement a 
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validation procedure during training. Specifically, we reserve 

15% of the data in each training batch for validation. This data 

is selected randomly in a way that ensures its independence 

from the training set. The model is periodically evaluated on 

this validation data to monitor its performance and make 

adjustments to the training process as necessary. 

B.  Data Preprocessing 

Tomato leaf images, like many real-world images, exhibit 
natural variations due to factors such as lighting, background, 
and color. To enhance the model's ability to classify tomato 
leaves accurately, we employ several preprocessing steps. 

One of the critical preprocessing steps is the application of 
a mild blurring filter. This filter is designed to reduce noise in 
the images, resulting in a cleaner and more consistent dataset. 
By doing so, we aim to minimize the impact of minor 
variations in image quality that may not be indicative of the 
actual health state of the tomato leaf. Fig. 1 illustrates the result 
of applying the blurring filter with a 5x5 kernel, highlighting 
the smoothing effect on the image. 

In addition to blurring, we employ data augmentation 
techniques to augment the training dataset. Data augmentation 
is a strategy that introduces variability into the training data by 
applying random transformations to the images. This process 
helps the model generalize better, as it exposes the model to a 
wider range of scenarios and variations during training. 

The data augmentation techniques used includes random 
rotations and flips. Random rotations introduce diversity by 
rotating images by various degrees, simulating the variability 
in the orientation of tomato leaves in real-world scenarios. 
Flips, both horizontally and vertically, add further diversity by 
reflecting images, mirroring the possible orientations of leaves. 
This augmentation is shown in Fig. 2. These preprocessing and 
data augmentation steps collectively serve to enhance the 
robustness of our classification model. They enable the model 
to better handle the inherent variations in real-world images, 
leading to improved accuracy and generalization in the task of 
tomato leaf classification. 

 

Fig. 1. Result of blurring filter with a 5x5 kernel. 

 

Fig. 2. Result of random rotations and flips. 
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IV. MODEL ARCHITECTURE 

In this research, we opt for the ResNet-18 architecture as 
the backbone for our classification model. ResNet, short for 
Residual Network, is a class of neural network architectures 
that has demonstrated remarkable effectiveness in various deep 
learning tasks, particularly in image classification. What sets 
ResNet apart is its ability to address the vanishing gradient 
problem, a common challenge when training deep networks, 
through the use of skip connections. 

ResNet-18 is a specific variant of the ResNet architecture 
that we have chosen for our task. It strikes a well-balanced 
compromise between model depth and computational 
efficiency. This balance is crucial, especially in applications 
where both high accuracy and efficient processing are 
essential. ResNet-18's architecture is structured in a way that 
enables it to capture intricate features from images, making it 
an ideal choice for our task of tomato leaf classification. Fig. 3 
depicts the Resnet 18 architecture. 

ResNet-18 constitutes a convolutional neural network 
(CNN) architecture specifically tailored for image 
classification tasks. Noteworthy for its ability to accommodate 
input images of 224x224 pixels, this architecture serves as an 
exemplar in the ResNet lineage, embodying the principles of 
residual learning to facilitate the training of deep networks. 

A. Convolutional Layers 

The initial layer of ResNet-18 is a conventional 
convolutional layer, employing a 7x7 kernel and 64 filters. 
This layer is succeeded by batch normalization and rectified 

linear unit (ReLU) activation. Subsequently, a pivotal spatial 
reduction is accomplished through a 3x3 max-pooling layer 
with a stride of 2, optimizing the network's capacity to process 
spatial features.  

B. Residual Blocks 

ResNet-18 features four residual blocks, each composed of 
two consecutive convolutional layers. Within these blocks, 
each convolutional layer is succeeded by batch normalization 
and ReLU activation. The hallmark of ResNet architecture, the 
inclusion of residual connections, enables the creation of 
shortcut paths, allowing information to bypass one or more 
layers. This strategic integration mitigates the vanishing 
gradient problem, empowering the network to learn more 
effectively. 

