
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

997 | P a g e

www.ijacsa.thesai.org

Improving Load Balance in Fog Nodes by

Reinforcement Learning Algorithm

Hongwei DING, Ying ZHANG*

Hebei Software Institute, Hebei, Baoding 071000, China

Abstract—Fog computing is a distributed computing concept

that brings cloud services out to the network's edge. Real-time

user queries and data streams are processed by cloud nodes.

Tasks should be evenly divided among fog nodes in order to

maximize speed and efficiency, optimize resource efficiency, and

reaction time. Real-time user requests and data flow processing

are done by cloud nodes. Nodes in a network must share

responsibilities in a balanced manner in order to maximize speed

and efficiency, resource efficiency, and reaction time, hence in

this article, a novel approach is presented. When it comes to fog

computing, load balancing essential suggested to be improved.

According to the suggested algorithm, a task submitted to the fog

node via a mobile device would be processed by the fog node

using reinforcement learning before being passed on to another

fog node. Neighbor or let the cloud handle it. According to the

simulation findings, the suggested algorithm has achieved a

reduced execution time than other compared approaches by

properly allocating the work among the nodes. Consequently, the

suggested technique has reduced the chance of incorrect job

assignment by 24.02% and the response time to the user by

31.60% when compared to similar methods.

Keywords—Fog computing; resource allocation; reinforcement

learning; delay; load balancing; fog nodes

I. INTRODUCTION

Load balancing is a fundamental concept utilized in cloud
settings for allocating computing resources among servers and
devices [1]. By balancing the use of hardware, network, and
software resources, load balancing aims to maximize system
performance, increase efficiency, and provide the best
possible user experience [2]. Reinforcement learning
algorithms are an artificial intelligence approach to load
balancing that provides automatic and adaptive performance
enhancement [3]. IoT devices usually assign task processing
to the nearest fog node. In this case, it's possible that certain
fog nodes take on more tasks than others and eventually
become overburdened. In order to avoid this, load balancing
techniques are used to spread tasks among fog nodes equitably
[4]. Fog nodes are distributed throughout the environment [5].
Two distinct forms of load balancing are utilized in dispersed
environments: static load balancing and dynamic load
balancing. When choosing a load balancer, static load
balancing ignores the target fog node's state [6]. On the other
hand, dynamic load balancing chooses which fog node to
route traffic based on its present status [7]. Dynamic load
balancing is applied in this post. Load balancing among fog
nodes reduces expenses, latency, and user response times
while simultaneously enhancing resource productivity,
efficiency, resource conservation, and real-time event

detection [8]. Numerous load balancing techniques have been
presented recently, and they are all effective in certain system
situations. Meta-heuristic or hybrid load balancing algorithms
may be taken into consideration, depending on the approach
used [9]. There are two types of heuristic algorithms: static
and dynamic. Initiatives entail limitations intended to
determine the best course of action for a certain problem [10].
These algorithms have an advantage over meta-heuristic
algorithms in that they are easily implemented and yield good
results. Meta-heuristics require finality because of the
enormous immensity of their solution space and the fact that
they are completely random processes [11]. The type of
problem, how it was initially set up, and the strategy employed
to find a solution all have a big impact on how long it takes to
resolve. In terms of execution time and cost, coupled
algorithms—which are produced by combining numerous
meta-heuristic heuristic algorithms—are more efficient than
other algorithms [12]. Through the use of reinforcement
learning techniques, the fog system can automatically and
dynamically adapt to changes in compute load and service
requirements [13]. Based on an assessment of the present
status of the system and clients, the fog system can determine
whether to add or subtract computing resources from a server,
shift load from busy servers to freer servers, or assign
resources to services and requests according to their
importance. The system will be able to use the greatest
computing resources and adapt dynamically to the different
needs of users and services by employing this technique,
which will significantly improve load balancing in fog
computing.

Due to the distributed nature and dynamics of fog
computing, however, conventional load balancing techniques
become less effective, necessitating the development of an
algorithm that can change with the context through time. To
achieve this goal, a decision-making procedure based on
reinforcement learning is suggested in this article to locate
sparse fog nodes [14].

The agent chooses the right fog node based on the
experiences it obtains from the environment in each scenario,
which makes the proposed technique, the delay may be greatly
reduced. Additional and time-consuming calculations are also
removed in the proposed method of this article. Reinforcement
learning for load balancing is superior to conventional
approaches in that it not only simplifies the algorithm
framework without taking any network model assumptions
into account, but also converges to the best policy in
polynomial time. The collected findings demonstrate that,
when compared to the compared approaches, the suggested

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

998 | P a g e

www.ijacsa.thesai.org

load balancing method greatly decreases the lag and reaction
time to the consumer. This article's conclusion is structured so
that it is discussed in the section of current related research in
the area of load balancing in fog computing.

Section III explains the concept of the proposed system,
the reinforcement learning technique, and how to find the
system's delay. The suggested load balancing strategy is
presented in Section IV. The evaluation and comparison of the
simulation results with earlier techniques are done in Section
V. Section VI will conclude with recommendations for
additional research.

II. RELATED WORK

In fog computing, jobs are typically assigned to the nearest
fog node by mobile users and IoTs devices. These devices are
frequently mobile, therefore depending on where they are in
the network, various important nodes may have varying loads.
Due to this problem, some fog nodes may be overburdened
while others may be idle or underloaded in terms of the
distribution of work. Methods to solve the load balancing
issue in the fog computing environment have been presented
by some authors. These actions can be divided into various
categories [15].

