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Abstract—Amid global health crises, such as the COVID-19 

pandemic, the heightened prevalence of mental health disorders 

like stress and anxiety has underscored the importance of 

understanding and predicting human emotions. Introducing 

"EmotionNet," an advanced system that leverages deep learning 

and state-of-the-art hardware capabilities to predict emotions, 

specifically stress and anxiety. Through the analysis of 

electroencephalography (EEG) signals, EmotionNet is uniquely 

poised to decode human emotions in real time. To get 

information from pre-processed EEG signals, the EmotionNet 

architecture combines convolutional neural networks (CNN) and 

long short-term memory (LSTM) networks in a way that works 

well together. This dual approach first decomposes EEG signals 

into their core alpha, beta, and theta rhythms. We preprocess 

these decomposed signals and develop a CNN-LSTM-based 

architecture for feature extraction. The LSTM captures the 

intricate temporal dynamics of EEG signals, further enhancing 

understanding. The end process discerningly classifies signals 

into "stress" or "anxiety" states through the AdaBoost classifier. 

Evaluation against the esteemed DEEP, SEED, and DASPS 

datasets showcased EmotionNet's exceptional prowess, achieving 

a remarkable accuracy of 98.6%, which surpasses even human 

detection rates. Beyond its technical accomplishments, 

EmotionNet emphasizes the paramount importance of addressing 

and safeguarding mental health. 

Keywords—Electroencephalography (EEG); Long short-term 

memory (LSTM); Convolutional neural network (CNN); human 

stress; anxiety detection; deep learning 

I. INTRODUCTION 

 Human emotionality, with its intricate facets, has been a 
subject of rigorous study and interest for decades [1]. 
Particularly, emotions like stress and anxiety significantly 
influence behavior, cognition, and overall well-being. The 
myriad stimuli that individuals face in their daily lives elicit a 
plethora of emotional reactions, profoundly anchored to brain 
activity [2]. Occasionally, misinterpretation of these behavioral 
shifts can lead to potential misdiagnoses [3]. It is crucial to 
note that while academic literature often uses ‘stress' and 
'anxiety' interchangeably due to symptom similarities, clear 
distinctions exist [4]. Stress usually emanates from external 
stimuli and can manifest as anger, unhappiness, or feelings of 
overwhelm. Conversely, anxiety is persistent; lingering even 
after the causative stressor is resolved, and often marked by 
symptoms like restlessness, nervousness, or unease [5]. 

There are nuanced categorizations within anxiety itself, 
notably state and trait anxiety [6]. State anxiety relates to 
immediate, situational responses, while trait anxiety is an 

enduring aspect of an individual's personality. Researchers 
employ distinct methodologies, such as rest state recordings 
and responsive tests, to measure these anxiety types [7]. With 
the prevalence of anxiety disorders affecting a significant 
portion of the global population, understanding them becomes 
imperative [8]. Statistics, such as those from the USA, show 
alarming rates of anxiety disorders and related hospitalizations, 
emphasizing the need for accurate diagnosis and intervention 
[9]. Moreover, numerous studies have well documented the 
correlation between anxiety disorders and other medical 
conditions, such as cardiovascular diseases [10]. 

Clinical diagnosis of anxiety poses challenges primarily 
because of the symptomatic overlap with other conditions like 
depression [11]. Though symptom-based diagnosis assists 
clinicians, it doesn't provide an objective, quantifiable measure 
of the underlying causes. In this context, the biomedical 
community suggests certain chemical biomarkers as promising 
tools for anxiety assessment [12]. Emerging technologies 
promise innovations in emotional analysis. "EmotionNet," an 
advanced system, leverages the power of LSTM networks and 
CNNs for detailed stress and anxiety detection through EEG 
signals [13]. As brain state detection advances, researchers 
view EEG signal analysis as a transformative tool that offers 
insights into the brain's electrical activities and corresponding 
emotions [14]. As neural networks improve, they can process 
these EEG signals, particularly when transformed into 
spectrograms, to reveal the intricate details necessary for 
precise stress identification [15]. Finally, while traditional 
neural networks have made significant strides, there's a 
pressing need for more nuanced, advanced systems. 
Emphasizing relevant feature extraction, considering the 
challenges of datasets and enhancing accuracy are pivotal. 
Current methodologies, like spectrogram-based and signal 
processing-based techniques, offer great promise for refining 
emotional analysis [16]. 

The proposed study looked into how EEG data parameters 
(such as electrode selection and frequency bands) affect the 
classification of anxiety. However, it had some problems, like 
not being very good at detecting anxiety levels and having a 
long feature vector length. In contrast, the proposed approach 
refines this by selecting an optimal subset of EEG features, 
ensuring better efficiency without compromising the entire 
EEG data's breadth. This paper introduces EmotionNet, a novel 
hybrid architecture that significantly advances the field by 
discerning emotions from EEG signals. There are the following 
main contributions to this paper: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

885 | P a g e  

www.ijacsa.thesai.org 

1) Researchers introduced a unique preprocessing 

methodology that transformed EEG data into azimuthal 

projection images. By focusing on the alpha, beta, and theta 

signals, this method provided a fresh perspective on stress 

detection, enhancing the richness and specificity of the data. 

2) Researchers developed a pioneering model called 

"EmotionNet." This hybrid system, combining the strengths of 

both LSTM and CNN, processes the azimuthal projection 

images derived from EEG signals. Its robust architecture 

classifies these images into two distinct classes: stress and 

non-stress. This innovative integration stands as a hallmark of 

blending traditional EEG processing with advanced neural 

network architectures. 