C. Global Average Pooling (GAP) 

Following the residual blocks, a Global Average Pooling 
(GAP) layer is applied. This layer computes the average value 
of each feature map, ensuring a fixed-size output independent 
of the input dimensions. This pooling operation contributes to 
the model's spatial invariance and parameter reduction, paving 
the way for more efficient processing in subsequent layers. 

D. Model Training 

To prepare our model for the specific task of classifying 
tomato leaves as healthy or unhealthy, we undertake a 
comprehensive training process. Our model is trained for a 
total of 100 epochs. The choice of training duration is 
influenced by the complexity of the problem and the size of our 
dataset. 

 
Fig. 3. Proposed model architecture with ResNet-18 classifier. 
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E. Objective Function Binary Cross-Entropy Loss 

In this binary classification problem, we employ Binary 
Cross-Entropy (BCE) loss as our objective function. BCE loss 
is a standard choice for binary classification tasks and is well-
suited for distinguishing between healthy and unhealthy tomato 
leaves. It quantifies the dissimilarity between the predicted 
class probabilities and the ground truth labels. The equation for 
BCE Loss is shown in Eq. (1) where N represents the total 
number of data points or samples in your dataset. In the context 
of the tomato leaf classification, each image of a tomato leaf 
(whether healthy or unhealthy) is considered a data point. yi is 
the ground truth label for the i-th data point. In binary 
classification, this is a binary value indicating the actual class 
of the data point. For instance, yi = 1 might represent an 
unhealthy leaf, and yi = 0 might represent a healthy leaf. ŷi is 
the predicted output or probability assigned by the model for 
the i-th data point. In the context of binary classification, this 
value represents the model's estimate of the probability that the 
given data point belongs to the positive class (unhealthy) or 
negative class (healthy). 

      
 

 
 ∑        (   ̂ )
 
    (    )      (     ̂)    (1) 

We utilize the AdamW optimizer during training, setting 
the initial learning rate at 1e-4. AdamW is a variant of the 
Adam optimizer that introduces weight decay, contributing to 
improved training stability. To further optimize training, we 
incorporate the Cosine Annealing learning rate scheduler with 
a Tmax (maximum number of iterations) of 10. This scheduler 
cyclically adjusts the learning rate, allowing the model to 
explore different regions of the loss landscape. While a 
warmup learning rate scheduler was initially implemented 
during the early training iterations, it was eventually discarded 
due to providing minimal benefit. 

F. Early Stopping 

To prevent over fitting and to make the training process 
more efficient, we implement early stopping. This technique 
introduces a 'patience' parameter, set at 5 epochs in our case. 
The validation loss serves as the key metric for early stopping. 
If the validation loss does not improve for five consecutive 
epochs, the training process is halted. 

G. Model Selection 

Model selection is a critical step in our training process. We 
choose the top five models with the lowest validation loss and 
assess their performance. Ultimately, the model with the 
highest validation F1-score among these top five models is 
selected as our final model. The F1-score is particularly 
valuable in binary classification tasks as it balances precision 
and recall. 

H. Model Testing 

The chosen model is subjected to a comprehensive 
evaluation process using a range of metrics. These metrics 
include the F1-score, accuracy, sensitivity, and specificity. The 
use of multiple metrics allows us to assess the model's 
performance from different angles and provides a more 
comprehensive view of its capabilities. 

I. ROC Curve and Operating Point 

To determine the model's operating point, we leverage the 
Receiver Operating Characteristic (ROC) curve. The ROC 
curve illustrates the trade-off between sensitivity and 
specificity at various threshold settings. By analyzing this 
curve, we can select an operating point that best suits the 
specific needs of our application. This operating point defines 
the decision boundary for classifying tomato leaves as healthy 
or unhealthy. We fine-tune the pre-trained ResNet-18 model on 
our tomato leaf dataset, using Binary Cross-Entropy (BCE) 
loss as the objective function. BCE loss is a common choice 
for binary classification problems, such as distinguishing 
between healthy and unhealthy tomato leaves. 

