
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

1022 | P a g e  

www.ijacsa.thesai.org 

Design of Big Data Task Scheduling Optimization 

Algorithm Based on Improved Deep Q-Network 

Fu Chen1, Chunyi Wu2* 

School of Smart Health, Chongqing College of Electronic Engineering, Chongqing, 401331, China1 

Artificial Intelligence and Big Data College, Chongqing College of Electronic Engineering, Chongqing, 401331, China2 

 

 

Abstract—Big data analysis can provide valuable insights not 

easily obtained from traditional data scales. However, addressing 

scheduling issues in big data can be challenging due to the vast 

amount and diverse nature of the data. To overcome this, a 

scheduling model based on Markov decision process is proposed. 

The deep Q-network algorithm is used for directed acyclic graph 

task scheduling. To improve this model further, the gradient 

strategy algorithm is introduced. From the results, when the 

dataset size was about 500, the hybrid algorithm achieved a recall 

rate of 0.96, outperforming the gradient strategy algorithm 

(0.83), deep Q-network algorithm (0.79), and estimated earliest 

completion time algorithm (0.63). Although the estimated earliest 

completion time algorithm had longer training times under 

different dataset sizes, the hybrid algorithm's training time was 

slightly longer than the gradient strategy algorithm and slightly 

shorter than the deep Q-network algorithm. Overall, the 

proposed algorithm exhibits superior performance and 

significant value in solving engineering problems. 

Keywords—Big data; Task scheduling; Policy gradient; Deep 

Q-network 

I. INTRODUCTION 

Big data refers to a data collection generated due to its 
large volume, diverse types, and inability to be processed by 
traditional processing methods. These data typically have high 
speed and high diversity [1]. Compared with traditional data, 
big data has a larger data scale, more data types, and lower 
value density [2]. The data volume of big data is basically 
calculated at the PB level. Therefore, analyzing big data 
requires extremely high computational power. However, at 
current, the processing power of a single processor has 
reached its limit. Relying solely on increasing processor 
frequency cannot meet the current demand for big data 
analysis. Influenced by the development of cloud computing 
technology, more enterprises and research institutions are 
inclined to use big data analysis platforms to complete data 
analysis work. Traditional task scheduling algorithms are 
usually based on static rules, which may be inflexible and 
unable to adapt to real-time changing environments. In the big 
data environment, the nature of tasks and the availability of 
resources may dynamically change, which makes traditional 
algorithms unable to effectively cope. Some traditional 
algorithms may become complex when processing large-scale 
data, leading to an increase in computational complexity. 
Meanwhile, it is easy to fall into local optima, which can 
affect the performance of task scheduling. Therefore, a 
scheduling model based on Markov decision process is 
proposed. This model applies the Deep Q-network (DQN) 

algorithm to task scheduling in Directed Acyclic Graph 
(DAG). Then, to address the shortcomings of the DQN 
algorithm, a Policy Gradient (PG) algorithm is introduced to 
improved it. The research content has four parts. The first part 
briefly introduces the research topic of scheduling 
optimization models. The second part is to analyze the main 
methods used in this study. The third part analyzes the results. 
The fourth part is a summary for the study and prospects for 
future research. 

II. RELATED WORKS 

The scheduling model is a model established for 
scheduling problems. Ammari A C et al. proposed a 
scheduling strategy based on an improved firefly algorithm for 
delay constrained applications in distributed green data centers. 
Multiple heterogeneous applications were efficiently 
scheduled with less cost and energy. The proposed scheduling 
strategy model based on the improved firefly algorithm could 
meet the scheduling problem of distributed green data centers 
[3]. With the development of cloud and mobile applications, 
the integration demand for applications and services in 
business processes is also increasing. Many integrated 
platforms used heuristic algorithms to schedule tasks executed 
by computing resources. Therefore, Freire D L et al. proposed 
a queue priority algorithm. This algorithm was based on 
particle swarm optimization, which could handle massive 
amounts of data in integrated task scheduling. The algorithm 
could execute the integration process and schedule the data 
under high data volume [4]. Zhou J et al. found that crowd 
perception could solve the massive data collection faced by 
most data-driven applications. Therefore, a workflow 
framework was first proposed, which captured the unique 
execution logic of perception tasks. Then, a phased approach 
was proposed to decouple the original scheduling problem. 
From the experimental results, the proposed model had good 
performance in solving scheduling problems [5]. 

