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Abstract—Fog computing is a distributed computing concept 

that brings cloud services out to the network's edge. Real-time 

user queries and data streams are processed by cloud nodes. 

Tasks should be evenly divided among fog nodes in order to 

maximize speed and efficiency, optimize resource efficiency, and 

reaction time. Real-time user requests and data flow processing 

are done by cloud nodes. Nodes in a network must share 

responsibilities in a balanced manner in order to maximize speed 

and efficiency, resource efficiency, and reaction time, hence in 

this article, a novel approach is presented. When it comes to fog 

computing, load balancing essential suggested to be improved. 

According to the suggested algorithm, a task submitted to the fog 

node via a mobile device would be processed by the fog node 

using reinforcement learning before being passed on to another 

fog node. Neighbor or let the cloud handle it. According to the 

simulation findings, the suggested algorithm has achieved a 

reduced execution time than other compared approaches by 

properly allocating the work among the nodes. Consequently, the 

suggested technique has reduced the chance of incorrect job 

assignment by 24.02% and the response time to the user by 

31.60% when compared to similar methods. 

Keywords—Fog computing; resource allocation; reinforcement 

learning; delay; load balancing; fog nodes 

I. INTRODUCTION 

Load balancing is a fundamental concept utilized in cloud 
settings for allocating computing resources among servers and 
devices [1]. By balancing the use of hardware, network, and 
software resources, load balancing aims to maximize system 
performance, increase efficiency, and provide the best 
possible user experience [2]. Reinforcement learning 
algorithms are an artificial intelligence approach to load 
balancing that provides automatic and adaptive performance 
enhancement [3]. IoT devices usually assign task processing 
to the nearest fog node. In this case, it's possible that certain 
fog nodes take on more tasks than others and eventually 
become overburdened. In order to avoid this, load balancing 
techniques are used to spread tasks among fog nodes equitably 
[4]. Fog nodes are distributed throughout the environment [5]. 
Two distinct forms of load balancing are utilized in dispersed 
environments: static load balancing and dynamic load 
balancing. When choosing a load balancer, static load 
balancing ignores the target fog node's state [6]. On the other 
hand, dynamic load balancing chooses which fog node to 
route traffic based on its present status [7]. Dynamic load 
balancing is applied in this post. Load balancing among fog 
nodes reduces expenses, latency, and user response times 
while simultaneously enhancing resource productivity, 
efficiency, resource conservation, and real-time event 

detection [8]. Numerous load balancing techniques have been 
presented recently, and they are all effective in certain system 
situations. Meta-heuristic or hybrid load balancing algorithms 
may be taken into consideration, depending on the approach 
used [9]. There are two types of heuristic algorithms: static 
and dynamic. Initiatives entail limitations intended to 
determine the best course of action for a certain problem [10]. 
These algorithms have an advantage over meta-heuristic 
algorithms in that they are easily implemented and yield good 
results. Meta-heuristics require finality because of the 
enormous immensity of their solution space and the fact that 
they are completely random processes [11]. The type of 
problem, how it was initially set up, and the strategy employed 
to find a solution all have a big impact on how long it takes to 
resolve. In terms of execution time and cost, coupled 
algorithms—which are produced by combining numerous 
meta-heuristic heuristic algorithms—are more efficient than 
other algorithms [12]. Through the use of reinforcement 
learning techniques, the fog system can automatically and 
dynamically adapt to changes in compute load and service 
requirements [13]. Based on an assessment of the present 
status of the system and clients, the fog system can determine 
whether to add or subtract computing resources from a server, 
shift load from busy servers to freer servers, or assign 
resources to services and requests according to their 
importance. The system will be able to use the greatest 
computing resources and adapt dynamically to the different 
needs of users and services by employing this technique, 
which will significantly improve load balancing in fog 
computing. 

Due to the distributed nature and dynamics of fog 
computing, however, conventional load balancing techniques 
become less effective, necessitating the development of an 
algorithm that can change with the context through time. To 
achieve this goal, a decision-making procedure based on 
reinforcement learning is suggested in this article to locate 
sparse fog nodes [14]. 

The agent chooses the right fog node based on the 
experiences it obtains from the environment in each scenario, 
which makes the proposed technique, the delay may be greatly 
reduced. Additional and time-consuming calculations are also 
removed in the proposed method of this article. Reinforcement 
learning for load balancing is superior to conventional 
approaches in that it not only simplifies the algorithm 
framework without taking any network model assumptions 
into account, but also converges to the best policy in 
polynomial time. The collected findings demonstrate that, 
when compared to the compared approaches, the suggested 
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load balancing method greatly decreases the lag and reaction 
time to the consumer. This article's conclusion is structured so 
that it is discussed in the section of current related research in 
the area of load balancing in fog computing. 

Section III explains the concept of the proposed system, 
the reinforcement learning technique, and how to find the 
system's delay. The suggested load balancing strategy is 
presented in Section IV. The evaluation and comparison of the 
simulation results with earlier techniques are done in Section 
V. Section VI will conclude with recommendations for 
additional research. 