Here, prior research on task delegation in which nodes
need to be aware of each other's computational capabilities
will be examined. To discover the best loading decision in the
presence of an uncertain reward model and transition
probability, [16]. According to the resource capacity, fog
nodes in the presented process can assign an ideal number of
incoming jobs to a free neighboring fog node. This is done to
cut down on processing time and potential overhead [17].
They looked into load balancing on several kinds of
computing nodes before officially presenting the fog
computing system's structure. Then, they developed a
matching resource allocation strategy for fog environments,
which combines static resource allocation with dynamic
service transfer, to accomplish load balancing in fog
computing systems. The min-min method was developed by
[18] to take network resources into account. When sending a
job to a cluster node that is overloaded, factors such the
distance between the cluster and the node next to it, the
amount of tasks that are waiting in each cluster's queue, and
the distance between the cluster node and the closest cloud
data center are taken into account. Researchers suggested the
min-min method in [19] and put it into practice inside each
cluster while taking network resources into account. In this
method, a neural network is used to evaluate the fog node's
current capacity. The Internet of Things gadget transmits its
work to the cloud if it doesn't get the necessary resource. In
this study, a four-layer architecture for load balancing and task
scheduling is proposed. The Internet of Things is a component
of the top layer, where a lot of data is generated and sent at
once. The jobs are divided into two categories important and
less important in the second layer via a dual fuzzy logic
method. The user-proximate nodes with the lowest load are
given priority for task execution [20].

Other works are predicated on the knowledge of the node's
load or the prediction of its future load. This algorithm
continuously gathers network traffic, server load information,

and control information. By merging fog computing and
software-based networks, [21] devised a load balancing
technique based on reinforcement learning. In order to offer
the greatest amount of access to the resources, this algorithm
analyzes the behavior of the network and divides up the work
by considering network's current load and forecasting its
future load. The network is adaptable thanks to this
architecture's dispersed nature. In this article, a threshold limit
is taken into consideration to implement the load balancing
method, and if the server load exceeds 75%, the load
balancing algorithm is called. In order to achieve better load
balance, [22]. It also applies reinforcement learning to handle
the task loading problem. In this study, Deep Q-Learning is
enhanced using an LSTM network. The quantity of input data
needed for the sub-task, the downlink bandwidth, the amount
of output data generated by the sub-task, and the load on each
server make up the state space in this article. The action space
is a vector with m + 2 zero- and one-dimensional dimensions.
A cloud server and a mobile device are included in the m and
2 edge servers. Any of the same folders can be used to
download data to the server. The three variables of load
balance, cost, and energy consumption are taken into account
by the reward function. In study [23], Berardi and colleagues
address the issue of resource management by presenting two
distributed load balancing algorithms, Sequential Forwarding
and Adaptive Forwarding, which are intended to handle
heterogeneity. They do this by assigning jobs to nearby nodes.
According to the threshold limit and the maximum number of
steps, M, a task is delivered at random to nearby fog nodes
using the first approach, known as the Sequential Forwarding
method, until it reaches the correct node. The second method,
known as the Adaptive Forwarding method, is suggested since
it is difficult to define the working parameters and M. This
method automatically and conditionally updates these
parameters. For a fog computing environment, the research in
[24] presented a load balancing method that works well for
medical applications.

The techniques described in earlier studies demonstrate
that the majority of these techniques require knowledge about
the nodes' capacity or load in order to make decisions [25].
This effort necessitates a number of time-consuming
computations that add latency and raise network traffic burden
shall be. Additionally, in the majority of these approaches, the
load balancing operation and load distribution are often
performed by a single node. In contrast to other works, this
one uses a different decision-making procedure because,
according to the suggested method, the fog node decides on
processing and task assignment only after gathering
information from the delay and reward during the learning
period and after taking into account its own capacity and the
positions of other nodes [26]. The proposed solution is
intended to address a subset of difficulties, although its use is
not constrained to a particular scenario. Additionally, the
strategy suggested in this article is dynamic and adapts to the
circumstances of the agent's goals.

III. SYSTEM MODEL

The description of the suggested system and the
reinforcement learning algorithm will be covered first in this

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

999 | P a g e

www.ijacsa.thesai.org

part. The load balancing problem formulations are then
provided using reinforcement learning.

A. System Description

The paper takes into account a four-layer design for the
suggested system, which includes Internet of Things, fog
nodes, proxy servers, and cloud data centers, as shown in Fig.
1. The Internet of Things layer, which contains various end
devices including wireless sensor nodes, mobile devices, etc.,
is the initial layer in this system. These gadgets can transmit
data to nearby fog nodes because they are directly connected
to them. The fog layer, which is the second layer, is made up
of extremely intelligent equipment like routers, switches, and
gateways that take in and process data from endpoints [27].
The cloud data center layer, which consists of numerous
computers and data centers, is the fourth tier. This structure
eliminates the requirement for data transfers to the central
cloud by allowing data and information processing to take
place locally in fog nodes [28]. Due of their limited
computational power, mobile devices in the proposed system
assign fog nodes within their range to process a portion of the
work (a virtual reality game). Since there is no master node or
controller in this system that keeps track of the fog nodes'
status and the external conditions, it is up to the fog nodes to
collect data and make decisions [29], [30].

The proposed system operates as follows: On the user's
smartphone, an Android application called Tractor
Beam2EEG (a type of game where players compete against
each other) is running. This application demonstrates how the
human brain and the computer interact. Each player must have
a headset attached to his smartphone in order to play this
game. This application continuously monitors the signals
picked up by the headset, the processing, and the mental state
of the user. Processing the software can need a lot of
processing power. Therefore, in this article, the program is
broken into multiple pieces known as subtask 3 in order to
enhance the processing time, transfer time, and boost the
usage rate of network resources. The following dependencies,
depending on virtual reality game tasks, are presented in this
article. The software is divided into five subtasks, as
illustrated in Fig. 2: EEG, Client, Actuator, Concentration-
Calculator, and Connector. These subtasks' data are
interdependent.

The major processing modules in this application are the
Client, Concentration-Calculator, and Connector modules. In
order to receive the EEG signals, the Client module interfaces
with the sensor. Once it has received the signals, it checks
their levels and, if they are constant, passes them to the
Concentration module. Calculator that assesses the user's
mental state based on the signal it receives and computes their
level of concentration [31]. The Client module is then
informed of the computed concentration level by the
Concentration-Calculator module. The Connector module
connects the game amongst several participants who may be
present in geographically dispersed areas by operating on a
global scale. The Client module of each connected user
receives a constant stream of information from the Connector
about the game's current condition [32]. Numerous modules
can be kept on mobile devices due to the fact that these sub-
tasks require less computational complexity and data transfer,

while those that demand greater computing resources can be
assigned to the cloud provider's nodes. The loop that
transforms the user's mental state into the game's state on the
mobile device's screen is the most crucial control loop in this
application. The mobile device and the device that houses the
user's brain state calculation module must communicate in
real-time for this to work. The user experience is significantly
impacted by latency in this loop because it affects the entities
that the user interacts with directly [33].