3) By leveraging the augmented dataset for both training 

and testing phases, we achieved a significant enhancement in 

stress and anxiety detection accuracy. We also compared the 

system's performance with existing state-of-the-art methods. 

The results underscored the model's superiority and its 

potential to set new benchmarks in EEG-based stress 

detection. 

In practice, this research has provided transformative 
contributions to the domain of stress and anxiety detection 
using EEG signals, setting new standards in preprocessing, 
model development, and overall system accuracy. 

The organization of this paper is as follows: Section II 
delves into a comprehensive literature review, setting the 
groundwork for the study. Section III introduces the proposed 
methodology and elaborates on the specifics of the model. 
Section IV compares the results derived from the dataset 
utilized with established state-of-the-art methods for a 
comparative understanding. The paper culminates in Section V 
and Section VI, offering discussion and a concise conclusion 
reflecting on the study's findings. 

II. LITERATURE REVIEW 

Emotion recognition, using EEG signals, has been a focal 
point in Emotion recognition using EEG signals has been a 
focal point in various studies. In the study [7], a headband 
equipped with four screen-printed active electrodes was 
utilized to capture EEG signals. OpenViBE, an open-source 
software, processed the EEG signals captured using a headband 
equipped with four screen-printed active electrodes. 
Additionally, the signals were amplified through an "EEG-
SMT" biofeedback board. We employed classification 
algorithms such as Signal Power (SP), Power Spectral Density 
(PSD), and Common Spatial Pattern (CSP). Similarly, in a 
study [8], the MUSE 2 headset recorded neuro-psychological 
signals from subjects as they viewed standardized movie clips. 
An LSTM deep learning model processed this data. 

Study [9], utilizes the DEAP dataset, recorded EEG signals 
from 32 volunteers. Feature extraction focused on temporal, 
regional, and asymmetric dimensions, with a deep learning 

classifier aiding in emotion categorization. In studies [10] and 
[16], participants watched music video clips. For EEG feature 
extraction, researchers employed wavelet transform and 
approximate entropy, and for emotion classification, they 
utilized machine learning classifiers such as SVM and Random 
Forest. The study in [12] took a multimedia approach, 
combining EEG with galvanic skin responses to recognize 
emotions. 

The potential of convolutional neural networks (CNN) in 
this domain was highlighted in a study [17], which introduced 
a randomized CNN model, significantly reducing the need for 
backpropagation. This approach, on the DEAP dataset, yielded 
impressive results. Building on this, the study [18] integrated 
principles from genetic code, achieving up to 92% accuracy on 
datasets like DEAP and MAHNOB. A study [19] explored 
stress's health implications, using the EEGnet model to achieve 
99.45% accuracy in detecting stress levels in subjects exposed 
to music experiments. 

Advancing further, study in [19] integrated multi-input 
CNN-LSTM models to analyze fear levels, while study [20] 
employed CNNs on the UCI-ML EEG dataset to diagnose 
alcoholism, achieving a 98% accuracy rate. A study [21] 
merged deep learning models for stress detection, emphasizing 
their superiority over traditional models. The MODMA dataset 
was the foundation for the study [22], which utilized CNNs and 
recorded a commendable 97% accuracy rate. A study [23] 
delved into the emotional aftermath of COVID-19 among 
students using an RCN-L system combined with LightGBM 
techniques, registering around 92.63% accuracy. Lastly, a 
study [24] simulated mental stress scenarios in a human-
machine context, using neural activation features to achieve an 
89% accuracy rate. These studies accentuate the versatility and 
importance of EEG signals in comprehending emotions, with 
technology playing a pivotal role in this exploration. The 
following table shows a summary of the related works as well 
as their outcomes and the accuracy of the studies as mentioned 
in Table I. 

Many previous works have discussed EEG as a convenient 
brain imaging technique. Different emotions are the key 
features used in previous works to determine the accuracy of 
EEG in emotion detection. Most of the previous work provided 
a satisfactory accuracy rate. The process of acquiring the 
relevant signals entails the elimination of noise and artifacts 
through filtration, and the outcome is analyzed using the 
frequency domain. Lastly, deep learning will be used to 
perform all methods of extraction and filtration of the EEG 
signal, as well as provide a frequency domain to the extracted 
feature. EGG signals are also applicable in emotion recognition 
since their devices are available in clinics to aid in the 
diagnosis of symptoms that are used as data for analysis for 
further medical interventions. Such applications also help in 
fostering best practices in the curing and publication of critical 
medical signal data. The gathering of brainwave signals relies 
on the electrodes standardized by the EEG signals. 
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TABLE I.  STATE-OF-THE-ART COMPARISON SYSTEMS USING DEEP LEARNING AND EEG SIGNALS 

Cited Reference Features Models Dataset Accuracy Limitations 

[7] SP, PSD, CSP 
OpenViBE, EEG-

SMT board 
- 92% 

It is used to recognize stress 

only and computational 
overloaded 

[8] Neuro-psychological signals 
LSTM (Deep 

learning) 

Standardized movie 

clips 

Negative and positive 

emotions 

Recognize only negative and 

positive emotions 

[9] 
Temporal, regional, 

asymmetric 

Fully connected, 

SoftMax 
DEAP 91% 

Computational expensive and 

not generalized solution. 

[10] 
Wavelet transform, 
approximate entropy 

SVM, Random 
Forest 

40-minute music 
videos 

- 
Recognize emotions positive 
or negative 

[12] EEG, GSR - 40 music videos 

Arousal, valence, 

like/dislike, 
dominance, familiarity 

Computational expensive and 

not generalized solution. 

