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Abstract—In the field of audio style conversion research, the 
application of AutoML and big data analysis has shown great 
potential. The study used AutoML and big data analysis methods 
to conduct deep learning on audio styles, especially in style 
transitions between flutes and violins. The results show that using 
iterative learning for audio style conversion training, the training 
curve tends to stabilize after 100 iterations, while the validation 
curve reaches stability after 175 iterations. In terms of efficiency 
analysis, the efficiency of the yellow curve and the green curve 
reached 1.05 and 1.34, respectively, with the latter being 
significantly more efficient. This study achieved significant 
results in audio style conversion through the application of 
AutoML and big data analysis, successfully improving 
conversion accuracy. This progress has practical application 
value in multiple fields, including music production and sound 
effect design. 
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I. INTRODUCTION 
Audio style conversion, as an important branch in the field 

of audio processing, has always been the focus of researchers. 
The transformation of audio style aims to make subtle 
adjustments to the characteristics of audio without loss, such as 
time domain, frequency domain, timbre, pitch, etc., while 
retaining the essential information of audio [1-2]. The 
implementation of this transformation has a profound impact 
on many fields such as music production, speech synthesis, and 
oral teaching [3-4]. However, traditional audio style conversion 
methods often require a large amount of manual feature 
extraction and complex algorithm design. This limits the 
research process of audio style conversion. At present, to solve 
the above problems, most scholars advocate the introduction of 
data analysis to achieve various audio processing. But in this 
way, automatic search and optimization of audio conversion 
models and parameters can be achieved [5-6]. Meanwhile, this 
study also extracts valuable style information from massive 
audio data through big data analysis, further improving the 
accuracy and naturalness of audio style conversion. Integrating 
AutoML into audio style conversion research directly 
addresses the inefficiencies of current methodologies. This 
provides a systematic approach to model selection and 
parameter tuning, which is critical for enhancing the 
practicality and accessibility of audio style transformations. 
The innovation of research is mainly manifested in two 
aspects. AutoML is introduced into the research of audio style 
conversion to achieve automated search and optimization of 
audio conversion models, with the aim of improving the 
efficiency of audio style conversion. The second is to use big 

data analysis methods to extract style information from 
massive audio data, making audio style conversion more 
accurate and natural. The research contributions consist of 
developing an AutoML-based framework for optimizing audio 
style conversion models efficiently, introducing big data 
analytics for extracting precise style features, establishing a 
benchmark dataset for comparative analysis that demonstrates 
enhanced conversion accuracy and naturalness, and validating 
real-world applications across music production, speech 
synthesis, and language learning. This study also provides new 
research methods and ideas for other related fields, with broad 
application prospects and important academic value. The 
research will be conducted in four parts. The first part is an 
overview of audio style conversion on the grounds of AutoML 
and big data analysis. The second part is the research on audio 
style conversion on the grounds of AutoML and big data 
analysis. The third is the experimental verification of the 
second. The fourth is a summary of the research content and 
points out the demerits. 