Mishra A et al. found that task scheduling was crucial for 
improving the performance of large-scale collaborative and 
distributed electronic science applications. Therefore, a 
meta-heuristic crow search algorithm was proposed to address 
the scheduling problem of multiple tasks across heterogeneous 
virtual machines. This method could demonstrate better model 
performance compared with traditional models [6]. The 
computing demand in various application fields is increasing 
day by day. To meet this requirement, on-site programmable 
gate arrays have been widely used. Therefore, Tianyang L et 
al. summarized the current research status of hardware task 
dynamic scheduling based on the three basic elements of 
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existing on-site programmable gate array processing: time, 
resources, and power consumption. The optimization effects 
of various scheduling methods were analyzed and evaluated 
from multiple dimensions. The research results indicated that 
the research could make a certain contribution to scheduling 
problems based on field programmable gate arrays [7]. Ye W 
et al. proposed a new unmanned aerial vehicle assisted edge 
computing system. The system dispatched edge nodes assisted 
by drones to provide communication and computational 
assistance for completing tasks generated by ground clients. 
Firstly, a trajectory design and task allocation problem were 
proposed, aiming to optimize the appropriate trajectory of 
each drone and schedule tasks for each ground client. A 
maximum drone trajectory and task allocation algorithm was 
proposed, which solved the task allocation problem by jointly 
optimizing the trajectory of the drone and the task scheduling 
of the ground client. The proposed method demonstrated good 
scheduling performance [8]. Wang et al. found that two-stage 
mixed flow workshop scheduling with batch machines and 
jobs arriving over time was complex and challenging. For 
online scheduling problems, traditional heuristic rules can 
quickly respond to dynamically arriving jobs, but their 
performance is poor and unstable. Therefore, a scheduling 
model based on the DQN algorithm was proposed. It 
transformed the online scheduling problem into a 
collaborative Markov decision process by defining the state 
space, action space, and reward function of different agents. 
The experimental results showed that the model could 
effectively combine online batch formation and scheduling, 
minimizing the total delay time [9]. Sun C et al. found that 
task scheduling and load balancing in heterogeneous 
computing environments received increasing attention in 
recent years. Therefore, a new task scheduling and load 
balancing method based on optimized deep reinforcement 
learning is proposed. This method first formulates the task 
scheduling problem into a Markov decision process. Then a 
dual deep Q-learning network was used to search for the 
optimal task allocation solution. The research results indicated 
that the proposed method model had shorter task response 
time and better load balancing effect [10]. 

In summary, many scholars have conducted research on 
task scheduling and achieved some results. In this study, a 
scheduling model based on Markov decision process is 
proposed, which applies DQN algorithm to DAG task 
scheduling. Then, to address the shortcomings of DQN 
algorithm, the PG algorithm is introduced to improve the 
model. 

III. BIG DATA TASK SCHEDULING OPTIMIZATION MODEL 

BASED ON DEEP Q-NETWORK 

The first section of this chapter provides an explanation for 
DAG task scheduling. The scheduling problem is optimized 
into a Markov decision model. A task scheduling algorithm 
based on DQN is proposed. In the second section, a PG 
algorithm is proposed to address the shortcomings of task 
scheduling algorithms based on DQN. Combined with the 
DQN algorithm, a scheduling model based on PG-DQN 
algorithm is proposed. 