II. RELATED WORK 

In fog computing, jobs are typically assigned to the nearest 
fog node by mobile users and IoTs devices. These devices are 
frequently mobile, therefore depending on where they are in 
the network, various important nodes may have varying loads. 
Due to this problem, some fog nodes may be overburdened 
while others may be idle or underloaded in terms of the 
distribution of work. Methods to solve the load balancing 
issue in the fog computing environment have been presented 
by some authors. These actions can be divided into various 
categories [15]. 

Here, prior research on task delegation in which nodes 
need to be aware of each other's computational capabilities 
will be examined. To discover the best loading decision in the 
presence of an uncertain reward model and transition 
probability, [16]. According to the resource capacity, fog 
nodes in the presented process can assign an ideal number of 
incoming jobs to a free neighboring fog node. This is done to 
cut down on processing time and potential overhead [17]. 
They looked into load balancing on several kinds of 
computing nodes before officially presenting the fog 
computing system's structure. Then, they developed a 
matching resource allocation strategy for fog environments, 
which combines static resource allocation with dynamic 
service transfer, to accomplish load balancing in fog 
computing systems. The min-min method was developed by 
[18] to take network resources into account. When sending a 
job to a cluster node that is overloaded, factors such the 
distance between the cluster and the node next to it, the 
amount of tasks that are waiting in each cluster's queue, and 
the distance between the cluster node and the closest cloud 
data center are taken into account. Researchers suggested the 
min-min method in [19] and put it into practice inside each 
cluster while taking network resources into account. In this 
method, a neural network is used to evaluate the fog node's 
current capacity. The Internet of Things gadget transmits its 
work to the cloud if it doesn't get the necessary resource. In 
this study, a four-layer architecture for load balancing and task 
scheduling is proposed. The Internet of Things is a component 
of the top layer, where a lot of data is generated and sent at 
once. The jobs are divided into two categories important and 
less important in the second layer via a dual fuzzy logic 
method. The user-proximate nodes with the lowest load are 
given priority for task execution [20]. 

Other works are predicated on the knowledge of the node's 
load or the prediction of its future load. This algorithm 
continuously gathers network traffic, server load information, 

and control information. By merging fog computing and 
software-based networks, [21] devised a load balancing 
technique based on reinforcement learning. In order to offer 
the greatest amount of access to the resources, this algorithm 
analyzes the behavior of the network and divides up the work 
by considering network's current load and forecasting its 
future load. The network is adaptable thanks to this 
architecture's dispersed nature. In this article, a threshold limit 
is taken into consideration to implement the load balancing 
method, and if the server load exceeds 75%, the load 
balancing algorithm is called. In order to achieve better load 
balance, [22]. It also applies reinforcement learning to handle 
the task loading problem. In this study, Deep Q-Learning is 
enhanced using an LSTM network. The quantity of input data 
needed for the sub-task, the downlink bandwidth, the amount 
of output data generated by the sub-task, and the load on each 
server make up the state space in this article. The action space 
is a vector with m + 2 zero- and one-dimensional dimensions. 
A cloud server and a mobile device are included in the m and 
2 edge servers. Any of the same folders can be used to 
download data to the server. The three variables of load 
balance, cost, and energy consumption are taken into account 
by the reward function. In study [23], Berardi and colleagues 
address the issue of resource management by presenting two 
distributed load balancing algorithms, Sequential Forwarding 
and Adaptive Forwarding, which are intended to handle 
heterogeneity. They do this by assigning jobs to nearby nodes. 
According to the threshold limit and the maximum number of 
steps, M, a task is delivered at random to nearby fog nodes 
using the first approach, known as the Sequential Forwarding 
method, until it reaches the correct node. The second method, 
known as the Adaptive Forwarding method, is suggested since 
it is difficult to define the working parameters and M. This 
method automatically and conditionally updates these 
parameters. For a fog computing environment, the research in 
[24] presented a load balancing method that works well for 
medical applications. 

The techniques described in earlier studies demonstrate 
that the majority of these techniques require knowledge about 
the nodes' capacity or load in order to make decisions [25]. 
This effort necessitates a number of time-consuming 
computations that add latency and raise network traffic burden 
shall be. Additionally, in the majority of these approaches, the 
load balancing operation and load distribution are often 
performed by a single node. In contrast to other works, this 
one uses a different decision-making procedure because, 
according to the suggested method, the fog node decides on 
processing and task assignment only after gathering 
information from the delay and reward during the learning 
period and after taking into account its own capacity and the 
positions of other nodes [26]. The proposed solution is 
intended to address a subset of difficulties, although its use is 
not constrained to a particular scenario. Additionally, the 
strategy suggested in this article is dynamic and adapts to the 
circumstances of the agent's goals. 