II. RELATED WORKS 
Audio style conversion has always been an essential 

research topic in the audio processing, with the goal of 
achieving lossless conversion of audio styles while maintaining 
the original audio information. Li J et al. presented a novel 
ALRW method. The research results indicate that this method 
could markedly decrease compensation information. And it 
exhibits strong robustness to common operations. In the 
absence of an attack, it is possible to recover the covered audio 
signal without loss [7]. Lin F et al. presented a new text audio 
sentiment analysis framework called StyleBERT, which 
enhances unimodal sentiment information representation by 
learning different modal styles and reduces dependence on 
fusion. The research results indicate that StyleBERT performs 
excellently on multiple benchmark datasets, markedly superior 
to state-of-the-art multimodal baselines, and is an effective 
multimodal sentiment analysis framework [8]. Chen B and 
other scholars proposed a non-parallel data to speech 
conversion technology on the grounds of data augmentation - 
ParaGen. The experiment showcases that ParaGen can 
effectively convert the speaker identity of the source speech to 
the target speaker while preserving the local speaking style. 
And the converted speech possesses more excellent speech 
naturalness and speaker similarity than the statistical parameter 
speech synthesis system [9]. Xu D et al. proposed a bipolar 
phase shift modulation single-stage inverter for efficient and 
low distortion audio amplification. The research results were 
validated through a prototype with an output power of 200kHz 
and 250W. It demonstrates the effectiveness of the proposed 
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BPSM • FBAC-SSI method in improving the efficiency of 
audio amplifiers and reducing distortion [10]. Chandrakar R et 
al. proposed an enhanced system for automatic motion object 
detection and tracking using RBF-FDLNN and CFR 
algorithms. It can effectively handle the problem of motion 
target detection and tracking in traffic monitoring. The research 
results indicate that the proposed RBF-FDLNN classifier 
performs better than other existing methods in video frame 
object detection, proving the effectiveness of this method [11]. 

However, traditional audio style conversion methods rely 
on complex algorithm design and a large amount of manual 
feature extraction. This to some extent limits the development 
of audio style conversion technology. Zhang J presented a 
music feature extraction and classification model on the 
grounds of convolutional neural networks. The research results 
indicate that this method outperforms traditional manual 
models and machine learning based methods in music feature 
extraction and classification. This effectively addresses the 
shortcomings of traditional methods in feature selection and 
multi classification [12]. Singh P K et al. proposed new feature 
descriptor-binary image symbolization, for recognizing 
handwritten digits of different texts. The research results 
indicate that the symbolic feature descriptors of binary images 
have high script invariance, and can maintain high recognition 
rates even in mixed use of text [13]. Jiang ZG et al. proposed a 
segmentation and keyframe extraction method for video 
behavior recognition, and further proposed an improved 
vehicle detection algorithm on the grounds of fast R-CNN. The 
research results indicate that the application of keyframe 
extraction technology and optimized fast R-CNN model 
significantly improves the accuracy of vehicle detection, 
reduces missed detections, and demonstrates satisfactory 
detection rates [14]. Jia Z et al. proposed domain invariant 
feature extraction and fusion. The research results indicate that 
domain invariant feature extraction and fusion methods have 
achieved significant performance improvements on multiple 
datasets, effectively addressing the challenge of cross domain 
character re recognition [15]. Grzegorowski et al. proposed a 
supply management solution that considers individual delivery 
plans for each location. The research outcomes demonstrate 
that the method could markedly handle high uncertainty in data 
and effectively solve the cold start problem of vending 
machine networks [16]. 

Wu SL et al. utilized the advantages of Transformer and 
VAE to propose MuseMorphose for music generation, which is 
characterized by the user's ability to control style attributes. 
The results showed that MuseMorphose exceeded the RNN 
baseline in style transfer metrics [17]. Rashid A B et al. 
proposed an automatic detection model for student learning 
style in a learning management system based on online 
learning activities. The research shows that this model can 
assist educators in optimizing teaching content and 
recommending suitable learning materials based on student 
characteristics [18]. Chen et al. proposed reinforcement 
learning based audiovisual speech recognition framework 
MSRL, which focuses on stable supplementary information of 
visual modalities. The research results show that MSRL 
achieves the best performance on the LRS3 dataset, especially 

demonstrating better universality in unknown noise testing 
[19]. 

In summary, existing research results indicate that AutoML 
can achieve automatic recognition and conversion of audio 
styles, which helps to solve the efficiency and accuracy 
problems of traditional methods in large-scale data processing. 
However, the complexity and diversity of audio data 
processing, such as feature extraction and model selection, 
remain challenges that limit the comprehensive application of 
AutoML. These technologies also need to be further optimized 
in practical scenarios such as music creation and speech 
synthesis. In view of this, this study aims to develop stronger 
audio feature extraction algorithms and establish effective 
model evaluation methods. And it is necessary to study how to 
better integrate these technologies into practical applications to 
maximize the potential of AutoML in audio processing. 
AutoML's advancement in audio style conversion heralds new 
creative horizons in music production, elevates speech 
synthesis realism, and promises tailored, immersive language 
learning experiences that are revolutionizing multiple 
industries. 