[13] SP, PSD, CSP 
OpenViBE, EEG-

SMT board 
- 94% Limited dataset. 

[14] 
Wavelet transform, 

approximate entropy 

SVM, Random 

Forest 

40-minute music 

videos 
95% 

Recognize Stress and 

Computational expensive. 

[15] - Randomized CNN DEAP At least 95% 
Backpropagation can be 

computationally expensive 

[25] Brain rhythm code features 
Four conventional 

ML classifiers 

DEAP, MAHNOB, 

SEED 
78%-92% 

Complexity of emotion 

recognition 

[19] 
EEGnet, mother wavelet 

decomposition 

EEGnet (CNN with 

Relu) 

Music 

experimentation 
99.45% 

Just recognized stress and 

Computational expensive 

[18] 
Multichannel EEG, 
peripheral physiological 

Multi-Input CNN-
LSTM 

DEAP 98.79% 
Computational expensive and 
not generalized solution. 

[26] EEG signals CNN UCI-ML EEG dataset 98% Complexity of EEG signals 

[21] 
DWT-based multi-channel 

EEG 

DWT-based CNN, 

BiLSTM, 2 layers 
GRU 

- 
Better than other 

models 

Computational expensive and 

not generalized solution. 

[22] Multiband EEG CNN MODMA 97% Not mentioned 

[23] EEG signals RCN-L, LightGBM 
Post-COVID-19 

emotions 
0.9263 (92.63%) 

Emotions impacted by 

COVID-19 

[24] 
EEG power spectral density 

(PSD) 

Multiple attention-

based CNN 
Virtual UAV task 

89.49% (arousal), 

89.88% (valence) 

Computational expensive and 

not generalized solution. 
 

III. METHODOLOGY 

As emotions are the cause of many diseases, identifying 
these emotions is crucial in order to get the correct 
medications. One way of identifying these emotions is by using 
EEG signals. EEG captures scalp electrical activity generated 
by brain structures [14]. There are many different devices that 
capture these electrical activities, e.g., brainwaves or TGAM. 
These devices can then process the captured signals and extract 
the desired emotion. Therefore, the proposed study tries to 
study EEG signals and how to use these devices to get these 
signals. Then, the ensemble-based deep learning architecture is 
used to predict the mental status of the user from the EEG 
signals used as data that are gathered from the device. The 
system architecture of the proposed EmotionNet is shown in 
Fig. 1. 

A. Data Acquisition 

The proposed approach utilizes the SJTU emotion EEG 
dataset (SEED) from the brain-like computing and machine 
learning (BCMI) methods [27]. This dataset features EEG data 
from 15 subjects, recorded over three sessions as they watched 
various Chinese film clips eliciting distinct emotions. After 
each clip, participants shared their emotional responses through 
questionnaires. The EEG data, captured using a 62-channel 
electrode cap, was down-sampled to 200 Hz and subjected to a 

0-75 Hz band-pass filter. We used the DEAP dataset to analyze 
emotions through EEG signals [28]. This data encompasses 32 
participants exposed to 40 one-minute music videos, each 
inducing a consistent emotion. Recorded data from 32 EEG 
channels was down-sampled to 128 Hz for reduced system 
complexity. Another study [29] employed the DASPS 
database, which centers on EEG responses during exposure 
therapy, a variant of cognitive behavioral therapy (CBT). This 
database comprises EEG data from 23 healthy participants. 
These participants, prior to the experiment, provided written 
consent and gauged their anxiety using the Hamilton Anxiety 
Rating Scale. 

The aim of the study was to detect stress using the proposed 
model. The data was provided in the form of ‘mat’ files, which 
were read into the Python program using the SciPy library. 
This paper used data augmentation techniques to generate new 
data for training the neural network. In this study, the anxiety 
state from the SEED, DEAP, and DASPS datasets was 
considered to be a stressful state for the target task. Data-
augmentation techniques can be used to increase the size of the 
existing EEG dataset. Generating additional data by applying 
transformations to the existing data, such as shifting the signal 
in time or adding noise, is performed to increase the sample 
size. This can help increase the variability in the data and 
improve the generalizability of the model. 
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Fig. 1. The system architecture of proposed emotionnet. 

B. Preprocessing 

Electroencephalography (EEG) is a modern 
electrophysiological screening mechanism that is used to 
record the electrical activities of the brain. The EEG method 
measures fluctuations in voltage ensuing from the current 
generated by the flow of ions in the brain neurons [14]. The 
EEG signals can be categorized into five main groups, which 
are Delta, Alpha, Theta, Beta, and Gamma. A delta signal or 
wave is a neural oscillation with high amplitude and varied 
frequencies ranging from 0.5 hertz to 4 hertz [17]. The wave is 
commonly associated with sleep. Alpha signals have 
frequencies ranging from 7.5 hertz to 13 hertz. It is commonly 
experienced in the posterior areas of the brain when a patient 
closes and relaxes their eyes. The theta signal is a slow-activity 
wave with a frequency ranging between 3.5 hertz and 7.5 hertz. 
It is a normal occurrence in children from 0 to 13 years old, but 
it indicates sub-cortical lesions, hydrocephalus, or metabolic 
encephalopathy. The brain exhibits a beta signal when it is 
aroused and actively engages in activities. It has a frequency of 
14 to 35 hertz. Gamma signals indicate that an individual has 
attained peak concentration and help in information processing. 
It has a frequency of 35 hertz or more. 