III. SYSTEM MODEL 

The description of the suggested system and the 
reinforcement learning algorithm will be covered first in this 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

999 | P a g e  

www.ijacsa.thesai.org 

part. The load balancing problem formulations are then 
provided using reinforcement learning. 

A. System Description 

The paper takes into account a four-layer design for the 
suggested system, which includes Internet of Things, fog 
nodes, proxy servers, and cloud data centers, as shown in Fig. 
1. The Internet of Things layer, which contains various end 
devices including wireless sensor nodes, mobile devices, etc., 
is the initial layer in this system. These gadgets can transmit 
data to nearby fog nodes because they are directly connected 
to them. The fog layer, which is the second layer, is made up 
of extremely intelligent equipment like routers, switches, and 
gateways that take in and process data from endpoints [27]. 
The cloud data center layer, which consists of numerous 
computers and data centers, is the fourth tier. This structure 
eliminates the requirement for data transfers to the central 
cloud by allowing data and information processing to take 
place locally in fog nodes [28]. Due of their limited 
computational power, mobile devices in the proposed system 
assign fog nodes within their range to process a portion of the 
work (a virtual reality game). Since there is no master node or 
controller in this system that keeps track of the fog nodes' 
status and the external conditions, it is up to the fog nodes to 
collect data and make decisions [29], [30]. 

The proposed system operates as follows: On the user's 
smartphone, an Android application called Tractor 
Beam2EEG (a type of game where players compete against 
each other) is running. This application demonstrates how the 
human brain and the computer interact. Each player must have 
a headset attached to his smartphone in order to play this 
game. This application continuously monitors the signals 
picked up by the headset, the processing, and the mental state 
of the user. Processing the software can need a lot of 
processing power. Therefore, in this article, the program is 
broken into multiple pieces known as subtask 3 in order to 
enhance the processing time, transfer time, and boost the 
usage rate of network resources. The following dependencies, 
depending on virtual reality game tasks, are presented in this 
article. The software is divided into five subtasks, as 
illustrated in Fig. 2: EEG, Client, Actuator, Concentration-
Calculator, and Connector. These subtasks' data are 
interdependent. 

The major processing modules in this application are the 
Client, Concentration-Calculator, and Connector modules. In 
order to receive the EEG signals, the Client module interfaces 
with the sensor. Once it has received the signals, it checks 
their levels and, if they are constant, passes them to the 
Concentration module. Calculator that assesses the user's 
mental state based on the signal it receives and computes their 
level of concentration [31]. The Client module is then 
informed of the computed concentration level by the 
Concentration-Calculator module. The Connector module 
connects the game amongst several participants who may be 
present in geographically dispersed areas by operating on a 
global scale. The Client module of each connected user 
receives a constant stream of information from the Connector 
about the game's current condition [32]. Numerous modules 
can be kept on mobile devices due to the fact that these sub-
tasks require less computational complexity and data transfer, 

while those that demand greater computing resources can be 
assigned to the cloud provider's nodes. The loop that 
transforms the user's mental state into the game's state on the 
mobile device's screen is the most crucial control loop in this 
application. The mobile device and the device that houses the 
user's brain state calculation module must communicate in 
real-time for this to work. The user experience is significantly 
impacted by latency in this loop because it affects the entities 
that the user interacts with directly [33]. 

The computing modules should be as near the data sources 
as possible to minimize the latency in data transmission 
between units. The EEG, Client, and Actuator modules of this 
article's suggested design, as illustrated in Fig. 3, are 
connected to mobile devices. Each module in the loop 
processes the program, forwarding the processed data to the 
subsequent module, and so on, until the Actuator module in 
the mobile device receives the program's final results [34]. 
Each fog node has an unpredictable amount of mobile devices 
connected to it at any one time given time due to the dynamics 
of the environment, and it is possible that some fog nodes 
acquire more subtasks than others and eventually become 
overloaded. To prevent this, fog nodes are evenly divided into 
sub-tasks using load balancing techniques. 

 

Fig. 1.  Architecture of fog computing layers. 

 

Fig. 2.  Subtasks and their dependencies. 
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Fig. 3.  Module placement in various devices. 

The load balancing algorithm's primary goal in a fog 
computing setting is to increase the user reaction time by 
dispersing the system's total load so that it can continue to 
operate at its best under dynamic system settings. This article's 
goal is to reduce network resource loss, user response time, 
and delay by applying the reinforcement learning method to 
the fog nodes. When a fog node receives a subtask, it employs 
a reinforcement learning algorithm to decide whether to 
process it independently, pass it on to another node in the area, 
or send it to the cloud to be processed faster. 