III. AUDIO STYLE CONVERSION METHODS ON THE 
GROUNDS OF AUTOML AND BIG DATA ANALYSIS 

This study combines an improved VGG and EfficientNet 
feature extraction network to deeply extract audio data 
features. It utilizes Adain based normalization modules and 
feature decoding networks to achieve lossless audio style 
conversion. It combines AutoML and big data analysis to 
construct an automatically optimized audio style conversion 
model to improve conversion efficiency and accuracy. This 
study integrates the latest machine learning techniques into 
audio processing, providing a new research perspective for the 
development of audio style conversion technology. 

A. Based on Improved VGG and EfficientNet Feature 
Extraction Network 
Audio style conversion relies on deep learning to 

automatically extract features, obtaining abstract and robust 
features. The VGG network has fewer parameters and requires 
less computing resources. The new EfficientNet breaks the 
convention of improving network performance in a single 
dimension by adjusting input resolution, depth, and width, 
achieving a balance between accuracy and efficiency [20-21]. 
The VGG-16 network uses small convolutional kernels instead 
of large ones to enhance model nonlinearity, reduce 
computational complexity, and remove fully connected layers 
(FCL). Then it changes the pooling layer to a convolutional 
layer with a stride of 2, and uses a swish activation function to 
improve model performance. EfficientNet extracts useful 
features in audio style conversion, compares feature 
representations, and predicts the effect of style conversion. The 
optimization process relies on the loss function, and the smaller 
the loss function, the higher the accuracy of the model. 
Therefore, EfficientNet and VGG networks have important 
application value in the study of audio style conversion 
[22-23]. The mean square error is shown in Eq. (1). 
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In Eq. (1), iy  serves as the actual value, ( )if x  serves as 

the predicted value, and ( )if x  serves as the number of 
samples. The backpropagation of gradient information is 
crucial for neural network algorithms to self-learn and update. 
The optimized EfficientNet algorithm is showcased in Eq. (2). 

1k k gθ θ α−= − ⋅     (2) 

In Eq. (2), kθ  is the parameter value at the current time, 
α is the learning rate, and g  is the gradient. It increases the 
number of audio processing channels and adds feature layers to 
obtain more audio features. It increases network depth, utilizes 
deep neural networks to improve performance, and enhances 
audio feature extraction. It improves the input audio sampling 
rate, enhances network accuracy, enriches audio features, and 
reduces information loss. From this, it can be concluded that 
the tensor of the network output is shown in Eq. (3). 

( )i i iY F X=      (3) 

In Eq. (3), iX  is the tensor of a specific convolutional 
layer. A deep neural network composed of k  convolutional 
layers is shown in (4). 

( ) ( )2 1 1 1
1
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N F F F X F X
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2

� 2� � �   (4) 

In Eq. (4), �  is the multiplication operation, i  is the 
stage number, and i  is a single operation. Scaling the model 
could enhance the accuracy of the network within the limits of 
memory and computational complexity, as shown in Eq. (5). 
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In Eq. (5), d , w , and r  represent the scaled depth, 
width, and resolution, respectively. In EfficientNet, achieving 
composite optimization by simultaneously scaling three 
dimensions at appropriate proportions could enhance the 
performance and classification accuracy of the network. This 
could also decrease the computational complexity of the model 
and enhance the performance of the network. The MBConv 
module used internally is the core structure, which is a unique 
feature extraction structure of EfficientNet. The 
two-dimensional view is efficiently extracted during the 
continuous stacking process in the Block layer. The MBConv 
module is shown in Fig. 1. 