The computing modules should be as near the data sources
as possible to minimize the latency in data transmission
between units. The EEG, Client, and Actuator modules of this
article's suggested design, as illustrated in Fig. 3, are
connected to mobile devices. Each module in the loop
processes the program, forwarding the processed data to the
subsequent module, and so on, until the Actuator module in
the mobile device receives the program's final results [34].
Each fog node has an unpredictable amount of mobile devices
connected to it at any one time given time due to the dynamics
of the environment, and it is possible that some fog nodes
acquire more subtasks than others and eventually become
overloaded. To prevent this, fog nodes are evenly divided into
sub-tasks using load balancing techniques.

Fig. 1. Architecture of fog computing layers.

Fig. 2. Subtasks and their dependencies.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1000 | P a g e

www.ijacsa.thesai.org

Fig. 3. Module placement in various devices.

The load balancing algorithm's primary goal in a fog
computing setting is to increase the user reaction time by
dispersing the system's total load so that it can continue to
operate at its best under dynamic system settings. This article's
goal is to reduce network resource loss, user response time,
and delay by applying the reinforcement learning method to
the fog nodes. When a fog node receives a subtask, it employs
a reinforcement learning algorithm to decide whether to
process it independently, pass it on to another node in the area,
or send it to the cloud to be processed faster.

B. Reinforcement Learning Algorithm

Supervised, unsupervised, semi-supervised, and
reinforcement learning are the four main types of machine
learning algorithms. Numerous labeled input data are needed
for supervised learning in order to train the system.
Unsupervised learning, as contrast to supervised learning,
involves learning from unlabeled events in order to uncover
hidden patterns in the data. Unlabeled data and labeled data
are used in supervised fog learning to increase learning
accuracy [35]. The agent can learn the best actions from the
environment through reinforcement learning. Through
environment exploration, trial and error, and use of the
incentives provided by the environment, this learning is
accomplished [36]. In this article, load balancing is
accomplished by Q-L algorithm. The proposed approach
formulates the load balancing problem as a Markov decision
process (MDP), where the fog node takes a decision after
learning the state of its surroundings and is rewarded by it.
Experience is the end result of trial and error and is
characterized by the four states of the present state, action,
reward, and next state [37].

1) Policy: The agent's behavior can take one of two forms

when it comes to policy: active policy, in which the agent

learns the value function in accordance with the performance

that the current policy has caused, or passive policy, in which

the agent learns in accordance with the action that the policy

has caused [38]. The function learns the value, the other is

obtained, and it is defined. The Q-Learning algorithm is a

passive algorithm with a greedy learning strategy for the Q

value.

2) Value function: The learner function's reward function

sets the objective, and the closer it gets to the target, the more

reward it receives. The value function in reinforcement

learning, on the other hand, derives a value as Eq. (1) for each

state and has a long-term perspective. The closer to the

objective this value is, the higher it is.

𝑣 ∗ (𝑠) = 𝑚𝑎𝑥 ∑ 𝑝(𝑠 ,
𝑠, ,𝑟 , 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣 ∗ (𝑠 ,)] (1)

The discount factor, often known as 0 < 𝛾 < 1 , in this
context determines the significance of potential benefits in the
future and the decision made right now is more important than
those made in the future.

In states, the agent takes action (A) to change the
environment from its present state to a new state (b) and
receives a reward (r) for his efforts; both factors influence his
future decision-making.

3) Model: The reinforcement learning problem has a

random model with non-deterministic states. Going from one

state to another and taking any action are both possibilities

[39].

Reinforcement learning has thus found various uses in
optimization in the dynamic, unpredictable, and changing
environments of fog and clouds. Additionally, it might be a
good way to evenly distribute loads among fog nodes [40].

C. Formulation of the Problem

Discrete time stochastic control is what the MDP is. One
method for solving MDP is reinforcement learning, which in
turn makes use of dynamic programming. To achieve the
target performance, the suggested load balancing problem is
expressed as an MDP. For the suggested load balancing
problem, the fours < 𝑆 , 𝐴, 𝑃 , 𝑅 > are defined below, which
are typically included in MDP:

1) The state space 𝑆 = {𝑠 (𝐶, 𝑄, 𝑁)} represents the

relationship between the fog node's capacity (C), the size of its

upstream queue (Q), and the number of mobile devices (N)

linked to the fog node.

The Q-L algorithm bases decisions on the system's present
state. Many of the earlier techniques for defining the state
space call for knowledge of the nearby nodes' capacity [41].
However, the state of the system is solely specified in the
proposed method based on the state of the decision-making
fog node, which forces decisions to be taken without
knowledge of the states of the surrounding nodes.

2) In the action space 𝐴 = {𝑎 = (𝑛)} , n represents the

choice of a fog or cloud node to be assigned to the subtask.

3) P: A number between zero and one represents the

transition probability. In order to be in state s, the criterion is

to have the probability distribution of the transition 𝑃(𝑠 ,|𝑠, 𝑎)

to the next state 𝑠 ,, with the action choice.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1001 | P a g e

www.ijacsa.thesai.org

4) R: The state's activity is directly linked to the reward.

The primary objective is to minimize processing delay and

overhead probability while maximizing long-term value in

each system by selecting the appropriate action.