V. RESULTS 

In our study, we conducted an extensive evaluation of our 
tomato leaf classification model, and the results demonstrate its 
exceptional performance in this critical task. The performance 
metrics we have achieved are truly remarkable and bode well 
for the practical application of the model. First and foremost, 
our model exhibited an F1 score of 91%, which is a noteworthy 
composite metric combining both precision and recall. This F1 
score reflects the model's robust ability to accurately classify 
both healthy and unhealthy tomato leaves. Moreover, our 
model's accuracy reached an impressive 97%, indicating its 
proficiency in correctly categorizing tomato leaves. 

Precision, which measures the ratio of true positive 
predictions to the total positive predictions, is a vital metric in 
binary classification problems. In our case, the model achieved 
a precision of 90.2%, highlighting its ability to make accurate 
positive predictions. Additionally, the model showed an 
outstanding sensitivity of 92%, underscoring its capability to 
correctly identify unhealthy tomato leaves. Notably, the 
specificity of the model was also high, at 90%. This indicates 
that the model was effective in correctly identifying healthy 
tomato leaves, reducing the risk of false alarms in disease 
detection systems.  

The performance metrics depicted in Table II and Fig. 4 
summarizes the evaluation of the two-class classification 
model for tomato leaf health. The F1 score, a balanced measure 
of precision and recall, stands at an impressive 91%, indicating 
the model's robustness. With 97% accuracy, 90.2% precision, 
96% sensitivity, and 98% specificity, the model demonstrates 
high proficiency in distinguishing between healthy and 
unhealthy tomato leaves, showcasing its reliability in practical 
agricultural applications. 

TABLE II. PERFORMANCE METRICS FOR THE TWO-CLASS 

CLASSIFICATION PROBLEM 

PERFORMANCE METRIC VALUE 

F1 score 91% 

Accuracy 97% 

Precision 90.2% 

Sensitivity 96% 

Specificity 98% 
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Fig. 4. Metrics for the two-class classification problem. 

The visual representation of our model's performance in the 
confusion matrix (see Fig. 5) offers a more detailed breakdown 
of its classification accuracy, illustrating the number of true 
positives, true negatives, false positives, and false negatives. 
Furthermore, the Receiver Operating Characteristic (ROC) 
curve, depicted in Fig. 6, plays a crucial role in binary 
classification tasks. It assesses the trade-off between the true 
positive rate and the false positive rate at various classification 
thresholds. Our model's substantial Area Under the Curve 
(AUC) score of 0.92 on the ROC curve is a testament to its 
ability to effectively balance the need for disease detection 
while minimizing the risk of false alarms. 

These results underscore the significant potential of our 
model for practical applications in agriculture. The high F1 
score, accuracy, sensitivity, specificity, and AUC, coupled with 
the model's capacity to balance precision and recall, make it a 
powerful tool for early disease detection and crop health 
management. In conclusion, our research findings indicate that 
our classification model is highly effective and has promising 
implications for the agriculture industry. It provides a valuable 
and reliable tool for the early identification of tomato leaf 
diseases, which can profoundly impact crop yield, food 
security, and the overall health of the global food supply chain. 

The figures, presented as Fig. 7 and Fig. 8, visually 
distinguish a healthy leaf (see Fig. 7) from an unhealthy one 
(Fig 8). These depictions serve to provide a quick and clear 
reference, enabling visual recognition of key characteristics 
associated with leaf health and distress. 

 

Fig. 5. Confusion Matrix for healthy and unhealthy class. 

 

Fig. 6. ROC curve with AUC of 0.92. 

 

Fig. 7. Healthy leaf. 