In Fig. 1, EfficientNet first performs pointwise convolution 
on the input feature map and adjusts the expansion ratio by 
changing the output channel dimension. Then it performs deep 
convolution, reducing the dimension to the original number of 
channels, and then performs point by point convolution again. 
This network module integrates compression and arousal of 
network attention to focus on channel features. The feature 
map is processed by stacking 32 MBConvs, and then 
sequentially passes through one-dimensional convolutional 
layers, global average pooling 2D, and FCL to generate feature 
vectors with a dimension of 2640. EfficientNet reduces the 
computational complexity of the network through deep 
convolution and point by point convolution, compared to 
conventional convolution operations. The schematic diagram 
of EfficientNet network structure is showcased in Fig. 2. 

Point by point convolution 
PointwiseConv2D(1×1)conv2D

BatchNormalization Swish

Deep convolution 
DepthwiseConv2D(k×k)

BatchNormalization Swish

Global Average pooling 
Conv2D(1×1)Swish

Conv2D(1×1)Sigmoid

Point by point convolution 
PointwiseConv2D(1×1)

BatchNormalization
Dropout_connect

Imput

SE Module
× 

+ 
 

Fig. 1. MBConv module. 
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Fig. 2. EfficientNet network structure diagram. 

In Fig. 2, EfficientNet utilizes MBConv as the backbone 
network, which originates from MobileNet V2. MBConv 
includes a regular convolution, a deep convolution (including 
BN and Swish), an SE module, another regular convolution 
(for dimensionality reduction, including BN), and a Droupout 
layer. The SE module contains a global average pooling and 
two FCL. The quantity of nodes in the first FCL is equal to the 
quantity of channels in the feature matrix of the input 
MBConv, and the activation function is Swish. The quantity of 
nodes in the second FCL is equal to the number of channels in 
the output feature matrix of the deep convolutional layer, and 
the activation function is sigmoid. 

B. Audio Style Conversion Normalization Module and 
Feature Decoding Network on the Grounds of Adain 
After completing the feature extraction for audio style 

conversion, the next step is to use the Adam based 
normalization module and feature decoding network for audio 
style conversion. In this process, Adain technology is used to 
convert audio features into styles, and then a feature decoding 
network is used to convert the converted features into 
perceptible audio signals. This can achieve style conversion of 
audio. 

The normalization process can make the data distribution 
have a mean of 0 and a variance of 1, which helps to avoid 
gradient vanishing and exploding, thus accelerating the training 
process. When processing large amounts of data, BatchNorm 
needs to use mini batch data to estimate mean and variance, but 
training may become unstable when computing power is 
limited and the input audio data volume is too large. The Adain 
method confirms that the Instance Normalization layer can 
reduce style loss faster than the BN layer, thereby accelerating 
training. The core of Adain is to fuse the features obtained 
from content audio and style audio through an Encoder 
network, and then decode them to obtain style audio. The 
decoding of style audio is shown in Eq. (6). 

( ) ( ) ( )
( ) ( ),

x x
AdaIN x y y y

x
µ

σ µ
σ

 −
= +  

 
  (6) 

In Eq. (6), the content image is x  and the style image is 
y . The current mainstream normalization methods mainly 

include Batch Normalization, Layer Normalization, Instance 
Normalization, Group Normalization, and Switchable 
Normalization. These methods are all on the grounds of 
normalization processing of different dimensions of input 
audio. Specifically, given the dimensions of the input audio as 
(N, C, H, W), different normalization methods choose different 
normalization strategies on these four dimensions. An example 
of centralized normalization is shown in Fig. 3. 

Batch Norm Layer Norm

Instance Norm Group Norm

C

N

H , W

C
N

H , W

C

N

C
N

 
Fig. 3. An example of centralized normalization diagram. 