A. Directed Acyclic Graph Task Scheduling in Heterogeneous 

Environments 

Cloud computing task scheduling refers to the rational 
allocation of tasks on cloud computing platforms to different 
computing resources, improving computing efficiency and 
resource utilization. Cloud computing servers usually have 
three parts, namely scheduling servers, work nodes, and data 
storage services. Performing computational tasks often 
requires the output of other tasks as input, which can be 
abstracted as a DAG representation. A DAG is a graph 
structure composed of nodes and directed edges. Each edge 
has a direction and there is no loop [11]. Starting from any 
node in the graph and following the direction of the directed 
edge, it will not return to that node. Its structure is shown in 
Fig. 1. 
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Fig. 1. DAG model diagram. 

In Fig. 1, the node without a predecessor node task is the 
entry node, as shown in nodes 1 and 2 in the figure. There are 
no other nodes that rely on this node, such as node 7 and node 
8. The computational cost of the task on each processor is 
shown in Eq. (1). 
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In Eq. (1), ECT  represents the expected completion time. 

P  refers to the computing node. V  refers to the current 

task. The execution time is represented by the ECT matrix of 
V P , which is the time required to allocate each task to 

different nodes at the current moment [12]. In scheduling 
problems, the most common definitions are the earliest start 
time, earliest completion time, and maximum completion time. 
The earliest start time refers to the time when the task cannot 
start executing earlier than that, as shown in Eq. (2). 
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In Eq. (2), kv  represents the task. ( )kFT v  refers to the 

end time of the task execution. jp  represents a node. 

[ ]avail j  represents the earliest time used to calculate the 
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node. ,k ic  represents the communication overhead between 

two tasks. When the direct precursor of a node is on the same 
processor as the node, the communication overhead between 
the two nodes can be considered as zero [13]. The earliest 
completion time indicates that the task cannot be completed 
earlier than that time, as shown in Eq. (3). 

,( , ) ( , )i j i j i jEFT v p EST v p  
           (3) 

In Eq. (3), ( , )i jEST v p  refers to the earliest start time of 

the task. ,i j  represents the time required for the task to 

perform calculations on the computing node. The earliest 
completion time is equivalent to the sum of the earliest start 
time and task execution time of the task [14]. The maximum 
completion time represents the time required to complete the 
last task in DAG, as displayed in Eq. (4). 

max{ ( )}exitMakespan FT v
             (4) 

In Eq. (4), Makespan  represents the maximum 

completion time. eritv  represents the export task. The 

scheduling problem can be scheduled based on the execution 
time of the task. This process can be considered as a Markov 
decision process, which is a mathematical model used to 
describe stochastic decision problems. This method is based 
on an extension of Markov chain and decision theory. It is 
used to model sequential decision problems that include 
randomness and decision selection [15]. Its structure is shown 
in Fig. 2. 
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Fig. 2. Markov decision process. 

From Fig. 2, the future state only depends on the current 
state and the currently selected action, rather than the past 
state and action. This nature makes the Markov decision 
process computable. Dynamic programming and other 
methods can be used to solve the optimal strategy [16-17]. 
The probability of a system transitioning from one state to 
another is defined as the state transition matrix, as shown in 
Eq. (5). 
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In Eq. (5), P  represents the state transition matrix. The 
goal of Markov decision process is to find a strategy that 
maximizes long-term cumulative rewards. The quality of a 
strategy is measured by defining a value function. It represents 
the long-term cumulative reward that can be obtained by 
adopting a certain strategy in a certain state, as shown in Eq. 
(6). 
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In Eq. (6), tR  represents the reward obtained from the 

environment after taking the action. t  represents time.   

represents the attenuation factor, which reflects the future 
returns on the current value of the intelligent agent [18]. If the 
return is far from the current moment, the attenuation will be 
greater. To measure the value of a state, the expected 
cumulative reward is used as the state value, as displayed in 
Eq. (7). 
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         (7) 

In Eq. (7),   represents the probability distribution of 

taking action. s  represents the state.   represents the 

attenuation factor. S  represents the finite set state of the 

system. Based on the Markov decision process, a model is 
established for task scheduling problems in heterogeneous 
environments. The specific scheduling process is shown in Fig. 
3. 
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Fig. 3. Scheduling process. 

The state space in a static environment is shown in Eq. (8). 