1) Signal filtration: Signals from an EEG device usually 

have a lot of noise and other artifacts that may originate from 

sources that can be biological or environmental [30]. A filter 

removes some of the unwanted signal features when 

processing a signal. Filtering represents a class in signal 

processing that entails partial or complete suppression of 

certain aspects of a signal. EEG commonly refers to digital 

filtering as the usual pre-processing phase in analyzing the 

EEG data. The usual exercise in processing EEG signals 

includes applying a high-pass filter for the elimination of the 

slow frequencies with a lesser amount of 0.1 Hz and a low-

pass filter to remove frequencies that are above 40 to 50 Hz. 

Signal filtering refers to the modification of a measured 
signal through the use of an algorithm or logic to eliminate its 
undesirable features before it is adopted by a controller. Some 
of the examples in control include feedback variables for 
proportional-integral-derivative (PID) and advanced process 
control (APC) controllers [31]. The examples of calculations 
entail computations centered on steady-state material balances, 
the process, and the control metrics. The primary objective of 
signal filtering is to reduce and smooth the high-frequency 
noise related to flow, temperature, or pressure measurements. 
Noise related to differential pressure across the orifice plate is a 
common example used to infer flow rate. High-frequency 
noises are usually considered random and an additive in the 
measured signal and are normally uncorrelated in the period 
Fig. 2. 

 
Fig. 2. a) Anxiety without a filter, Fig. 2(b) Anxiety with a filter, Fig. 2(c) 

Stress without a filter, and Fig. 2(d) Stress with a filter. 

Filters can be categorized based on their design as either 
finite impulse response (FIR) or infinite impulse response (IIR) 
[32]. The impulsive response refers to how the filter works 
with the unit impulse signal within the time domain. The FIR 
filter has a finite-distance impulse response; then, its output 
drops to zero, producing equal delays for all frequencies. The 
IIR filters, on the other hand, have an infinite impulse reaction. 
It also produces unequal delays. However, its main advantage 
is that it is computationally highly efficient. Another feature in 
the design of filters is the signal direction when used as an 
input. Causal filters comprise past and present information. 
Similarly, it refers to filters that rely on future and past input as 
noncausal filters. 

After recording and filtering an EEG signal, researchers 
need to extract its features. There are several methods for 
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extracting features from an EEG signal. During frequency 
domain analysis, oscillating parts are used to break down EEG 
signals and separate out specific neuronal activity. When 
decomposing time-domain signals into weighted cosine and 
sine functions, the frequency domain is primarily utilized. 

Algorithm 1: EEG Preprocessing  

Input: Raw EEG data: Raw EEG data: R= {r1, r2,..., rn} 

Output: Preprocessed EEG signal: P 

Variables: N={n1,n2,...,nm} : Detected noise in the EEG data. F= {f1, 
f2, ..., fn}: Data after filtering. E={e1, e2,..., en} : Extracted features 
from the EEG data. K={k1, k2,..., kn} : Data structured for KNN 
classification 
Functions: L(R) : Loads the raw EEG data. G(Ri) : Filters segment Ri. 
T(Fi): Applies Fast Fourier Transform to segment Fi. C(Ei) : Prepares 
feature Ei for KNN classification. 

 Initialization: R←L(R) 

 Signal Filtration : ∀i∈{1,2, ..., n} ←DetectNoise (Ni)←DetectNoise (Ri)  
Fi←G(Ri−Ni)  

 Feature Extraction: ∀i∈{1,2,...,n}: Ei←T(Fi) 

 Data Classification Preparation: ∀i∈{1,2,...,n}: Ki←C(Ei) 

 Advanced Filtration: ∀i∈{1,2,...,n}: ←AdvancedFilter(Fi) 

 Final Preprocessing: P=K 

End 

The Fast Fourier Transform (FFT) is a feature extraction 
method used for extracting the finer details of emotions such as 
spectral entropy and spectral centroid. FFT extracts these 
simple features from the alpha, beta, and alpha to gamma 
frequencies. Seeing that the theta and delta have a very low-
frequency range, The FFT method does not require the lower 
frequencies due to their lack of sufficient information. After 
filtering the signal and isolating the relevant signals, they 
remain unidentified and require classification. The KNN 
algorithm has a majority voting scheme, which will be used to 
classify the unidentified signals. The algorithm classifies the 
new data based on the highest number of votes. The majority 
vote schemes are used instead of the similarity vote schemes 
because they are less sensitive to the outlier, which aids the 
FFT since it is a method for extracting the finer details [33]. 

                  ( )  ∑    ∈           (1) 

                   
∑       

   

∑      
   

               (2) 

where, F [K] is the amplitude corresponding to bin k in the 
FFT spectrum. 

To filter the EEG signal from noise, this paper used the 
MNE-Python Library. The MNE-Python Library provides 
algorithms implemented in Python that cover multiple data pre-
processing methods to reduce noise from external 
(environmental) and internal (biological) sources. The two 
categories of noise filtering strategies are eliminating 
contaminated data segments and using signal processing 
techniques to attenuate artifacts. The MNE-Python library 
provides these two categories at different stages of the pipeline 
through functions that use automatic or semi-automatic data 
pre-processing along with interactive plotting capabilities. 