Batch Normalization is the normalization of NHW on each 
batch. Due to its calculation of mean and variance on each 
batch, if the batch size is too small, the calculated mean and 
variance may not represent the distribution of the entire data, 
which may lead to unstable training and poor performance. 
Layer Normalization is the normalization of CHW for each 
channel direction, mainly applied in RNN networks. Compared 
to Batch Normalization, Layer Normalization solves the 
problem of deep non fixed networks by normalizing all 
neurons in each layer of the deep network, as shown in Eq. (7). 
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In Eq. (7), µ  is the mean and 
lσ  is the variance. 

Instance Normalization is mainly applied in the field of audio 
style conversion, which normalizes audio signals at the pixel 
level. Due to the fact that the generated results mainly rely on 
specific audio samples, it is very suitable for audio stylization, 
which can accelerate model convergence and maintain 
independence between samples. Group normalization is 
achieved by grouping channels and normalizing them within 
the group, and its calculated mean is independent of batch size. 
Therefore, it can solve the impact of batch normalization on 
training results when the batch is small. In the feature map of 
each sample, channels are divided into G groups, each 
containing C/G channels, and the mean and standard deviation 
of these channels are calculated. Switchable Normalization 
combines BN, LN, and IN normalization methods, assigning 
them different weights to enable the network to learn which 
normalization method to use on its own, thus achieving 
adaptive selection of normalization methods. The style 
transition effect is showcased in Fig. 4. 

The decoder and encoder have a symmetrical structure. 
During the audio style conversion, the encoder is responsible 
for feature extraction of the original audio and the target style 
audio. The decoder combines the original audio features and 
style features generated by Adain to generate stylized audio. In 
audio style conversion systems, only the decoder is usually 
trained, while the parameters of the feature extraction and loss 
calculation networks remain unchanged. During the feature 
extraction, downsampling is usually performed through a series 
of convolutions. In the feature decoding stage, it is necessary to 
upsample the features to restore the size of the original audio. 
Common upsampling methods include linear interpolation, 
deconvolution, and deconvolution. Deconvolution is a special 
type of convolution that fills feature audio with zeros and then 
convolves it by rotating the convolution kernel. In decoding 
networks for audio style conversion, interpolation algorithms 

are commonly used for upsampling operations. Deconvolution 
restores feature audio, which operates in the opposite direction 
of convolution and is essentially transposed convolution. The 
relevant schematic diagram is showcased in Fig. 5. 

C. Audio Style Conversion Model on the Grounds of AutoML 
and Big Data Analysis 
Considering the characteristics of audio data and the 

complexity of processing audio data, this study selected an 
audio style conversion model on the grounds of AutoML and 
big data analysis for research. The model utilizes big data 
analysis technology to process massive audio data. And it 
automatically finds the optimal model parameters through 
AutoML to achieve more efficient and accurate audio style 
conversion. The framework structure of the model is set as 
showcased in Fig. 6. 

 
Fig. 4. Style transition effect diagram. 

 
Fig. 5. The relevant schematic diagram. 
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Fig. 6. Functional module execution process. 

953 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 15, No. 1, 2024 

In Fig. 6, considering the characteristics of audio style 
conversion, the audio style conversion process on the grounds 
of AutoML and big data analysis can be mainly divided into 
four stages: preprocessing stage, feature extraction stage, 
model training stage, and style application stage. The 
preprocessing stage is mainly used for cleaning and formatting 
audio data for subsequent processing. The feature extraction 
stage converts audio data into feature vectors that can be 
processed by machine learning models. During the model 
training phase, AutoML is used to automatically search for the 
optimal model parameters, to achieve more efficient and 
accurate audio style conversion. The final style application 
stage applies the trained model to new audio data to complete 
style conversion. The evaluation indicators for audio style 
conversion are shown in Eq. (8). 

i
i

i

m
D

N
=      (8) 

In Eq. (8), im  represents the degree of style distortion of 

the audio sample, and iN  represents the total number of style 
transitions performed. It enhances the accuracy of the model by 
connecting all the encoded features obtained, and the vector 
construction is shown in Eq. (9). 