B. Reinforcement Learning Algorithm 

Supervised, unsupervised, semi-supervised, and 
reinforcement learning are the four main types of machine 
learning algorithms. Numerous labeled input data are needed 
for supervised learning in order to train the system. 
Unsupervised learning, as contrast to supervised learning, 
involves learning from unlabeled events in order to uncover 
hidden patterns in the data. Unlabeled data and labeled data 
are used in supervised fog learning to increase learning 
accuracy [35]. The agent can learn the best actions from the 
environment through reinforcement learning. Through 
environment exploration, trial and error, and use of the 
incentives provided by the environment, this learning is 
accomplished [36]. In this article, load balancing is 
accomplished by Q-L algorithm. The proposed approach 
formulates the load balancing problem as a Markov decision 
process (MDP), where the fog node takes a decision after 
learning the state of its surroundings and is rewarded by it. 
Experience is the end result of trial and error and is 
characterized by the four states of the present state, action, 
reward, and next state [37]. 

1) Policy: The agent's behavior can take one of two forms 

when it comes to policy: active policy, in which the agent 

learns the value function in accordance with the performance 

that the current policy has caused, or passive policy, in which 

the agent learns in accordance with the action that the policy 

has caused [38]. The function learns the value, the other is 

obtained, and it is defined. The Q-Learning algorithm is a 

passive algorithm with a greedy learning strategy for the Q 

value. 

2) Value function: The learner function's reward function 

sets the objective, and the closer it gets to the target, the more 

reward it receives. The value function in reinforcement 

learning, on the other hand, derives a value as Eq. (1) for each 

state and has a long-term perspective. The closer to the 

objective this value is, the higher it is. 

𝑣 ∗ (𝑠) = 𝑚𝑎𝑥 ∑ 𝑝(𝑠 ,
𝑠, ,𝑟 , 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣 ∗ (𝑠 ,)]       (1) 

The discount factor, often known as 0 < 𝛾 < 1  , in this 
context determines the significance of potential benefits in the 
future and the decision made right now is more important than 
those made in the future. 

In states, the agent takes action (A) to change the 
environment from its present state to a new state (b) and 
receives a reward (r) for his efforts; both factors influence his 
future decision-making. 

3) Model: The reinforcement learning problem has a 

random model with non-deterministic states. Going from one 

state to another and taking any action are both possibilities 

[39]. 

Reinforcement learning has thus found various uses in 
optimization in the dynamic, unpredictable, and changing 
environments of fog and clouds. Additionally, it might be a 
good way to evenly distribute loads among fog nodes [40]. 

C. Formulation of the Problem 

Discrete time stochastic control is what the MDP is. One 
method for solving MDP is reinforcement learning, which in 
turn makes use of dynamic programming. To achieve the 
target performance, the suggested load balancing problem is 
expressed as an MDP. For the suggested load balancing 
problem, the fours < 𝑆 , 𝐴, 𝑃 , 𝑅 > are defined below, which 
are typically included in MDP: 

1) The state space 𝑆 =  {𝑠 (𝐶, 𝑄, 𝑁)}  represents the 

relationship between the fog node's capacity (C), the size of its 

upstream queue (Q), and the number of mobile devices (N) 

linked to the fog node. 

The Q-L algorithm bases decisions on the system's present 
state. Many of the earlier techniques for defining the state 
space call for knowledge of the nearby nodes' capacity [41]. 
However, the state of the system is solely specified in the 
proposed method based on the state of the decision-making 
fog node, which forces decisions to be taken without 
knowledge of the states of the surrounding nodes. 

2) In the action space 𝐴 = {𝑎 = (𝑛)} , n represents the 

choice of a fog or cloud node to be assigned to the subtask. 

3) P: A number between zero and one represents the 

transition probability. In order to be in state s, the criterion is 

to have the probability distribution of the transition 𝑃(𝑠 ,|𝑠, 𝑎) 

to the next state 𝑠 ,, with the action choice. 
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4) R: The state's activity is directly linked to the reward. 

The primary objective is to minimize processing delay and 

overhead probability while maximizing long-term value in 

each system by selecting the appropriate action. 

As was already noted, there are various subtasks within the 
task (virtual reality game). The sum of all linked sub-tasks' 
transmission and processing delays across all relevant devices 
is the task execution delay and is determined as follows: 

𝑇𝑡𝑎𝑠𝑘 = 𝑡𝑢𝑜𝑡 − 𝑡𝑖𝑛  (2) 

where, 𝑡𝑜𝑢𝑡𝑎𝑛𝑑 𝑡𝑖𝑛  represent, respectively, the entry time 
and exit time of a task in the suggested system. Since the 
processing and transmission delays in mobile devices are 
relatively constant, this article solely calculates the processing 

delays of the Concentration-Calculator subtask in fog or cloud 
nodes and the subtask in the mobile device to compute the 
delay of task execution [42]. It is seen as having a constant 
value. The suggested method uses fog nodes to perform the Q-
Learning algorithm, Additionally, the subtask's processing 
delay is equal to the negative of the reward function (R 
𝑅(𝑠, 𝑎)), which is allocated to the fog node. The longer the 
processing delay of the subtask, the better. As a result, 𝑅(𝑠, 𝑎) 
will be lower than expected. The calculation looks like this. 