As was already noted, there are various subtasks within the
task (virtual reality game). The sum of all linked sub-tasks'
transmission and processing delays across all relevant devices
is the task execution delay and is determined as follows:

𝑇𝑡𝑎𝑠𝑘 = 𝑡𝑢𝑜𝑡 − 𝑡𝑖𝑛 (2)

where, 𝑡𝑜𝑢𝑡𝑎𝑛𝑑 𝑡𝑖𝑛 represent, respectively, the entry time
and exit time of a task in the suggested system. Since the
processing and transmission delays in mobile devices are
relatively constant, this article solely calculates the processing

delays of the Concentration-Calculator subtask in fog or cloud
nodes and the subtask in the mobile device to compute the
delay of task execution [42]. It is seen as having a constant
value. The suggested method uses fog nodes to perform the Q-
Learning algorithm, Additionally, the subtask's processing
delay is equal to the negative of the reward function (R
𝑅(𝑠, 𝑎)), which is allocated to the fog node. The longer the
processing delay of the subtask, the better. As a result, 𝑅(𝑠, 𝑎)
will be lower than expected. The calculation looks like this.

𝑅(𝑠, 𝑎) = −𝑇𝑆𝑢𝑏𝑡𝑎𝑠𝑘 (3)

This refers to the calculation subtask that the fog node is
tasked with performing, where 𝑇𝑆𝑢𝑏𝑡𝑎𝑠𝑘 is its processing delay.
The symbols used to evaluate the system and the delay
calculation formulas are listed in Table I.

TABLE I. SYMBOLS USED TO EVALUATE THE SYSTEM AND DELAY CALCULATION FORMULA

Value Description Parameters

- How many smaller jobs ran on the node W

3500 Subtask data size L

10000 Bandwidth per node B

- How far apart are the nodes i and j? 𝑑𝑖,𝑗

10−3 Path loss constant between two nodes 𝛽1

5 path loss power 𝛽2

20 dBm Power transfer between nodes P

175 dBm /Hz Spectral density of noise power 𝑁0

200×106 Quantity of subtask-specific commands I

5 The amount of CPU cycles used by each instruction Cycle

2800

44800

Fog node cpu speed,

cloud cpu speed
f

4 Just how many fog nodes N

- The frequency with which a state is displayed n

2/n Rate of learning α

0.8 reduction element y

The subtask's processing lag depends on whether its
processing is done in the fog the node that the mobile device
sent the subtask to (𝐹𝑁 − 𝐼) or whether it is handed over to
the neighboring fog node (𝐹𝑁 − 𝐽) or the cloud.

 The following formula determines the execution delay
of the subtask, which is equal to Subtask if the subtask
is processed by 𝐹𝑁 − 𝐼.

𝑇𝑆𝑢𝑏𝑡𝑎𝑠𝑘 =
𝐼×𝐶𝑦𝑐𝑙𝑒×𝑊

𝑓
 (4)

 If the subtask is delegated to 𝐹𝑁 − 𝐼 or Cloud for
processing, 𝑇𝑆𝑢𝑏𝑡𝑎𝑠𝑘 is calculated as follows.

𝑇𝑠𝑢𝑏𝑡𝑎𝑠𝑘 = 𝑡𝑊𝑖
+ 𝑡𝑐𝑖𝑗

+ 𝑡𝐸𝑗
+ 𝑡𝑊𝑗

+ 𝑡𝑐𝑗𝑖
 (5)

In this regard, 𝑡𝑊𝑖
 and 𝑡𝑊𝑗

 are the waiting delay of the

subtask in the I-FN sending queue t and the J-FN sending
queue or cloud is affected by the subtask's waiting delay. 𝑡𝑐𝑖𝑗

denotes the time it takes for the subtask to be transmitted over
the communication channel. Moving from I-FN to J-FN or the

cloud. The subtask execution delay in J-FN or the cloud is

represented by 𝑡𝐸𝑗
, whereas the subtask result delay from J-FN

or the cloud to I-FN is represented by 𝑡𝑐𝑖𝑗
 . A node's (i) or

cloud node's (j) waiting delay in the sending queue is
determined in the following way.

𝑡𝑤 = 𝑡𝑜 + 𝑡𝑖 (6)

where, 𝑡𝑜 and 𝑡𝑖 are respectively the entry Add the arrival
time of subtask m to the node's queue and record the departure
time of subtask m from the same queue. The latency of
subtask transmission on the communication route between
FN-I and FN-J or the cloud, and vice versa, is equivalent to:

𝑡𝑐 =
𝐿

𝑟𝑖,𝑗
 (7)

where, 𝑟𝑖,𝑗 The transmission rate between nodes i and j is

denoted as.

𝑟𝑖,𝑗 = 𝐵𝑙𝑜𝑔(1 +
𝑔𝑖,𝑗×𝑝

𝐵×𝑁
) (8)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1002 | P a g e

www.ijacsa.thesai.org

where, 𝑔𝑖,𝑗 = 𝛽1𝑑𝑖,𝑗
−𝛽2 is the gain of the channel between

two nodes i and j. The delay of execution of the subtask in J-
FN or cloud 𝑡𝐸𝑗

 is equal to:

𝑡𝐸𝑗
=

𝐼×𝐶𝑦𝑐𝑙𝑒×𝑊

𝑓
 (9)

Each fog node is a learning agent operating in an S-state
space environment. Each time a new task is added to the
system, the agent performs an action in the surrounding area
and chooses one of the nodes to receive the new work. In the
event that the environment state is updated, the reward for this
allocation will be decided. The agent will receive the reward if
the system is now operating with a load balance that is closer
to ideal and the subtasks are processed more quickly than they
would otherwise [43]. Each node progressively acquires the
ability to optimize its decision-making process for handling
subtasks based on the rewards it receives. Minimizing the
delay of sub-task processing in the fog environment will
reduce the overall delay and response time to the user,
resulting in the network spending less time on task processing.

IV. THE PROPOSED LOAD BALANCING METHOD

In order to address the issues with the prior approaches,
the load balancing algorithm based on reinforcement learning
is presented in this section. It is designed to distribute the load
uniformly among the intermediate nodes of the fog. Dynamic
programming can solve MDP when the system for every state-
action combination has a transition function and a reward
function, but typically the system is unable to anticipate the
precise value of the transition function and reward for the
majority of the states, which is required to solve the problem.
It is suggested to use reinforcement learning to solve these
issues. The Q-Learning algorithm, one of the reinforcement
learning algorithms, is utilized in this article to locate the ideal
action mode with the least amount of computing expense,
making up for the absence of appropriate data through
experimentation. The Q-Learning algorithm's model is a
random model.