( ) ( )( )
( )( ) ( )( ) ( )

, max 1

, ,
t t t

t t t t t t

G q a q q a

v Q C q a Q C f a Q dc

 = + + ⋅


= ∩ ∩
 (9) 

In Eq. (9), 
tq  represents the feature number, and 

tdc  
represents the difficulty coefficient of coherent instructions. 
( )G  represents instruction execution combination, ( )Q  

represents encoding format, and ∩  represents connection. It 
uses ReLU activation function to train the autoencoder and 
removes the output layer after completion. Then it uses the 
output of the hidden layer as input in the AutoML model, as 
shown in Eq. (10). 

( )'
t tv FAKT W v b= ⋅ +    (10) 

In Eq. (10), ,W b  represent the weight matrix and bias 
vector for audio execution, respectively. The current state is 
obtained by combining the information processed by the forget 
gate with the input information obtained by the input gate. The 
process is shown in Eq. (11). 

( )'
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1

,t f t t f

t t t t t

f W v h b

c f c i c

σ −

−

  = + 

 = +

�

� �

   (11) 

In Eq. (11), the output gate 
to  determines what 

information to extract from 
tc  on the grounds of 

1th −
, '

tv , 
and the ReLU function, forming a hidden state 

th . Then, 
combined with historical encoding, the attention score is 
calculated using weight factors, as shown in Eq. (12). 

( ) ( )' ' ' '
1 2, tanhT

i t i ts v v v W v W v= +
�   (12) 

In Eq. (12), '
iv  represents the encoding of historical 

sequence information on the grounds of data compression, and 
'
tv  represents the dimensionality reduction encoding of input 

information at time t . ,W v
�  are both network parameters for 

the Department of Science. After weighting, cross entropy can 
be used in machine learning for measuring the difference 
between actual labels and predicted results. Therefore, the 
study uses it as the loss function of the AutoML model, as 
shown in Eq. (13). 

( ) ( ) ( )( )( )1 1 1 1log 1 log 1T T
t t t t t t

t
L a y q a y qδ δ+ + + += − + − −∑ (13) 

In Eq. (13), ( )1
T
t ty qδ +

 and 
1ta +
 represent the predicted 

and true probability distributions, respectively. It assumes that 
X  is one knowledge unit, including n  execution nodes. 

And if the probability of using the execution node 
ix  is 

( ) , 1, 2, ,iP x i n= 2 , then the audio modeling's mastery of the 
execution node is shown in Eq. (14). 

( ) ( ) ( )
21

log
2

n i
ii

A x
Z X P x

=
= −∑   (14) 

In Eq. (14), ( )iA x  represents the execution efficiency of 

the audio at the execution node. ( )iP x  represents the 
probability of the execution node appearing. 

IV. MODELING AND ANALYSIS OF AUDIO STYLE 
CONVERSION ON THE GROUNDS OF AUTOML AND BIG DATA 

ANALYSIS 
It conducts research on audio style transformation modeling 

on the grounds of AutoML and big data analysis, and extracts 
deep features from audio data. Then it utilizes EfficientNet and 
VGG networks to construct an audio style classification and 
transformation model. By comparing different audio features, it 
predicts the performance of audio after different style 
transitions. The experimental environment and dataset 
parameters are showcased in Table I. 

The accuracy changes of the audio style conversion model 
on the conversion of training set audio and validation set audio 
under different iterations are shown in Fig. 7. 
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TABLE I. EXPERIMENTAL ENVIRONMENT AND DATASET PARAMETERS 

Parameter Description Parameter Description 
Operating System Ubuntu 20.04 CUDA Version 11.2 

CuDNN Version 8.1.0 Programming Language Python 3.8 
Parameter Description Parameter Description 
Operating System Ubuntu 20.04 CUDA Version 11.2 

CuDNN Version 8.1.0 Programming Language Python 3.8 
Data Augmentation Add noise, Time stretch Audio Sample Rate 44100 Hz 

Audio Resolution 16 bits Style Audios Styles Classical, Rock, Jazz, Pop 
Total Samples in Training Data 1.2 million samples Training Data Size after Processing 1024*1024 
Processed Sample Count 16 samples per audio Scales during Training 400400, 300300, 256*256 

Style Audio Size 512*512 Big Data Analysis Tool Apache Hadoop, Apache Spark 
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Fig. 7. Accuracy of training and validation sets in audio style 

transformation. 