The first step of pre-processing entails restricting the signal 
to a chosen frequency range. The MNE-Python library includes 

various filtering algorithms such as low-pass, high-pass, band-
stop, and notch filtering. A high-pass filter is used to filter out 
slow frequencies and high frequencies with a low-pass filter. 
And the bandpass, where frequencies pass between defined 
upper and lower frequencies. Band-stop is the inverse of band-
pass, where frequencies between upper and lower defined 
frequencies are rejected. Instances of raw data are filtered using 
a method that supports both fast fourier transform (FFT) based 
on finite impulse response (FIR) and finite impulse response 
(IIR) filters. The standard multiprocessing Python module 
exposed with the Joblib Python pipeline tool allows for parallel 
filtering of multiple channels. We will be using the FIR filter in 
this paper. 

The finite impulse response (FIR) [34] filters can have a 
linear phase, so they have the same delay at all frequencies, 
while IRR filters cannot. The phase and delay group 
characteristics are also usually better for FIR filters. FIR filters 
are much easier to control and are always stable. FIR filters 
have a well-defined passband, can be converted to minimum-
phase, and can be corrected to zero-phase without additional 
computations. MNE-Python provides FIR filters with 0.16, 
0.15, and 0.13 default constant filter delays. Also, it provides 
two other filters called MNE-C default and minimum-phase. 
As shown below in Fig. 3, a signal is tested with different types 
of FIR filters in MNE-Python and a low-pass of 40 Hz. The 
blue signal represents the original signal without applying any 
filtration, whereas the orange signal represents the original 
signal with noise. Other colored signals represent the type of 
filter used on them, as shown in Fig. 3. 

 
Fig. 3. MNE-Python FIR filter types. 

C. Features Extraction 

The authors of this paper utilized the CNN-LSTM [35], 
[36] feature extraction method. CNN proved to be good at 
extracting signal patterns but had a disadvantage in terms of 
long-term dependency. LSTM solves the problem by providing 
an excellent long-term dependency, allowing it to be used as a 
time series and negating the CNN disadvantage. After being 
filtered, the signal goes through the CNN-LSTM process, as 
shown in the figure below. The classification process will 
receive the signal after it has been filtered and processed 
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through the CNN-LSTM process. A convolutional neural 
network (CNN) is a deep learning algorithm with the ability to 
process images. CNN also proved that it could detect patterns 
from brainwaves, such as emotions, in a multi-channel EEG 
recording, which also gives it the ability to process EEG 
signals. A long-short-term memory (LSTM) is a neural 
network that can learn based on the predictions of a given 
problem. A recurrent neural network (RNN) is a network with 
highly efficient working internal memory for predicting time 
series. LSTM is just an extension of an RNN cell, which 
overhauls the disadvantages of RNN. 

Since CNN is an image-processing algorithm, this paper is 
going to change the EEG signal into an image and pass it to 
CNN. After passing through CNN, it goes through the LSTM 
for the time series. Combining the CNN and LSTM is 
essential, as they rely on each other for effective functioning. 
The LSTM passes the signal to the classifier to identify the 
emotion (see Fig. 4). 

 

Fig. 4. CNN combined with RNN-LSTM layers. 

CNN applied to the pre-processed signals. CNN has three 
major elements: local sensing fields, weight sharing, and 
downsampling. These three elements can decrease network 
complexity, which is good. Also, CNN has high accuracy 
because it can learn from non-linear convolution and local non-
linear activation functions. Many CNNs combine using pooling 
as layers to create a close enough representation of the 
intermediate features from the signals, expressing a high level 
of features. The convolution layer uses a filter on the input data 
to produce feature maps. The filter slides over the input to 
execute the convolution. Matrix multiplication is performed at 
every position, and the results are then summed onto the 
feature map. CNN's pooling layer takes smaller samples of the 
features that the convolution layer found. This cuts down on 
the amount of work that needs to be done and the extent to 
which the network is overfitted. Only necessary information 
should be extracted from a pooling process, and irrelevant 
information should be discarded. This greatly enhances the 
performance of CNN. Fig. 5 shows the convolution-max 
pooling process. Fig. 6 shows the proposed CNN model 
structure. 

 

Fig. 5. Convolution-Max pooling diagram. 

 

Fig. 6. CNN-LSTM structure diagram. 

As seen in Fig. 5 and Fig. 6, CNN is made for capturing 
local spatial features of the data, but CNN cannot capture the 
data sequence in a long-term dependence relationship, and it 
can vanquish the weaknesses of CNN. A combination of CNN 
and LSTM creates a hybrid model, resulting in excellent 
performance in signal recognition. The raw data is pre-
processed and filtered from the noise, and then it enters the 
CNN model for feature maps before entering the LSTM for the 
time series. 

Algorithm 2: EEG Feature Extraction using CNN and LSTM 

Input: Preprocessed EEG signal: Preprocessed EEG signal: 
P={p1,p2,..., pn} 
Output: Features: F={f1, f2,..., fn} 
Variables: C={c1, c2,..., cn} : Features extracted by CNN.  

L={l1,l2,...,ln} : Features extracted by LSTM. 
Functions: CNN(Pi): CNN model that extracts features from segment 
Pi. LSTM(Pi): LSTM model that extracts features from segment Pi. 
Combine (Ci, Li): Combines CNN and LSTM features for segment Pi. 

 Initialization: P← Load(P) 

 Signal Filtration: ∀ i ∈ {1, 2,..., n}: ←DetectNoise(Ni)←DetectNoise(Ri) 

Fi← G(Ri−Ni) 

 Feature Extraction using CNN: ∀i∈{1,2,...,n}: Ci← CNN(Pi) 

 Feature Extraction using LSTM: ∀i∈{1,2,...,n}: Li← LSTM(Pi) 

 Combining Features: ∀i∈{1,2,...,n}: Fi← Combine(Ci, Li) 

End 
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D. Human Anxiety and Stress Classification (AdaBoost 

Classifier) 

The classification method uses the SoftMax classifier. After 
the convolution-max pooling has been flattened, it is then 
passed to the fully connected FC. The SoftMax classifier then 
receives the final vector as input. The SoftMax classifier then 
assigns an emotion to the given final vector input. Emotional 
recognition is the process of identifying emotions. Facial 
expressions, voice impressions, written texts, psychology, and 
electrode devices placed on the head can all be used to 
recognize emotions. 