𝑅(𝑠, 𝑎) = −𝑇𝑆𝑢𝑏𝑡𝑎𝑠𝑘       (3) 

This refers to the calculation subtask that the fog node is 
tasked with performing, where 𝑇𝑆𝑢𝑏𝑡𝑎𝑠𝑘  is its processing delay. 
The symbols used to evaluate the system and the delay 
calculation formulas are listed in Table I. 

TABLE I. SYMBOLS USED TO EVALUATE THE SYSTEM AND DELAY CALCULATION FORMULA 

Value Description Parameters 

- How many smaller jobs ran on the node W 

3500 Subtask data size L 

10000 Bandwidth per node B 

- How far apart are the nodes i and j? 𝑑𝑖,𝑗 

10−3 Path loss constant between two nodes 𝛽1 

5 path loss power 𝛽2 

20 dBm Power transfer between nodes P 

175 dBm /Hz Spectral density of noise power 𝑁0 

200×106 Quantity of subtask-specific commands I 

5 The amount of CPU cycles used by each instruction Cycle 

2800 

44800 

Fog node cpu speed, 

cloud cpu speed 
f 

4 Just how many fog nodes N 

- The frequency with which a state is displayed n 

2/n Rate of learning α 

0.8 reduction element y 
 

The subtask's processing lag depends on whether its 
processing is done in the fog the node that the mobile device 
sent the subtask to (𝐹𝑁 − 𝐼) or whether it is handed over to 
the neighboring fog node (𝐹𝑁 − 𝐽) or the cloud. 

 The following formula determines the execution delay 
of the subtask, which is equal to Subtask if the subtask 
is processed by 𝐹𝑁 − 𝐼. 

𝑇𝑆𝑢𝑏𝑡𝑎𝑠𝑘 =
𝐼×𝐶𝑦𝑐𝑙𝑒×𝑊

𝑓
    (4) 

 If the subtask is delegated to 𝐹𝑁 − 𝐼  or Cloud for 
processing, 𝑇𝑆𝑢𝑏𝑡𝑎𝑠𝑘 is calculated as follows. 

𝑇𝑠𝑢𝑏𝑡𝑎𝑠𝑘 = 𝑡𝑊𝑖
+ 𝑡𝑐𝑖𝑗

+ 𝑡𝐸𝑗
+ 𝑡𝑊𝑗

+ 𝑡𝑐𝑗𝑖
 (5) 

In this regard, 𝑡𝑊𝑖
 and 𝑡𝑊𝑗

 are the waiting delay of the 

subtask in the I-FN sending queue t and the J-FN sending 
queue or cloud is affected by the subtask's waiting delay. 𝑡𝑐𝑖𝑗

   

denotes the time it takes for the subtask to be transmitted over 
the communication channel. Moving from I-FN to J-FN or the 

cloud. The subtask execution delay in J-FN or the cloud is 

represented by 𝑡𝐸𝑗
, whereas the subtask result delay from J-FN 

or the cloud to I-FN is represented by 𝑡𝑐𝑖𝑗
  . A node's (i) or 

cloud node's (j) waiting delay in the sending queue is 
determined in the following way.  

𝑡𝑤 = 𝑡𝑜 + 𝑡𝑖   (6) 

where, 𝑡𝑜 and 𝑡𝑖 are respectively the entry Add the arrival 
time of subtask m to the node's queue and record the departure 
time of subtask m from the same queue. The latency of 
subtask transmission on the communication route between 
FN-I and FN-J or the cloud, and vice versa, is equivalent to: 

𝑡𝑐 =
𝐿

𝑟𝑖,𝑗
                                         (7) 

where,  𝑟𝑖,𝑗 The transmission rate between nodes i and j is 

denoted as. 

𝑟𝑖,𝑗 = 𝐵𝑙𝑜𝑔(1 +
𝑔𝑖,𝑗×𝑝

𝐵×𝑁
)                            (8) 
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where, 𝑔𝑖,𝑗 = 𝛽1𝑑𝑖,𝑗
−𝛽2   is the gain of the channel between 

two nodes i and j. The delay of execution of the subtask in J-
FN or cloud 𝑡𝐸𝑗

 is equal to: 

𝑡𝐸𝑗
=

𝐼×𝐶𝑦𝑐𝑙𝑒×𝑊

𝑓
                                 (9) 

Each fog node is a learning agent operating in an S-state 
space environment. Each time a new task is added to the 
system, the agent performs an action in the surrounding area 
and chooses one of the nodes to receive the new work. In the 
event that the environment state is updated, the reward for this 
allocation will be decided. The agent will receive the reward if 
the system is now operating with a load balance that is closer 
to ideal and the subtasks are processed more quickly than they 
would otherwise [43]. Each node progressively acquires the 
ability to optimize its decision-making process for handling 
subtasks based on the rewards it receives. Minimizing the 
delay of sub-task processing in the fog environment will 
reduce the overall delay and response time to the user, 
resulting in the network spending less time on task processing. 