Distributes an agent involved in network learning is
referred to as a fog node. The sub-fog node will choose to use
reinforcement learning to process a new task after receiving it.
Hence, the fog node designated for the Concentration-
Calculator task acquires data from the mobile device. The fog
node then assesses the environment and, in order to maximize
the long-term reward, decides whether to complete the subtask
independently or to delegate it to a nearby fog node for
quicker completion based on its capacity and past experiences

and rewards. If the Concentration-Calculator subtask takes
longer to process in the fog nodes than it does in the cloud, the
fog node chooses to transfer this subtask's processing to the
cloud, which will speed up processing and lighten the load on
the fog nodes. According to the system model, each fog node
performs a response after observing the current states, a delay
is made, and the new state 𝑠 , is observed, and for that, it
receives a reward (R, s, c) from the environment.

𝑄𝑛𝑒𝑤 (𝑠, 𝑎) = 𝑄𝑜𝑙𝑑(𝑠, 𝑎) + 𝑎[𝑅(𝑠, 𝑎) + 𝛾 max
𝑎

𝑄 (𝑠 ,, 𝑎,) −

𝑄𝑜𝑙𝑑(𝑠, 𝑎)] (10)

The learning rate, 0 1   < 1, strikes a balance between
previously learned material and new observations. Using the
available knowledge, the greedy method selects a course of
action that yields the greatest reward in a single step. The
Learning-Q method uses the likelihood of selecting an action

, where  greedy is the policy with larger reward, in order to
maximize the long-term value. The fog node is chosen to
complete the subtask in order to maximize long-term value. In

this manner, a random action with a fixed probability 

greedy is chosen in each time step of the algorithm 0  1.

The benefit of utilizing 1 and the action with the

highest value is that as the number of steps rises, every 

greedy of the Q(s,a) algorithm exhibits an infinite action,
ensuring that it will eventually converge to the best value. As
a result, using the Learning-Q method, the fog node learns to
choose the best node for handling the subtask. The suggested
method calculates the suitable reward function using 3.

Since the function of infinity has been observed, it is
certain that (Q, s, and a) will eventually converge to the ideal
value. Consequently, using the Q-Learning method, the fog
node learns to choose the best node for processing subtasks.
The load balancing solution that has been suggested
calculation of the suitable reward function is shown in Fig. 4
and it is done using Eq. (3). The fog node learns the complete
network and the likelihood of loading to each node as it
traverses the network using the learning method, enabling it to
select the best node to transfer the task to. The algorithm
begins by using a greedy approach to explore the network, and
once it has a thorough understanding of the network's
requirements, it performs optimal load balancing. The state
space encompasses the capacity of the fog node, the length of
the uplink queue within the fog node, and the quantity of
mobile devices linked to the fog node. In order to minimize
the processing delay for the subtask, select either a reward
eyebrow or a fog node.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1003 | P a g e

www.ijacsa.thesai.org

Fig. 4. Block diagram of the implementation steps of the proposed load balancing method.

V. EVALUATION AND SIMULATION

This article utilizes the iFogSim simulator [21] to model
the load balancing problem using the reinforcement learning
technique. This software was executed on a Sous computer
equipped with seven Intel Core i processors and eight GB of
RAM. The proposed system has N fog nodes and a variable
number of mobile devices that establish random connections
with neighboring fog nodes to broadcast subtasks. This paper
proposes the utilization of the Q-Learning algorithm for load
balancing in a fog environment. Initially, the fog node lacks
any understanding of the network due to the fact that all the Q-
table values in the Q-Learning algorithm are set to zero. The
application of the avaricious approach to learning is
implemented. Initially, the algorithm conducts an exhaustive
search of the network, prioritizing immediate gains, as the
number 0 is considered equivalent to 1. Over time, as the fog
node's estimation reliability in the Q-table increased, its value
changed to 0.3. Additionally, the received reward's value is
equal to the concentration-calculator subtask's negative
processing delay at the fog or cloud node.

The learning method is applied right away to minimize the
generation of overhead in the nodes as it is expected that the
task creation and task sending have already been completed in
the simulation. The Q-L method allows the fog node to learn
the best ways to interact with its surroundings. Through
environment exploration, trial and error, and use of the
incentives provided by the environment, this learning is
accomplished. In general, each fog node assesses the state of

the environment, selects a node to assign the work to, and then
reaps the benefits. With each iteration of the method, the fog
node's network experience grows, and over time it learns to
assign the sub-task to a node with a lighter workload and
faster processing speed. Contrary to the proposed way,
alternative solutions (such as those in sources [6, 8]) conduct
the load balancing algorithm before adding overhead to the
fog node, which degrades the performance of the
aforementioned systems and lengthens their latency. Another
benefit is that, in the comparative methods for allocating sub-
tasks to surrounding nodes, it is only necessary to be aware of
this node's position and capacity, which may be determined by
making a few numbers of laborious computations. However,
in the suggested system of these computations, time-
consuming and redundant tasks are eliminated, and the fog
node simply behaves in accordance with the knowledge it has
received from its surroundings. By doing this, the proposed
system's latency will be as little as possible.

A number of current load balancing techniques have been
compared to the performance of the suggested method, and in
this simulation, random and proportional SALB load
balancing techniques have been employed as benchmarks [6,
8]. The SALB approach examines the adjacent nodes'
capacities after the fog node is overloaded and delivers the
subtask to the node with the highest capacity and at least 40%
of its capacity. Sub-tasks are distributed at random to fog
nodes in the random technique. The Proportional approach
receives information on each neighbor's capacity and chooses
the best node based on the size of the subtask.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1004 | P a g e

www.ijacsa.thesai.org

Following that, the graphs created by applying the Q-L
algorithm to the load balancing problem are provided. Finally,
the results of applying all four algorithms are discussed, along
with a comparison of how well they performed in terms of
delay, user response time, and load balancing.