1 ,1 ,[ , , , , , , ]t M i i MS n EST EST T T
         (8) 

In Eq. (8), t  represents time. tS  represents the system 

state obtained by the scheduling model at t . M  refers to the 

computing node. n  refers to the current tasks. jEST  refers 

to the start time of the task in the processor. T  represents the 
execution time. In task scheduling, the corresponding action 
space is shown in Eq. (9). 

1{ , , }t i MA p p p
                  (9) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

1025 | P a g e  

www.ijacsa.thesai.org 

In Eq. (9), tA  represents the action space. The model 

scheduling action at a certain moment is to schedule the 
current task to a computing node. The design of the reward 
function has significant impacts on the scheduling strategy. 
The designed reward function is shown in Eq. (10). 

1max{ ( , ) 1 } max{ ( , ) 1 }t i j i jR EST v p j q EST v p j q   
  (10) 

In Eq. (10), EST  represents the start time of the task in 

the processor. In the Markov decision process, traditional 
methods lead to an extremely large state space, making 
modeling extremely slow and even impossible. Therefore, the 
reinforcement learning method is used to build models, which 
not only avoids the large state spaces, but also solves the 
continuous state spaces. DQN is used to build model. The core 
idea of DQN is to map the states and actions in the Markov 
decision process to a value function, namely the Q-value 
function. It is used to estimate the long-term return that can be 
obtained by taking an action in the current state. By learning 
this value function, DQN can select the optimal action in 
different states to maximize cumulative returns. DQN uses 
deep neural networks to approximate Q-value functions. The 
input of a neural network is a state. The output is an estimate 
of the Q-value for each action. After continuously adjusting 
the weights of the neural network, the estimation of Q value is 
closer to the true Q value. DQN uses an experience replay 
mechanism to train neural networks, which balances the 
sample correlation by saving and reusing previous experiences, 
improving training efficiency and stability.  

The iterative process of the task scheduling algorithm 
based on DQN is as follows. Firstly, the set of tasks waiting 
for scheduling is inputted. The priority queue of the tasks is 
initialized. For tasks that meet the conditions, they will be 
arranged at the end of the queue. Secondly, the network 
parameters are initialized and weights are randomly generated. 
When there are tasks in the priority queue, the first task in the 
queue is selected as a pending scheduling task. Then the state 
is obtained. The action with the highest Q value is calculated. 
The task is scheduled to the corresponding computing node 
based on the action. Then, the return is calculated, and the 
DQN is backpropagated. Finally, the system status is updated. 

B. Task Scheduling Optimization model Based on Deep 

Q-Network 

The DQN algorithm has wide applicability and strong 
expressive ability. Combining deep learning with 
reinforcement learning, the DQN algorithm can be applied to 
various sequential decision problems, including game agent 
control, autonomous driving, robot path planning, etc. 
Therefore, it has high universality and flexibility. The DQN 
algorithm uses deep neural networks to approximate value 
functions, which can handle high-dimensional and complex 
state spaces [19]. Therefore, the DQN algorithm can provide 
better expressive power and performance when dealing with 
large-scale problems. The DQN algorithm combines deep 
learning and reinforcement learning, utilizing deep neural 
networks to learn the approximation of value functions. It can 
effectively deal with continuous state and action space 
problems, achieving good performance. The DQN algorithm 
uses experience replay and fixed target network methods to 

improve the sample utilization efficiency and training stability, 
avoiding the sample correlation and instability in traditional 
reinforcement learning methods. 

However, the DQN algorithm model has some problems, 
such as the inability to represent random policies and 
difficulty in convergence. Therefore, the PG algorithm is 
adopted to improve the DQN algorithm. The PG algorithm is a 
method used to solve reinforcement learning problems by 
optimizing policy parameters to maximize cumulative rewards. 
Unlike traditional value function methods, the PG algorithm 
directly optimizes the policy function by using policy 
parameters as learnable parameters. The most commonly used 
method in PG algorithms is to use gradient ascent to update 
policy parameters. The core idea of the algorithm is to 
estimate the expected cumulative reward by sampling multiple 
trajectories. The gradient ascent method is used to update 
policy parameters to maximize expected rewards. To 
maximize cumulative rewards, a gradient ascent is applied to 
the cumulative rewards. The strategy function is shown in Eq. 
(11). 