IV. THE PROPOSED LOAD BALANCING METHOD 

In order to address the issues with the prior approaches, 
the load balancing algorithm based on reinforcement learning 
is presented in this section. It is designed to distribute the load 
uniformly among the intermediate nodes of the fog. Dynamic 
programming can solve MDP when the system for every state-
action combination has a transition function and a reward 
function, but typically the system is unable to anticipate the 
precise value of the transition function and reward for the 
majority of the states, which is required to solve the problem. 
It is suggested to use reinforcement learning to solve these 
issues. The Q-Learning algorithm, one of the reinforcement 
learning algorithms, is utilized in this article to locate the ideal 
action mode with the least amount of computing expense, 
making up for the absence of appropriate data through 
experimentation. The Q-Learning algorithm's model is a 
random model.  

Distributes an agent involved in network learning is 
referred to as a fog node. The sub-fog node will choose to use 
reinforcement learning to process a new task after receiving it. 
Hence, the fog node designated for the Concentration-
Calculator task acquires data from the mobile device. The fog 
node then assesses the environment and, in order to maximize 
the long-term reward, decides whether to complete the subtask 
independently or to delegate it to a nearby fog node for 
quicker completion based on its capacity and past experiences 

and rewards. If the Concentration-Calculator subtask takes 
longer to process in the fog nodes than it does in the cloud, the 
fog node chooses to transfer this subtask's processing to the 
cloud, which will speed up processing and lighten the load on 
the fog nodes. According to the system model, each fog node 
performs a response after observing the current states, a delay 
is made, and the new state 𝑠 ,  is observed, and for that, it 
receives a reward (R, s, c) from the environment. 

𝑄𝑛𝑒𝑤 (𝑠, 𝑎) = 𝑄𝑜𝑙𝑑(𝑠, 𝑎) + 𝑎[𝑅(𝑠, 𝑎) + 𝛾 max
𝑎

𝑄 (𝑠 ,, 𝑎,) −

𝑄𝑜𝑙𝑑(𝑠, 𝑎)]                              (10) 

The learning rate, 0 1    <  1, strikes a balance between 
previously learned material and new observations. Using the 
available knowledge, the greedy method selects a course of 
action that yields the greatest reward in a single step. The 
Learning-Q method uses the likelihood of selecting an action 

, where  greedy is the policy with larger reward, in order to 
maximize the long-term value. The fog node is chosen to 
complete the subtask in order to maximize long-term value. In 

this manner, a random action with a fixed probability  

greedy is chosen in each time step of the algorithm 0   1. 

The benefit of utilizing 1  and the action with the 

highest value is that as the number of steps rises, every  

greedy of the Q(s,a) algorithm exhibits an infinite action, 
ensuring that it will eventually converge to the best value. As 
a result, using the Learning-Q method, the fog node learns to 
choose the best node for handling the subtask. The suggested 
method calculates the suitable reward function using 3. 

Since the function of infinity has been observed, it is 
certain that (Q, s, and a) will eventually converge to the ideal 
value. Consequently, using the Q-Learning method, the fog 
node learns to choose the best node for processing subtasks. 
The load balancing solution that has been suggested 
calculation of the suitable reward function is shown in Fig. 4 
and it is done using Eq. (3). The fog node learns the complete 
network and the likelihood of loading to each node as it 
traverses the network using the learning method, enabling it to 
select the best node to transfer the task to. The algorithm 
begins by using a greedy approach to explore the network, and 
once it has a thorough understanding of the network's 
requirements, it performs optimal load balancing. The state 
space encompasses the capacity of the fog node, the length of 
the uplink queue within the fog node, and the quantity of 
mobile devices linked to the fog node. In order to minimize 
the processing delay for the subtask, select either a reward 
eyebrow or a fog node. 
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Fig. 4.  Block diagram of the implementation steps of the proposed load balancing method. 

V. EVALUATION AND SIMULATION 

This article utilizes the iFogSim simulator [21] to model 
the load balancing problem using the reinforcement learning 
technique. This software was executed on a Sous computer 
equipped with seven Intel Core i processors and eight GB of 
RAM. The proposed system has N fog nodes and a variable 
number of mobile devices that establish random connections 
with neighboring fog nodes to broadcast subtasks. This paper 
proposes the utilization of the Q-Learning algorithm for load 
balancing in a fog environment. Initially, the fog node lacks 
any understanding of the network due to the fact that all the Q-
table values in the Q-Learning algorithm are set to zero. The 
application of the avaricious approach to learning is 
implemented. Initially, the algorithm conducts an exhaustive 
search of the network, prioritizing immediate gains, as the 
number 0 is considered equivalent to 1. Over time, as the fog 
node's estimation reliability in the Q-table increased, its value 
changed to 0.3. Additionally, the received reward's value is 
equal to the concentration-calculator subtask's negative 
processing delay at the fog or cloud node. 