In Fig. 7, with the quantity of iterations grows, the accuracy 
of training audio style conversion gradually increases. This 
indicates that the audio style conversion model has a faster 
convergence ability for training audio and verifying audio. 
However, the accuracy of verifying audio style conversion 
fluctuates greatly. Sometimes the conversion accuracy of the 
verified audio is higher than that of the training audio, but 
lower than that of the training audio at other iterations. The 
fluctuation amplitude gradually decreases with the increase of 
iterations. After 50 iterations of training, the style conversion 
accuracy of both the training audio and validation audio 
exceeded 90%, and the effect was significant. The training 
curve tends to stabilize after 100 iterations, while the validation 
curve reaches stability after 175 iterations. These two curves 
indicate that the audio style conversion model achieved good 
training performance after 175 iterations, and reached its 
optimal performance after 200 iterations. For the audio samples 
of bird singing, vehicle horn sound, wave crashing sound, and 
piano performance, the style conversion ratio is compared with 
the original style conversion framework, as shown in Fig. 8. 

In Fig. 8, the curves of style conversion ratios are higher 
than those of the original framework, demonstrating that the 
style conversion model could improve the conversion quality 
of audio. This is because the model fully takes into account the 

characteristics of audio style transition, that is, in the audio, 
certain parts of the style transition are more pronounced than 
others. It calculates the weighted value of each audio segment 
on a unit basis. Then it adaptively compensates for the 
weighted values of each segment, making the style 
transformation of each segment's weighted values more 
detailed. This is to achieve the goal of improving the quality of 
audio style conversion and enhancing audio performance. It 
compares the improvement in style conversion efficiency for 
three audio sample sets: FreeSound, Looperman, and 
SampleSwap, as shown in Fig. 9. 
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Fig. 8. Comparison of style transformation ratio with original framework. 

In Fig. 9, the yellow curve represents the efficiency of 
SampleSwap style conversion. The blue dashed line represents 
the efficiency of Loopperman style conversion. The green 
curve represents the efficiency of FreeSound style conversion. 
In the efficiency analysis curve of Fig. 11 (a), the green curve 
has the best effect and is also the most stable, with time 
ranging from 0 to 300. The green curve is the fastest to reach 
4.48 and has been operating at this efficiency. Compared to the 
yellow lines, the efficiency of the blue dashed lines is much 
lower. In the efficiency analysis curve of Fig. 11 (b), the 
yellow curve has the worst effect, only less than 60, while the 
green curve and blue dashed line are 140 and 116, respectively. 
In Fig. 11 (c), the efficiency of the yellow curve is around 1.05, 
while the efficiency of the green curve is still as high as 1.34. 
The spectrograms of the flute version of "Butterfly Lovers", the 
violin version of "My Heart Forever", and the flute version of 
"Titanic" output by the STFT model are shown in Fig. 10. 
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Fig. 9. Efficiency analysis of audio style transformation improvement in three datasets. 

(a) The flute version of 'Liang Zhu' output from 
the STFT model

(b) The violin version of 'My Heart Forever' output from the STFT 
model

(c) The violin version of Titanic output from the 
STFT model  

Fig. 10. The spectrograms of the flute version of "Butterfly Lovers", the violin version of "My Heart Forever", and the flute version of "Titanic" output from the 
STFT model. 