( , ) { , }r t t ta s P A a S s      
       (11) 

In Eq. (11), s  represents the environmental state at time 

t .   represents the model parameters. rP  represents the 

probability that a task is assigned to a computing node for 
execution. The task scheduling and model parameter 
optimization process is shown in Fig. 4. 
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Compute Cluster
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Task
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ReturnUpdate 

Model  
Fig. 4. Task scheduling and model parameter optimization process. 

From Fig. 4, the scheduling model obtains a computing 
cluster through computing nodes. Then the computing cluster 
influences and updates the scheduling model through cluster 
status and returns [20]. For scheduling tasks, each task 
executes the above process to form a scheduling trajectory. 
The probability of generating scheduling trajectories is shown 
in Eq. (12). 
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In Eq. (12),   represents the scheduling trajectory.   

represents the scheduling strategy. t  represents the time step. 

The expected cumulative reward is shown in Eq. (13). 
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In Eq. (13), ( )R   represents the cumulative reward. The 

training model needs to maximize the cumulative return. 
Therefore, the parameters are updated through the gradient 
ascent method. The iterative process based on PG is displayed 
in Fig. 5. 

Input Task Initialize Task
Initialize Policy 

Network

Select 

scheduling task

Get Status
Selection 

Strategy
Perform gradient 

ascent

Update system 

status  

Fig. 5. The process of task scheduling algorithm based on PG. 

In Fig. 5, the first step is to input a set of tasks waiting for 
scheduling, and initialize the priority queue of the tasks. For 
tasks that meet the conditions, they will be arranged at the end 
of the queue. Next, the policy network is initialized. If there 
are tasks in the priority queue, the first task in the queue is 
selected as a pending scheduling task. Then the state is 
obtained and the probability values for executing various 
scheduling actions are output. Based on the probability value, 
the current strategy action is selected. According to the policy 
action, the task is scheduled to the corresponding computing 
node. Then the reward of the scheduling action is calculated. 
Finally, the policy network is backpropagated and the system 
state is updated through the gradient ascent. The PG method is 
combined with the DQN algorithm to schedule tasks. The PG 
algorithm is responsible for outputting behavior, while the 
DQN algorithm evaluates behavior based on returns. 
Moreover, both the PG algorithm and the DQN algorithm 
simulate and update functions through neural networks. The 
combination of the two methods will result in better 
performance, as shown in Fig. 6. 

In Fig. 6, all threads share a neural network, which 
includes the PG network and the DQN network. Each thread 
contains a neural network that is the same as the public 
network. Each network can be updated separately. 
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Fig. 6. PG-DQN network structure diagram. 

IV. PERFORMANCE ANALYSIS OF BIG DATA TASK 

SCHEDULING OPTIMIZATION MODEL BASED ON DEEP 

Q-NETWORK 

The first section of this chapter introduces the Predict 
Earliest Finish Time (PEFT) algorithm. It is compared with 
the proposed algorithm. Chapter 2 compares the cumulative 
rewards and the maximum completion time for dynamic 
scheduling models. 