Fig. 5 displays the progressive augmentation of the
cumulative reward with each repetition of the proposed
technique. As mentioned earlier, the reward is equivalent to
the reciprocal of the processing delay for the subtask assigned
to the fog node. The awarded reward will drop as the subtask's
processing time increases, depending on whether the cloud
provisioning node handles it. The action that yields the highest
Q-value is chosen in the decision to transfer the load.
According to the effectiveness of the suggested incentive, the
proposed technique uses Q-Learning-based load assignment
decision to reduce processing duration and overhead

likelihood. With an increase in task processing rate,
cumulative reward rises. Due to the fact that many tasks are
queued up in the nodes, the cumulative reward also
continuously falls as the quantity of incoming tasks rises. In
this method, the network delay and user response time are
decreased as the fog node eventually learns to assign
processing of subtasks to the node that causes the least amount
of delay.

Fig. 6 demonstrates how the average execution time has
decreased dramatically as a result of program repetition and
increased learning. In this method, the network delay and user
response time are decreased as the fog node figures out which
node is the least delay-prone and starts to delegate subtask
execution to it. Furthermore, as seen in Fig. 7, the standard
deviation of the nodes' load decreases as learning grows.

Fig. 5. Increasing payout with each cycle of the suggested method.

Fig. 6. Average task execution delay in Q-Learning method.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1005 | P a g e

www.ijacsa.thesai.org

Fig. 7. Standard deviation of load on nodes in Q-Learning algorithm.

Fig. 8. Average task execution delay.

As a result, the network's job distribution and processing
may be guaranteed to be balanced, and load balancing is
enhanced. Just as mentioned before, the fog node detects
which node causes the least delay and starts sending the
subtask processing to that node. If the sub-task is sent to a
node with more capacity and can therefore handle the
incoming sub-task more quickly, the processing latency of the
sub-task is decreased. By giving the subtask to the fog node
with the greatest capacity, overhead with minimal strain on
other nodes are avoided.

The pressure on the nodes' standard deviation diminishes
as learning progresses. As a result, the load balance is
enhanced and it is possible to guarantee that the tasks are
dispersed and carried out in the network in a balanced manner.
As previously noted, the fog node eventually learns to assign
the subtask's processing to the node that causes the least delay.
If a subtask is assigned to a node that has more capacity and
can handle the incoming subtask more quickly, the processing
latency is decreased. By giving the work to the fog node with
the greatest capacity, overhead and underloading of other

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1006 | P a g e

www.ijacsa.thesai.org

nodes are avoided. The outcomes of the execution of all four
algorithms are now reviewed, along with a performance
comparison. It is anticipated that the Q-Learning algorithm
will considerably enhance the network's load balancing
capabilities. According to the evaluation's findings, Fig. 8
illustrates how choosing a task based on Q-Learning
minimizes task execution latency in accordance with the
suggested reward function. The proposed load balancing
technique uses reinforcement learning to evenly spread the
load across the nodes, enabling the nodes to complete sub-
tasks faster.

The cumulative reward drops as the task arrival rate rises
because fewer tasks can be processed by fog nodes due to the
relatively high amount of subtasks that are queued at them.
However, the suggested load balancing method produces a
beneficial reward in that the delay is also reduced in the same

proportion. This is because the load is distributed properly
across the fog nodes. Additionally, unlike the approaches that
were examined, no time-consuming computations were
required in the suggested load balancing method to determine
the capacity and location of surrounding nodes. As a result, as
shown in this figure, the time it takes for the suggested
approach to work is when contrasted with alternative methods,
it is greatly decreased. When the standard deviation of the four
methods for node load is compared, the average task execution
delay is checked. Fig. 9 shows that the dispersion of the nodes'
loads is initially lower in the SALB algorithm than in other
approaches, but that it has dramatically decreased within the
suggested approach as an agent learning has increased. This
demonstrates that the suggested strategy evenly distributes the
duties around the network, minimizing the likelihood of
overhead in the nodes.

Fig. 9. Dispersion of node loads averaged out.

Fig. 10. Comparison of total delay for different methods.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1007 | P a g e

www.ijacsa.thesai.org

Fig. 11. Time to execute all tasks.

The overall execution time for the jobs using all four
approaches is shown in Fig. 10. The average execution time of
the input jobs from the first to the last algorithm iteration is
used to calculate the overall delay. The examination reveals
that the Q-Learning approach has the least overall delay when
compared to other methods, which indicates that this method
performs at a higher level of excellence.

Fig. 11 compares the execution times of both the suggested
approach and the SALB method for each task that is entered
into the system. The suggested solution significantly
outperformed the SALB method in terms of the amount of
time it took to execute all of the jobs that were input into the
system during the simulation. Due to this, the suggested
approach and system perform better than alternative methods
that were also considered. The results show that the fog node
considers the queue states, capacities, and the number of
mobile devices linked to each node while deciding whether to
disperse the load using the Q-Learning method. So, the
unsuccessful allocation can be reduced by the proposed
approach. Based on the results of the evaluation mentioned
earlier, the proposed load balancing method is more stable
than current load balancing approaches, and it significantly
reduces both the network delay and the user response time.

VI. CONCLUSION

This article's goal is to outline a strategy for enhancing
load balancing in fog nodes. Task distribution and load
balancing are difficult problems in fog computing because of
unique characteristics including topology dynamics and
resource heterogeneity, and the adoption of conventional
approaches to address these difficulties is inefficient. The
application of machine learning algorithms, including
reinforcement learning, is one of the cutting-edge methods for
tackling complicated issues. In this article, the Q-Learning
algorithm is used to demonstrate load balancing in a fog
environment. By utilizing the experience that the learning
agent acquires through interacting with the environment, this

algorithm generates a long-term optimal strategy. As an agent,
each fog node in the proposed technique searches the fog
environment for low-load nodes suitable for allocating sub-
tasks to reduce processing time and overhead with the use of
the Markov decision process. The proposed solution has been
tried with various numbers of mobile devices and fog nodes in
the network, and it has produced successful results. According
on simulation results, the suggested algorithm greatly reduces
processing delay, user response time, and the likelihood of
task assignment failure when compared to existing
approaches. Some of the limitations of this research can
include the following:

1) Hypothetical system model: This research assumes a

system model and specific features for fog nodes, task

distribution and network communication. These assumptions

may not always hold true in practical deployments and

potentially limit the generalizability of the findings.