The learning method is applied right away to minimize the 
generation of overhead in the nodes as it is expected that the 
task creation and task sending have already been completed in 
the simulation. The Q-L method allows the fog node to learn 
the best ways to interact with its surroundings. Through 
environment exploration, trial and error, and use of the 
incentives provided by the environment, this learning is 
accomplished. In general, each fog node assesses the state of 

the environment, selects a node to assign the work to, and then 
reaps the benefits. With each iteration of the method, the fog 
node's network experience grows, and over time it learns to 
assign the sub-task to a node with a lighter workload and 
faster processing speed. Contrary to the proposed way, 
alternative solutions (such as those in sources [6, 8]) conduct 
the load balancing algorithm before adding overhead to the 
fog node, which degrades the performance of the 
aforementioned systems and lengthens their latency. Another 
benefit is that, in the comparative methods for allocating sub-
tasks to surrounding nodes, it is only necessary to be aware of 
this node's position and capacity, which may be determined by 
making a few numbers of laborious computations. However, 
in the suggested system of these computations, time-
consuming and redundant tasks are eliminated, and the fog 
node simply behaves in accordance with the knowledge it has 
received from its surroundings. By doing this, the proposed 
system's latency will be as little as possible. 

A number of current load balancing techniques have been 
compared to the performance of the suggested method, and in 
this simulation, random and proportional SALB load 
balancing techniques have been employed as benchmarks [6, 
8]. The SALB approach examines the adjacent nodes' 
capacities after the fog node is overloaded and delivers the 
subtask to the node with the highest capacity and at least 40% 
of its capacity. Sub-tasks are distributed at random to fog 
nodes in the random technique. The Proportional approach 
receives information on each neighbor's capacity and chooses 
the best node based on the size of the subtask. 
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Following that, the graphs created by applying the Q-L 
algorithm to the load balancing problem are provided. Finally, 
the results of applying all four algorithms are discussed, along 
with a comparison of how well they performed in terms of 
delay, user response time, and load balancing. 

Fig. 5 displays the progressive augmentation of the 
cumulative reward with each repetition of the proposed 
technique. As mentioned earlier, the reward is equivalent to 
the reciprocal of the processing delay for the subtask assigned 
to the fog node. The awarded reward will drop as the subtask's 
processing time increases, depending on whether the cloud 
provisioning node handles it. The action that yields the highest 
Q-value is chosen in the decision to transfer the load. 
According to the effectiveness of the suggested incentive, the 
proposed technique uses Q-Learning-based load assignment 
decision to reduce processing duration and overhead 

likelihood. With an increase in task processing rate, 
cumulative reward rises. Due to the fact that many tasks are 
queued up in the nodes, the cumulative reward also 
continuously falls as the quantity of incoming tasks rises. In 
this method, the network delay and user response time are 
decreased as the fog node eventually learns to assign 
processing of subtasks to the node that causes the least amount 
of delay. 

Fig. 6 demonstrates how the average execution time has 
decreased dramatically as a result of program repetition and 
increased learning. In this method, the network delay and user 
response time are decreased as the fog node figures out which 
node is the least delay-prone and starts to delegate subtask 
execution to it. Furthermore, as seen in Fig. 7, the standard 
deviation of the nodes' load decreases as learning grows. 

 

Fig. 5.  Increasing payout with each cycle of the suggested method. 

 

Fig. 6.  Average task execution delay in Q-Learning method. 
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Fig. 7.  Standard deviation of load on nodes in Q-Learning algorithm. 

 

Fig. 8.  Average task execution delay. 

As a result, the network's job distribution and processing 
may be guaranteed to be balanced, and load balancing is 
enhanced. Just as mentioned before, the fog node detects 
which node causes the least delay and starts sending the 
subtask processing to that node. If the sub-task is sent to a 
node with more capacity and can therefore handle the 
incoming sub-task more quickly, the processing latency of the 
sub-task is decreased. By giving the subtask to the fog node 
with the greatest capacity, overhead with minimal strain on 
other nodes are avoided. 

The pressure on the nodes' standard deviation diminishes 
as learning progresses. As a result, the load balance is 
enhanced and it is possible to guarantee that the tasks are 
dispersed and carried out in the network in a balanced manner. 
As previously noted, the fog node eventually learns to assign 
the subtask's processing to the node that causes the least delay. 
If a subtask is assigned to a node that has more capacity and 
can handle the incoming subtask more quickly, the processing 
latency is decreased. By giving the work to the fog node with 
the greatest capacity, overhead and underloading of other 
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nodes are avoided. The outcomes of the execution of all four 
algorithms are now reviewed, along with a performance 
comparison. It is anticipated that the Q-Learning algorithm 
will considerably enhance the network's load balancing 
capabilities. According to the evaluation's findings, Fig. 8 
illustrates how choosing a task based on Q-Learning 
minimizes task execution latency in accordance with the 
suggested reward function. The proposed load balancing 
technique uses reinforcement learning to evenly spread the 
load across the nodes, enabling the nodes to complete sub-
tasks faster. 