Emotion recognition is going to perform in this paper as 
follows:  A TGAM device is utilized to extract the brain's 
signals. These signals are called EEG signals and are raw; thus, 
they need to be cleansed from noise to further increase the 
accuracy of the emotion extraction. The filtered EEG signal 
then proceeds to the feature extraction process, where it 
undergoes a series of methods known as CNN-LSTM. In there, 
the signal will first go through the convolution and Max-
Pooling processes of the CNN several times before being sent 
to the LSTM for the time series for long-term dependency. 
Finally, the CNN-LSTM processes the signal and then 
classifies it using the SoftMax classification method to assign 
an emotion. After the signal has gone through all these 
processes, the result will then be that person's emotion at the 
time of the signal extraction. Because there are many emotions 
to recognize, this paper focused on detecting anxiety, stress, 
depression, etc., with good accuracy rather than detecting more 
emotions with less accuracy. 

Algorithm 3: Human Anxiety and Stress Classification using 
AdaBoost 
Input: Extracted Features: F= {f1, f2,..., fn}  
Output: Class Labels: L={l1,l2,...,ln} Where li can be "Anxiety", 
"Stress", or "Neutral" 
Variables: A= {a1 ,a2,..., an}: Classification results using AdaBoost. 

Functions: AdaBoost (Fi): AdaBoost classifier that determines class 
label for feature Fi. 

 Initialization: F← Load(F) 

 Anxiety and Stress Classification using AdaBoost: ∀i ∈{1, 2,..., n}: ← Ai

←AdaBoost(Fi) 

 Class Label Assignment: ∀i∈{1,2,...,n}:  

If Ai=1 then Li← "Anxiety"  

Else if Ai=2 then Li← "Stress" 

 Else Li← "Neutral" 

End 

AdaBoost, short for "Adaptive Boosting," has emerged as a 
potent ensemble machine learning technique that focuses on 
the principle of amalgamating the strengths of numerous 
"weak" classifiers to forge a robust classifier. Its application in 
EEG feature classification for discerning stress and anxiety 
presents a unique approach that offers notable advantages. 

At the beginning of the AdaBoost process, each EEG data 
point or feature vector weighs equally, ensuring a level playing 
field. A weak classifier, often a simple decision tree known as 
a "decision stump," is trained on these features. Despite its 
designation as "weak," the classifier's aim isn't sheer 

randomness but to surpass random guesswork, albeit 
marginally. Following the training, this classifier undergoes an 
evaluation phase. Meticulously identifying the misclassified 
instances and incrementing their weights pushes the subsequent 
classifier to concentrate more assiduously on the challenging, 
previously misclassified instances. This iterative emphasis on 
the "hard-to-classify" instances is where AdaBoost truly shines. 
One of the key steps in the AdaBoost algorithm is the 
assignment of weights to the classifiers themselves. Classifiers 
with higher accuracy have greater influence, allowing them to 
play a more significant role in the final decision-making 
process. This hierarchy ensures that better-performing 
classifiers play a pivotal role. 

As AdaBoost iterates, the process undergoes fine-tuning. 
Each cycle refines the classifier weights, focusing more on the 
problematic instances. Such a continuous feedback loop 
ensures that, by the end of the specified iterations, the 
ensemble is adept at handling a majority of the scenarios, 
including the challenging ones. AdaBoost does not rely on a 
single classifier to classify a new EEG feature vector. Instead, 
it consults its ensemble, with each member casting a weighted 
vote based on its accuracy. The culmination of these votes 
determines whether the EEG feature vector corresponds to 
stress, anxiety, or a neutral state. The inclusion of fine-tuning 
in this process is pivotal. The EEG data, with its intricacies and 
subtle nuances indicative of stress or anxiety, demands a 
classifier that is both adaptive and discerning. AdaBoost, with 
its iterative refinement and emphasis on challenging instances, 
stands out as an ideal choice. By progressively focusing on the 
harder-to-classify instances and adjusting classifier influence 
based on performance, AdaBoost ensures that the final model 
is not just a mere aggregation but a finely-tuned ensemble 
primed for accuracy. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

The proposed method is executed on a common platform 
machine with an Intel Core i7 10th generation processor and 32 
GB of RAM without using a GPU. Despite being a complex 
processing method that combines signal and image processing, 
it requires a relatively small number of epochs for better 
accuracy, leading to less training time. It also optimizes the 
average prediction time for each input. The complete dataset is 
split into an 80–20 ratio to create the test dataset, with 20% 
reserved for testing. 

B. Statistical Analysis 

Performance evaluation of classification models is vital for 
understanding their efficacy. In comparing the proposed 
solutions with existing ones, several metrics are employed. 

A fundamental metric for classification models, accuracy 
provides an aggregate measure of the model's ability to predict 
correctly. It computes the ratio of correctly predicted instances 
to the total number of instances, and it's defined as: 

Accuracy= (TP+TN)/(TP+TN+FP+FN)×100       (3) 

True Positive (TP) and True Negative (TN) represent 
correct predictions, while False Positive (FP) and False 
Negative (FN) denote incorrect predictions. A model with high 
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accuracy implies reduced prediction errors, which can have 
significant cost implications. 