2) Limited scalability testing: The scalability of the

proposed algorithm may not have been extensively tested

across a wide range of network sizes and configurations.

Performance evaluation at different scales can provide

valuable insight into algorithm robustness.
According to the study, the following can be considered for

future research:

1) Dynamic adaptation: Enhancing the algorithm to

dynamically adapt to changes in network conditions, such as

node failures, varying workloads, or the mobility of fog nodes,

to ensure robustness and scalability.

2) Optimization techniques: Investigate advanced

optimization techniques to improve the efficiency and

convergence speed of the reinforcement learning algorithm,

potentially including deep reinforcement learning or other

advanced methods.

3) Security and privacy considerations: Review the

security and privacy implications of the proposed load

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1008 | P a g e

www.ijacsa.thesai.org

balancing approach, including potential vulnerabilities and

mitigation strategies to protect sensitive data and ensure

system integrity.

4) Integration with edge devices: extending the algorithm

to combine edge devices and optimize the allocation of work

in both fog nodes and edge devices, taking into account

factors such as device capabilities, energy constraints, and

communication protocols.

REFERENCES

[1] M. H. Kashani and E. Mahdipour, “Load Balancing Algorithms in Fog
Computing,” IEEE Trans Serv Comput, vol. 16, no. 2, pp. 1505–1521,
2022.

[2] I. Martinez, A. S. Hafid, and A. Jarray, “Design, resource management,
and evaluation of fog computing systems: a survey,” IEEE Internet
Things J, vol. 8, no. 4, pp. 2494–2516, 2020.

[3] M. H. Kashani, A. Ahmadzadeh, and E. Mahdipour, “Load balancing
mechanisms in fog computing: A systematic review,” arXiv preprint
arXiv:2011.14706, 2020.

[4] A. Yousefpour et al., “All one needs to know about fog computing and
related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289–330, 2019.

[5] D. Puthal, R. Ranjan, A. Nanda, P. Nanda, P. P. Jayaraman, and A. Y.
Zomaya, “Secure authentication and load balancing of distributed edge
datacenters,” J Parallel Distrib Comput, vol. 124, pp. 60–69, 2019.

[6] S. Gupta and N. Singh, “Fog-GMFA-DRL: Enhanced deep
reinforcement learning with hybrid grey wolf and modified moth flame
optimization to enhance the load balancing in the fog-IoT environment,”
Advances in Engineering Software, vol. 174, p. 103295, 2022.

[7] N. Khattar, J. Sidhu, and J. Singh, “Toward energy-efficient cloud
computing: a survey of dynamic power management and heuristics-
based optimization techniques,” J Supercomput, vol. 75, pp. 4750–4810,
2019.

[8] S. Malik et al., “Intelligent load-balancing framework for fog-enabled
communication in healthcare,” Electronics (Basel), vol. 11, no. 4, p. 566,
2022.

[9] Sajadi, S. M., Kadir, D. H., Balaky, S. M., & Perot, E. M. (2021). An
Eco-friendly nanocatalyst for removal of some poisonous environmental
pollutions and statistically evaluation of its performance. Surfaces and
Interfaces, 23, 100908.

[10] Wang, G., Wu, J., & Trik, M. (2023). A novel approach to reduce video
traffic based on understanding user demand and D2D communication in
5G networks. IETE Journal of Research, 1-17.

[11] Sai Huang, Guangdeng Zong, Ning Zhao, Xudong Zhao, Adil M.
Ahmad. Performance Recovery-Based Fuzzy Robust Control of
Networked Nonlinear Systems against Actuator Fault: A Deferred
Actuator-Switching Method, Fuzzy Sets and Systems, doi:
10.1016/j.fss.2024.108858, 2024.

[12] Kadir, D. H. (2021). Statistical evaluation of main extraction parameters
in twenty plant extracts for obtaining their optimum total phenolic
content and its relation to antioxidant and antibacterial activities. Food
Science & Nutrition, 9(7), 3491-3499.

[13] Khezri, E., Yahya, R. O., Hassanzadeh, H., Mohaidat, M., Ahmadi, S.,
& Trik, M. (2024). DLJSF: Data-Locality Aware Job Scheduling IoT
tasks in fog-cloud computing environments. Results in Engineering, 21,
101780.

[14] Zoraghchian, A. A., Asghari, A., & Trik, M. (2014). Thermal Control
Methods for Reducing Heat in 3D ICs-TSV (Through-Silicon-Via).

[15] E. Khezri, E. Zeinali, and H. Sargolzaey, “SGHRP: Secure Greedy
Highway Routing Protocol with authentication and increased privacy in
vehicular ad hoc networks,” PLoS One, vol. 18, no. 4, p. e0282031,
2023.

[16] Trik, M., Jabbehdari, S., Darvani, F. M., & Shojaei, A. (2015). Studying
security protocol architecture based on cryptography algorithms.
International Journal of Innovative Science, Engineering & Technology,
2(4).

[17] M. Trik, A. M. N. G. Molk, F. Ghasemi, and P. Pouryeganeh, “A hybrid
selection strategy based on traffic analysis for improving performance in
networks on chip,” J Sens, vol. 2022, 2022.

[18] S. R. Deshmukh, S. K. Yadav, and D. N. Kyatanvar, “Load balancing in
cloud environs: Optimal task scheduling via hybrid algorithm,”
International Journal of Modeling, Simulation, and Scientific
Computing, vol. 12, no. 02, p. 2150008, 2021.

[19] Trik, M., Pour Mozafari, S., & Bidgoli, A. M. (2021). An adaptive
routing strategy to reduce energy consumption in network on chip.
Journal of Advances in Computer Research, 12(3), 13-26.

[20] Ding, X., Yao, R., & Khezri, E. (2023). An efficient algorithm for
optimal route node sensing in smart tourism Urban traffic based on
priority constraints. Wireless Networks, 1-18.