A. Performance Analysis of Static Task Scheduling 

Optimization Model based on Improved Deep Q-network 

The operating system used in this experiment is Windows 
10. The CUP is the Intel Core i7-4710MQ processor, with a 
main frequency of 2.5GHz and 8.00GB of memory. The 
estimated earliest completion time algorithm and PG 
algorithm are compared with the algorithm used in this study 
[21-22]. The result is shown in Fig. 7. 
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Fig. 7. Recall rates and F1 values of four methods.
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Fig. 7(a) shows the recall rates of four algorithms on 
different datasets. Fig. 7(b) displays the F1 values of four 
algorithms on different datasets. In Fig. 7(a), the recall rates of 
the four models all increased with the increase of the training 
set. The proposed PG-DQN algorithm performed well among 
the four methods. When the dataset size was around 500, the 
recall rates of PG-DQN, PG, DQN, and PEFT were 0.96, 0.83, 
0.79, and 0.63. In Fig. 7(b), the F1 values continued to 
increase with the increase of the training set. When the dataset 
size was 500, the F1 values of the four algorithms were 0.97, 
0.90, 0.76, and 0.65, respectively. The proposed PG-DQN 
exhibits good performance in terms of recall and F1 value 
among the four models. Moreover, the PG-DQN has good 
performance on smaller datasets. The scheduling length ratio 
in the scheduling task is used as an indicator for comparison. 
Fig. 8 displays the results. 

In Fig. 8, compared with the traditional PEFT, DQN and 
PG had a smaller scheduling length ratio. The proposed 
PG-DQN had a smaller scheduling length ratio than the other 
three algorithms when scheduling 200-1000 tasks. The 
PG-DQN can explore more reward actions. The proposed 
PG-DQN algorithm performs well. It can still maintain good 
performance in multiple tasks. The training time and 
scheduling time are compared. Fig. 9 displays the results. 

Fig. 9 (a) shows the training time on different datasets and 
Fig. 9(b) presents the processing time of the algorithm under 
different task quantities. From Fig. 9(a), the FEPT exhibited 
longer training time under different dataset sizes. The training 
time of the PG-DQN was slightly longer than that of the PG 
and slightly shorter than that of the DQN. This is because the 
proposed algorithm model is a hybrid model of two methods, 

resulting in a more complex structure and more calculated 
parameters. In Fig. 9(b), the proposed PG-DQN only had 
slightly higher processing time than the PG in various 
quantities of task scheduling. Although the proposed PG-DQN 
does not take the least time, considering the scheduling 
performance, the overall performance of the PG-DQN is still 
better. 

B. Performance Analysis of Dynamic Task Scheduling 

Optimization model based on Improved Deep Q-network 

The experiment randomly generates 100 DAG tasks, each 
containing 10 sub-tasks, which are used as the dataset. The 
result is shown in Fig. 10. 
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Fig. 8. The relationship between the scheduling length ratio index of 

different algorithms and the number of tasks.
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Fig. 9. Calculation time required for scheduling different algorithms. 
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Fig. 10. Cumulative rewards of task scheduling algorithm under different iterations.

Fig. 10(a) presents the cumulative rewards of different task 
scheduling algorithms at 100 iterations. Fig. 10(b) displays the 
cumulative rewards of different task scheduling algorithms at 
500 iterations. In Fig. 10(a), at 100 iterations, the cumulative 
reward for the PG-DQN, PG, DQN, and PEFT were 350, 320, 
290, and 210, respectively. In Figure 10 (b), at 500 iterations, 
the cumulative reward for the PG-DQN, PG, DQN, and PEFT 
were 460, 400, 350, and 260, respectively. The cumulative 
return of the model is lower when the number of iterations is 
small. After reaching 500 iterations, the cumulative return of 
the model is good. The proposed PG-DQN has the highest 
cumulative return among the four models, indicating that the 
PG-DQN has good performance. The maximum completion 
time is compared, as displayed in Fig. 11. 

Fig. 11(a) displays the maximum completion time at 
different iterations. Fig. 11(b) displays the maximum 
completion time at different task quantities. According to Fig. 
11 (a), when the number of iterations was 100, 300, 500, and 
700, the maximum completion time of PG-DQN was 723s, 
654s, 591s, and 576s, respectively, which were lower than the 
other three algorithm models. In Fig. 11(b), when the 
scheduling tasks were 100, 200, 300, and 400, the maximum 
completion time of PG-DQN was 342s, 387s, 410 s, and 442s, 
respectively. The proposed algorithm model has good model 
performance at different iterations and task quantities. 50 
users are randomly selected and divided into an average of 
five groups to rate the model, as shown in Table I. 