 

Fig. 8. Unhealthy leaf. 
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VI. DISCUSSION 

The remarkable performance of our ResNet-18-based 
classifier in the task of tomato leaf classification opens up 
significant avenues for real-world applications, particularly in 
the field of agriculture. The model's capacity to distinguish 
between healthy and unhealthy tomato leaves with over 90% 
accuracy, sensitivity, and specificity is not only a testament to 
its efficacy but also holds substantial promise for addressing 
real-world agricultural challenges, especially in the context of 
early disease detection and mitigation. One of the most 
noteworthy implications of our results is the potential for early 
disease detection. The ability to accurately identify unhealthy 
tomato leaves with a high degree of sensitivity allows farmers 
and agricultural professionals to take swift and targeted 
actions. Early detection of diseases such as blight can lead to 
more efficient intervention strategies, reducing crop losses, and 
minimizing the need for extensive pesticide application. This 
not only has financial benefits for farmers but also contributes 
to more sustainable farming practices by reducing the 
environmental impact of pesticide usage. 

The high precision of our model, with a precision score of 
90.2%, is a critical aspect of its practical utility. It implies that 
when our model makes a positive prediction (i.e., classifies a 
leaf as unhealthy), it is overwhelmingly likely to be accurate. 
This reliability is paramount when it comes to making 
decisions about crop management and implementing disease 
control measures. Farmers can have confidence in the model's 
assessments and act promptly to protect their crops. Equally 
significant is the specificity of our model, which, at 90%, 
demonstrates its ability to correctly identify healthy tomato 
leaves. This means that the risk of false alarms, where healthy 
plants are incorrectly identified as unhealthy, is minimal. 
Again, this aspect is crucial in practical agricultural 
applications where false alarms can lead to unnecessary actions 
and resource allocation. The high Area Under the Curve 
(AUC) score obtained on the Receiver Operating Characteristic 
(ROC) curve is of paramount importance. It signifies the 
model's proficiency in distinguishing between healthy and 
unhealthy tomato leaves while maintaining a low rate of false 
positives. In practical terms, this means that our model 
effectively strikes a balance between the need for disease 
detection and the avoidance of unnecessary interventions. The 
substantial AUC score reassures farmers and agricultural 
professionals that the model's predictions are both accurate and 
reliable. 

VII. CONCLUSION 

In summary, our research showcases the immense potential 
of deep learning and convolutional neural networks in 
addressing pressing challenges in agriculture, with a specific 
focus on early disease detection in tomato crops. This 
technology is not confined to tomatoes alone and can be 
extended to various other crops, offering invaluable insights 
and support for sustainable agricultural practices. To harness 
this potential fully, future work should focus on the practical 
deployment of these models, integrating them with smart 
agriculture systems that enable timely responses to disease 
outbreaks, thus ensuring global food security and promoting 
sustainable agriculture. 

Our observations are a reflection of the robustness of our 
classification model. The high accuracy, sensitivity, specificity, 
precision, and AUC score are the result of a well-trained model 
that has learned to recognize the subtle visual cues associated 
with healthy and unhealthy tomato leaves. The data 
preprocessing steps, including blurring and data augmentation, 
have contributed to the model's ability to handle real-world 
variations in leaf images. Additionally, the choice of the 
ResNet-18 architecture played a pivotal role in the model's 
success. ResNet architectures, known for their skip 
connections, are adept at training deep neural networks 
effectively. ResNet-18, in particular, struck a balance between 
model depth and computational efficiency, making it suitable 
for our classification task. The success of our model 
underscores the potential of AI and deep learning in addressing 
agricultural challenges, offering a valuable tool for farmers and 
researchers to enhance crop management, reduce disease-
related losses, and contribute to more sustainable and efficient 
agricultural practices. The balance between accuracy, 
sensitivity, and specificity, along with the AUC score, 
emphasizes the model's real-world applicability, making it a 
promising asset for the agriculture industry. 
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