Often referred to as Recall, True Positive Rate, or Hit Rate, 
sensitivity captures the model's proficiency in predicting 
positive instances accurately. It is expressed as: 

Recall=TP/(TP+FN)×100                           (4) 

A high recall indicates a low FN rate, signifying that the 
model has a commendable ability to detect positive instances. 

This metric evaluates the model's skill in correctly 
predicting negative instances. Defined as the ratio of true 
negatives to the sum of true negatives and false positives, it is 
formulated as: 

            
  

     
                           (5) 

Fourth measurement is Precision. Precision measures the 
proportion of accurately predicted positive instances against all 
predicted positive instances. It's an indication of the model's 
ability to correctly identify positive instances among all 
predicted positives. Its formula is: 

          
  

     
                              (6) 

Fifth measurement is F1-score. Combining both precision 
and recall, the F1-score offers a balanced metric that considers 
the harmonic mean of precision and recall, making it essential 
for understanding a classifier's robustness and accuracy. It's 
defined as: 

          
                

                
               (7) 

In essence, these metrics collectively provide a 
comprehensive view of a classifier's performance, ensuring that 
its strengths and weaknesses across different dimensions are 
adequately captured and understood. 

C. Experimental Results 
Python is chosen as the programming language for this 

paper because it offers simplicity, consistency, flexibility, and 
accessibility to various libraries and frameworks. Python is a 
dynamic, high-level object-oriented programming language 
that offers perfect solutions to machine learning due to its 
independence. Furthermore, its independence across platforms 
makes Python resource- and time-saving in deep learning, 
where the developers would incur more resources to complete 
a paper. The Python language is reliable due to its ability to run 
on multiple platforms without the need to change. Python is 
easy to execute, making it a standalone solution to meet 
machine learning needs. These features have made it more 
popular. It’s also popular because of its useful libraries and 
packages that save time and reduce the likelihood of errors. 
The libraries and frameworks offer a reliable environment for 
machine learning due to their pre-written codes that speed up 
coding when working on a complex paper like the current one. 
Python's interpreted nature allows for faster code execution 
without the need for a compiler. The aforementioned properties 
make Python a priority for this paper. 

 
(a) 

 
(b) 

Fig. 7. Loss and accuracy of the proposed EmotionNet model, where Fig.7 

(a) shows the loss curve and, (b) shows the accuracy curve with 300 epochs. 

Fig. 7 appears to present a detailed analysis of the 
performance metrics for the EmotionNet model for 300 epochs. 
Fig. 7(a) likely to illustrates the loss curve, which is a graphical 
representation of how the model's prediction error decreases 
over time as it learns from the training data. This curve is 
crucial to understanding how effectively the model is learning 
and optimizing its parameters. A typical loss curve would show 
a downward trend, indicating that the model is becoming more 
accurate in its predictions. Fig. 7(b) probably depicts the 
accuracy curve, showcasing how the model's prediction 
accuracy improves across the epochs. The model's proficiency 
in correctly classifying or predicting emotional states is 
expected to increase, resulting in an upward trend in this curve. 
Both of these curves together provide a comprehensive view of 
the model's learning dynamics and performance, with the loss 
curve focusing on error minimization and the accuracy curve 
emphasizing successful predictions. 

EmotionNet has obtained accuracy equal to 98.6%. To 
calculate the metrics of this paper, this study used accuracy, 
sensitivity (SE), specificity (SP), precision, recall, and F1-
Score. Four variables are used in the calculations. These 
variables are: true positive (TP), which equals 317; true 
negative (TN), which equals 312; false positive (FP), which 
equals 4; and false negative (FN), which equals 0. The authors 
created the confusion matrix below using the 80-20 split for 
training and testing, respectively, as shown in Fig. 8. In this 
paper, the author has also calculated the confusion matrix for 
70–30, 60–40, and 50–50. As seen from their respective 
figures, the numbers are much lower than expected. But the 
accuracy rating is also lower than 80–20. And for that reason, 
this paper has gone with the 80-20. 
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(a) 80-20% split. 

 
(b) 70-30 Confusion Matrix. 

 
(c) 60-40 Confusion Matrix. 

 
(d) 50%-50% split. 

Fig. 8. Confusion matrix of different training and testing split ratios. 

 
Fig. 9. The confusion matrix of detection of stress and anxiety, where 0 

shows the detection rate of stress and 1 represents the anxiety by proposed 

model EmotionNet. 

This study has chosen to go with the 80-20 method because 
it gave us the best result in terms of accuracy. Also, the loss is 
approximately 11%, which is the least we got. Below are two 
emotions classes anxiety and stress as shown in Fig. 9. They 
are both visualized in signals with all eight ranges which are 
Delta, theta, low alpha, high alpha, low beta, high beta, low 
gamma, and high gamma. Also, both are shown with and 
without a filter to showcase the difference between a clean 
signal and a noisy signal. 

As you can see from TABLE II. , the proposed accuracy 
result is 98.6%. Reference [23] only uses CNN with an 
accuracy result of 94.83%. Reference [9] only uses LSTM with 
an accuracy result of 91.85%. This paper used the combination 
of both CNN and LSTM. It showed that it has better potential 
rather than just using CNN or LSTM individually. Reference 
[18] on the other hand uses both CNN and LSTM but has a 
lower accuracy rating than EmotionNet. This means that 
having an efficient architecture is most critical. It can be seen 
from their accuracy result, which is 80.57%. 