The cumulative reward drops as the task arrival rate rises 
because fewer tasks can be processed by fog nodes due to the 
relatively high amount of subtasks that are queued at them. 
However, the suggested load balancing method produces a 
beneficial reward in that the delay is also reduced in the same 

proportion. This is because the load is distributed properly 
across the fog nodes. Additionally, unlike the approaches that 
were examined, no time-consuming computations were 
required in the suggested load balancing method to determine 
the capacity and location of surrounding nodes. As a result, as 
shown in this figure, the time it takes for the suggested 
approach to work is when contrasted with alternative methods, 
it is greatly decreased. When the standard deviation of the four 
methods for node load is compared, the average task execution 
delay is checked. Fig. 9 shows that the dispersion of the nodes' 
loads is initially lower in the SALB algorithm than in other 
approaches, but that it has dramatically decreased within the 
suggested approach as an agent learning has increased. This 
demonstrates that the suggested strategy evenly distributes the 
duties around the network, minimizing the likelihood of 
overhead in the nodes. 

 

Fig. 9.  Dispersion of node loads averaged out. 

 

Fig. 10.  Comparison of total delay for different methods. 
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Fig. 11.  Time to execute all tasks. 

The overall execution time for the jobs using all four 
approaches is shown in Fig. 10. The average execution time of 
the input jobs from the first to the last algorithm iteration is 
used to calculate the overall delay. The examination reveals 
that the Q-Learning approach has the least overall delay when 
compared to other methods, which indicates that this method 
performs at a higher level of excellence. 

Fig. 11 compares the execution times of both the suggested 
approach and the SALB method for each task that is entered 
into the system. The suggested solution significantly 
outperformed the SALB method in terms of the amount of 
time it took to execute all of the jobs that were input into the 
system during the simulation. Due to this, the suggested 
approach and system perform better than alternative methods 
that were also considered. The results show that the fog node 
considers the queue states, capacities, and the number of 
mobile devices linked to each node while deciding whether to 
disperse the load using the Q-Learning method. So, the 
unsuccessful allocation can be reduced by the proposed 
approach. Based on the results of the evaluation mentioned 
earlier, the proposed load balancing method is more stable 
than current load balancing approaches, and it significantly 
reduces both the network delay and the user response time. 

VI. CONCLUSION 

This article's goal is to outline a strategy for enhancing 
load balancing in fog nodes. Task distribution and load 
balancing are difficult problems in fog computing because of 
unique characteristics including topology dynamics and 
resource heterogeneity, and the adoption of conventional 
approaches to address these difficulties is inefficient. The 
application of machine learning algorithms, including 
reinforcement learning, is one of the cutting-edge methods for 
tackling complicated issues. In this article, the Q-Learning 
algorithm is used to demonstrate load balancing in a fog 
environment. By utilizing the experience that the learning 
agent acquires through interacting with the environment, this 

algorithm generates a long-term optimal strategy. As an agent, 
each fog node in the proposed technique searches the fog 
environment for low-load nodes suitable for allocating sub-
tasks to reduce processing time and overhead with the use of 
the Markov decision process. The proposed solution has been 
tried with various numbers of mobile devices and fog nodes in 
the network, and it has produced successful results. According 
on simulation results, the suggested algorithm greatly reduces 
processing delay, user response time, and the likelihood of 
task assignment failure when compared to existing 
approaches. Some of the limitations of this research can 
include the following: 

1) Hypothetical system model: This research assumes a 

system model and specific features for fog nodes, task 

distribution and network communication. These assumptions 

may not always hold true in practical deployments and 

potentially limit the generalizability of the findings. 

2) Limited scalability testing: The scalability of the 

proposed algorithm may not have been extensively tested 

across a wide range of network sizes and configurations. 

Performance evaluation at different scales can provide 

valuable insight into algorithm robustness. 
According to the study, the following can be considered for 

future research: 

1) Dynamic adaptation: Enhancing the algorithm to 

dynamically adapt to changes in network conditions, such as 

node failures, varying workloads, or the mobility of fog nodes, 

to ensure robustness and scalability. 

2) Optimization techniques: Investigate advanced 

optimization techniques to improve the efficiency and 

convergence speed of the reinforcement learning algorithm, 

potentially including deep reinforcement learning or other 

advanced methods. 

3) Security and privacy considerations: Review the 

security and privacy implications of the proposed load 
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balancing approach, including potential vulnerabilities and 

mitigation strategies to protect sensitive data and ensure 

system integrity. 

4) Integration with edge devices: extending the algorithm 

to combine edge devices and optimize the allocation of work 

in both fog nodes and edge devices, taking into account 

factors such as device capabilities, energy constraints, and 

communication protocols. 
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