In Fig. 10, whether it is the flute to violin or the violin to 
flute, the audio quality of the spectrograms output by the two 
models is not very good, resulting in poor sound quality. The 
audio obtained by the STFT model hardly shows any changes 
in timbre, and the sound is relatively noisy. The audio obtained 
by the CQT model can vaguely distinguish the timbre of the 

instrument. The time domain diagram is drawn on the grounds 
of the first eight seconds of Beethoven's First String Trio in 
e-flat major (hereinafter referred to as Beethoven. wav) and the 
first nine seconds of Telemann's Flute Fantasy. The 
time-domain diagram drawn by Beethoven. wav and Telemann 
in the first nine seconds are shown in Fig. 11. 
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Fig. 11. Time-domain plots plotted from the first 9s fragments of beethoven.wav and Telemann. 

In Fig. 11, the horizontal axis serves as time and the 
vertical axis serves as amplitude, reflecting the temporal 
variation of the audio signal. In this figure, the amplitude 
variation of Beethoven. wav is relatively stable, indicating the 
smooth and harmonious nature of Beethoven's trio. Telemann's 
amplitude changes significantly, showcasing the dynamic 
changes and rhythmic sense of flute fantasies. 

V. RESULTS AND DISCUSSION 
The results of applying AutoML and big data analysis to 

audio style conversion are presented. The results show that 
AutoML can recognize and transform audio styles more 
efficiently than traditional methods. By automating the 
process of model selection and feature extraction, the 
method has greatly improved the efficiency and accuracy of 
processing large-scale data sets. The analysis of a 
significant amount of audio data shows that the feature 
extraction algorithm developed in this study is robust and 
capable of capturing the fine features required for 
high-fidelity audio style conversion. In addition, the 
established evaluation method has proven effective in 
determining the optimal model across different data sets 
and transformation tasks. Challenges remain, especially 
with regard to the complexity and diversity of processing 
audio data. Despite the progress made, the deployment of 
these technologies in real-world scenarios such as music 
creation and speech synthesis needs to be further optimized. 
It is evident that while AutoML simplifies workflows, the 
complex nature of audio data requires a sophisticated 
understanding of domain-specific functionality, which is 
not fully implemented by the current AutoML framework. 
The discussion highlighted the importance of improving 
these technologies for practical applications. AutoML's 
potential for audio processing is enormous, but its full 
application is limited by current technology. Future 
research should therefore focus on improving AutoML's 
adaptability to the specific needs of audio data, ensuring 

that the benefits of automation can be fully utilized in both 
practical and creative contexts. The integration of these 
advanced technologies will have a major impact on areas 
such as music production, speech synthesis, and more, as 
long as subtle adaptations are taken into account. 

VI. CONCLUSION AND FUTURE WORK 
Audio style conversion is an important research field in 

digital audio processing, with the goal of changing the style 
characteristics of audio content without altering it. Audio style 
conversion on the grounds of AutoML and big data analysis 
can automatically learn and convert audio styles, thereby 
improving the efficiency and quality of audio processing. The 
research results show that using iterative learning for audio 
style conversion training, the training curve tends to stabilize 
after 100 iterations, while the validation curve reaches stability 
after 175 iterations. In efficiency analysis, the efficiency of the 
yellow curve and the green curve reached 1.05 and 1.34, 
respectively, with the latter having significantly higher 
efficiency. In the audio analysis section, some parts had more 
obvious style transitions than others, such as Telemann's 
significant amplitude changes, showcasing the dynamic 
changes and rhythm of flute fantasies. The main contribution 
of the research lies in utilizing AutoML and big data analysis 
methods for enhancing the accuracy and efficiency of audio 
style conversion, offering new tools and methods for music 
production and sound effect design. However, this study also 
has some shortcomings, such as poor style switching effects in 
certain parts of the audio, and the need to improve sound 
quality. There is still a lot of room for advancement in the 
study of audio style conversion in future research. It is 
necessary to further optimize and improve the methods of 
AutoML and big data analysis to enhance the accuracy and 
efficiency of audio style conversion. It also brings new 
possibilities for exploring the application of audio style 
conversion in more fields, such as speech synthesis, music 
generation, entertainment industry, etc. 
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