According to Table I, the scores of the five groups on the 
PG-DQN were 84.4, 97.2, 92.5, 94.7, and 90.1, respectively. 
The scores for the PG were 80.2, 94.5, 90.4, 90.6, and 86.5, 
respectively. The scores for the DQN were 78.6, 80.7, 85.4, 
87.6, and 82.4, respectively. The scores for the PEFT were 
76.8, 78.3, 82.4, 86.1, and 78.1. The PG-DQN has better 
scores among the four models, which has received widespread 
praise. 

TABLE I.  USER EVALUATION FORM 

/ Group 1 Group 2 Group 3 Group 4 Group 5 

PG-DQN 84.4 97.2 92.5 94.7 90.1 

PG 80.2 94.5 90.4 90.6 86.5 

DQN 78.6 80.7 85.4 87.6 82.4 

PEFT 76.8 78.3 82.4 86.1 78.1 
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Fig. 11. Comparison of maximum completion time for tasks. 

V. CONCLUSION 

The task scheduling algorithm has significant value for the 
platform operation efficiency. A scheduling model based on 
Markov decision process is proposed, which applies DQN 
algorithm to DAG task scheduling. Then, to address the 
shortcomings of DQN algorithm, the PG algorithm is 
introduced to improve the model. According to the results, the 
recall rates of the four models increased with the increase of 
the training set. When the dataset size was around 500, the 
recall rates of the PG-DQN, PG, DQN, and PEFT were 0.96, 
0.83, 0.79, and 0.63. The F1 values of the four algorithms 
were 0.97, 0.90, 0.76, and 0.65. Under different dataset sizes, 
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the training time of the PG-DQN was slightly longer than that 
of the PG and slightly shorter than that of the DQN. In various 
task scheduling quantities, the proposed PG-DQN only had 
slightly higher processing time than the PG. At 100 iterations, 
the cumulative reward for the PG-DQN, PG, DQN, and PEFT 
were 350, 320, 290, and 210, respectively. At 500 iterations, 
the cumulative reward for the PG-DQN, PG, DQN, and PEFT 
were 460, 400, 350, and 260, respectively. The proposed 
method has good scheduling performance. However, there are 
also shortcomings in the research. The study only considers 
the execution time prediction for single threaded tasks. Future 
research will be conducted on multi-threaded tasks. For the 
task scheduling model, in the future, parameters will be 
adjusted based on the existing foundation. The model structure 
will continue to be optimized to achieve better scheduling 
results. The model architecture will also be considered for 
multi-objective optimization, such as fairness between tasks 
and priority scheduling of tasks. 

VI. DISCUSSION 

The scheduling model is a model established for 
scheduling problems. This study proposes a scheduling model 
based on Markov decision process, which applies the DQN 
algorithm to DAG task scheduling. Then, to address the 
shortcomings of the DQN algorithm, a PG algorithm is 
introduced to combine it and improve the model. The 
experimental results showed that the DQN algorithm had a 
smaller scheduling length ratio compared with the traditional 
PEFT algorithm and PG algorithm. The proposed PG-DQN 
algorithm had a smaller scheduling length ratio than the other 
three algorithm models when scheduling 200-1000 tasks, 
indicating that the PG-DQN algorithm model can explore 
more rewarding actions. Under different dataset sizes, the 
FEPT algorithm exhibits longer training times. The training 
time of PG-DQN algorithm model was slightly longer than 
that of PG algorithm and slightly shorter than that of DQN 
algorithm. This is because the proposed algorithm is a hybrid 
model of two methods, resulting in a more complex structure 
and more calculated parameters. When the number of 
iterations were 100, 300, 500, and 700, the maximum 
completion time of PG-DQN was 723s, 654s, 591s, and 576s, 
respectively, which were lower than the other three models. 
When the scheduling tasks were 100, 200, 300, and 400, the 
maximum completion time of PG-DQN was 342s, 387s, 410 s, 
and 442s, respectively. The research results indicated that the 
proposed method model has better performance and 
efficiency. 
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