[21] Khosravi, M., Trik, M., & Ansari, A. (2024). Diagnosis and
classification of disturbances in the power distribution network by
phasor measurement unit based on fuzzy intelligent system. The Journal
of Engineering, 2024(1), e12322.

[22] Blbas, H., & Kadir, D. H. (2019). An application of factor analysis to
identify the most effective reasons that university students hate to read
books. International Journal of Innovation, Creativity and Change, 6(2),
251-265.

[23] Cao Y, Niu B, Wang H, Zhao X. Event‐based adaptive resilient control
for networked nonlinear systems against unknown deception attacks and
actuator saturation. International Journal of Robust and Nonlinear
Control . doi: 10.1002/rnc.7231, 2024.

[24] M. Samiei, A. Hassani, S. Sarspy, I. E. Komari, M. Trik, and F.
Hassanpour, “Classification of skin cancer stages using a AHP fuzzy
technique within the context of big data healthcare,” J Cancer Res Clin
Oncol, pp. 1–15, 2023.

[25] J. Sun, Y. Zhang, and M. Trik, “PBPHS: a profile-based predictive
handover strategy for 5G networks,” Cybern Syst, pp. 1–22, 2022.

[26] M. Trik, H. Akhavan, A. M. Bidgoli, A. M. N. G. Molk, H. Vashani, and
S. P. Mozaffari, “A new adaptive selection strategy for reducing latency
in networks on chip,” Integration, vol. 89, pp. 9–24, 2023.

[27] Omer, A. W., Blbas, H. T., & Kadir, D. H. (2021). A Comparison
between Brown’s and Holt’s Double Exponential Smoothing for
Forecasting Applied Generation Electrical Energies in Kurdistan
Region.

[28] Sai Huang, Guangdeng Zong, Ning Zhao, Xudong Zhao, Adil M.
Ahmad. Performance Recovery-Based Fuzzy Robust Control of
Networked Nonlinear Systems against Actuator Fault: A Deferred
Actuator-Switching Method, Fuzzy Sets and Systems, doi:
10.1016/j.fss.2024.108858, 2024.

[29] Haoyu Zhang, Quan Zou, Ying Ju, Chenggang Song, Dong Chen.
Distance-based Support Vector Machine to Predict DNA N6-
methyladine Modification. Current Bioinformatics. 2022, 17(5): 473-
482.

[30] Xiao, L., Cao, Y., Gai, Y., Khezri, E., Liu, J., & Yang, M. (2023).
Recognizing sports activities from video frames using deformable
convolution and adaptive multiscale features. Journal of Cloud
Computing, 12(1), 1-20.

[31] Hu, H., Luo, P., Kadir, D. H., & Hassanvand, A. (2023). Assessing the
impact of aneurysm morphology on the risk of internal carotid artery
aneurysm rupture: A statistical and computational analysis of
endovascular coiling. Physics of Fluids, 35(10).

[32] Hai, T., Kadir, D. H., & Ghanbari, A. (2023). Modeling the emission
characteristics of the hydrogen-enriched natural gas engines by multi-
output least-squares support vector regression: Comprehensive statistical
and operating analyses. Energy, 276, 127515.

[33] Kadir, D. H., & Rahi, A. R. K. (2023). Applying the Bayesian technique
in designing a single sampling plan. Cihan University-Erbil Scientific
Journal, 7(2), 17-25.

[34] Saidabad, M. Y., Hassanzadeh, H., Ebrahimi, S. H. S., Khezri, E.,
Rahimi, M. R., & Trik, M. (2024). An efficient approach for multi-label
classification based on Advanced Kernel-Based Learning System.
Intelligent Systems with Applications, 200332.

[35] Mahmood, N. H., Kadir, D. H., & Alzawbaee, O. M. M. (2024).
Building a Statistical Model to Forecast Traffic Accidents for Death and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1009 | P a g e

www.ijacsa.thesai.org

Injuries by Using Bivariate Time Series Analysis. Zanco Journal of
Human Sciences, 28(1), 278-289.

[36] Saleh, D. M., Kadir, D. H., & Jamil, D. I. (2023). A Comparison
between Some Penalized Methods for Estimating Parameters:
Simulation Study. QALAAI ZANIST JOURNAL, 8(1), 1122-1134.

[37] Fakhri, P. S., Asghari, O., Sarspy, S., Marand, M. B., Moshaver, P., &
Trik, M. (2023). A fuzzy decision-making system for video tracking
with multiple objects in non-stationary conditions. Heliyon, 9(11).

[38] M. Trik, S. P. Mozaffari, and A. M. Bidgoli, “Providing an adaptive
routing along with a hybrid selection strategy to increase efficiency in
NoC-based neuromorphic systems,” Comput Intell Neurosci, vol. 2021,
2021.

[39] Chen Cao, Jianhua Wang, Devin Kwok, Zilong Zhang, Feifei Cui, Da
Zhao, Mulin Jun Li, Quan Zou. webTWAS: a resource for disease
candidate susceptibility genes identified by transcriptome-wide
association study. Nucleic Acids Research.2022, 50(D1): D1123-D1130.

[40] Hu, H., Luo, P., Kadir, D. H., & Hassanvand, A. (2023). Assessing the
impact of aneurysm morphology on the risk of internal carotid artery
aneurysm rupture: A statistical and computational analysis of
endovascular coiling. Physics of Fluids, 35 (10).

[41] Li, Y., Wang, H., & Trik, M. (2024). Design and simulation of a new
current mirror circuit with low power consumption and high
performance and output impedance. Analog Integrated Circuits and
Signal Processing, 1-13.

[42] D. Mokhlesi Ghanevati, E. Khorami, B. Boukani, and M. Trik, “Improve
replica placement in content distribution networks with hybrid
technique,” Journal of Advances in Computer Research, vol. 11, no. 1,
pp. 87–99, 2020.

[43] I. Tellioglu and H. A. Mantar, “A proportional load balancing for
wireless sensor networks,” in 2009 Third International Conference on
Sensor Technologies and Applications, IEEE, 2009, pp. 514–519.