TABLE II.  STATE-OF-THE-ART COMPARISON 

Ref. ACC SE SP F1-Score 

Proposed 
EmotionNet 

98.6% 100% 98.73% 99.22% 

LSTM 

[9] 
91.85% 94.00% 96.74% 95.00% 

CNN 
[23] 

94.83% 86.67% 98.17% 89.93% 

CNN-LSTM 

[18] 
80.57% 100% 71.72% 76.30% 

V. DISCUSSIONS 

The exploration and classification of EEG signals to 
discern and quantify emotional states such as stress and anxiety 
have witnessed a radical evolution with the integration of 
advanced machine learning algorithms. At the heart of this 
investigation is the objective to achieve a nuanced 
understanding of the myriad emotional responses of the human 
brain and harness this knowledge for clinical and therapeutic 
applications. 
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The initial foray into EEG-based emotion classification was 
governed by a preliminary preprocessing phase [37]. The 
preprocessing and filtration stages were crucial in addressing 
the contamination of EEG recordings by a variety of artifacts, 
from biological to environmental origins. The defined 
algorithm effectively trimmed the EEG signal to a desirable 
frequency range, addressing both high and low frequencies, 
ensuring an optimized dataset for feature extraction. The 
adopted approach rigorously eliminated unnecessary 
complexities and preserved relevant data, laying the 
groundwork for the subsequent steps. 

Table II presents a state-of-the-art comparison of various 
approaches in the field of emotion recognition. The proposed 
EmotionNet achieves an impressive accuracy result of 98.6%, 
showcasing its superiority over other methods. Reference [23] 
solely employs CNN architecture and achieves an accuracy of 
94.83%, while Reference [9] utilizes LSTM and achieves an 
accuracy of 91.85%. Notably, the proposed EmotionNet 
combines both CNN and LSTM, demonstrating better potential 
compared to using CNN or LSTM individually. It is worth 
mentioning that Reference [18] also employs a combination of 
CNN and LSTM but achieves a lower accuracy rating than 
EmotionNet, emphasizing the importance of an efficient 
architecture. The table includes additional performance metrics 
such as sensitivity (SE), specificity (SP), and F1-Score for each 
approach, providing a comprehensive overview of their 
capabilities in emotion recognition. 

Upon having a refined EEG dataset, the challenge 
transitioned to extracting meaningful features that encapsulate 
the emotional spectrum of the human brain. This is where the 
integration of deep learning models, namely CNN and LSTM, 
came into play. CNNs, with their prowess in handling image-
based data, converted EEG signals into spectrogram-based 
images, enabling a richer feature extraction process. On the 
other hand, LSTMs processed the sequential data in the time-
series nature of EEG data. The symbiosis of CNN and LSTM 
exhibited efficacy in gleaning relevant features indicative of 
different emotional states. 

However, the pinnacle of exploration was the application of 
the AdaBoost classifier, fine-tuned to achieve optimal 
classification results. AdaBoost's adaptability in combining 
multiple "weak" classifiers to curate a robust classifier became 
pivotal. Its iterative feedback loop, emphasizing harder-to-
classify instances and adjusting weights to improve 
classification accuracy, offered an adept approach to 
classifying EEG signals into stress, anxiety, or neutral states. 
The continuous refinement and fine-tuning of AdaBoost 
underscored its superiority in handling the intricacies of EEG 
data. 

In summary, the journey from raw EEG data to a nuanced 
understanding of emotional states has been both intricate and 
enlightening. Combining preprocessing methods, advanced 
deep learning models, and adaptive classifiers like AdaBoost 
showed how EEG data could be used in medical and 
therapeutic research. As the domain of EEG-based emotion 
classification expands, the techniques and algorithms outlined 
in this investigation will inevitably serve as foundational pillars 
for future research and applications. 

The current evaluation utilizes DEEP, SEED, and DASPS 
datasets. In future iterations, we will train and test EmotionNet 
on a broader array of datasets to ensure its universality across 
different demographic and cultural backgrounds. There is 
potential to integrate EmotionNet into real-time monitoring 
systems, such as wearable technology, to provide constant 
mental health feedback and alert individuals or healthcare 
providers to deteriorating emotional states. While the current 
accuracy of EmotionNet is commendable, there is always 
scope for enhancement. Future endeavors can look into 
refining model parameters, exploring other architectures, or 
incorporating transfer learning for improved accuracy. 
EmotionNet's architecture could be adapted to predict a 
broader spectrum of emotions, expanding its utility in diverse 
applications, while still maintaining the current focus on stress 
and anxiety. 

In summary, while EmotionNet stands as a significant 
stride in EEG-based emotion recognition, the journey forward 
promises further innovation, refinement, and meaningful 
societal impacts. 

VI. CONCLUSION 

The presented work introduces "EmotionNet," a novel deep 
learning system adept at predicting stress and anxiety levels 
through EEG signal analysis. The integration of convolutional 
neural networks (CNN) and long-short-term memory (LSTM) 
networks serves as a significant advancement in EEG-based 
emotion recognition. The fact that EmotionNet can achieve a 
classification accuracy of 98.6% shows how well it works. This 
is possible by using signal decomposition, preprocessing, and 
the CNN-LSTM architecture for feature extraction. 
Furthermore, evaluation of well-regarded datasets like DEEP, 
SEED, and DASPS reinforces its robustness and reliability in 
predicting emotional states. EmotionNet not only epitomizes 
technical progression in the domain but also underscores the 
broader societal imperative of understanding and prioritizing 
mental health, especially in times of global challenges like the 
COVID-19 pandemic. 
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