
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1022 | P a g e

www.ijacsa.thesai.org

Design of Big Data Task Scheduling Optimization

Algorithm Based on Improved Deep Q-Network

Fu Chen1, Chunyi Wu2*

School of Smart Health, Chongqing College of Electronic Engineering, Chongqing, 401331, China1

Artificial Intelligence and Big Data College, Chongqing College of Electronic Engineering, Chongqing, 401331, China2

Abstract—Big data analysis can provide valuable insights not

easily obtained from traditional data scales. However, addressing

scheduling issues in big data can be challenging due to the vast

amount and diverse nature of the data. To overcome this, a

scheduling model based on Markov decision process is proposed.

The deep Q-network algorithm is used for directed acyclic graph

task scheduling. To improve this model further, the gradient

strategy algorithm is introduced. From the results, when the

dataset size was about 500, the hybrid algorithm achieved a recall

rate of 0.96, outperforming the gradient strategy algorithm

(0.83), deep Q-network algorithm (0.79), and estimated earliest

completion time algorithm (0.63). Although the estimated earliest

completion time algorithm had longer training times under

different dataset sizes, the hybrid algorithm's training time was

slightly longer than the gradient strategy algorithm and slightly

shorter than the deep Q-network algorithm. Overall, the

proposed algorithm exhibits superior performance and

significant value in solving engineering problems.

Keywords—Big data; Task scheduling; Policy gradient; Deep

Q-network

I. INTRODUCTION

Big data refers to a data collection generated due to its
large volume, diverse types, and inability to be processed by
traditional processing methods. These data typically have high
speed and high diversity [1]. Compared with traditional data,
big data has a larger data scale, more data types, and lower
value density [2]. The data volume of big data is basically
calculated at the PB level. Therefore, analyzing big data
requires extremely high computational power. However, at
current, the processing power of a single processor has
reached its limit. Relying solely on increasing processor
frequency cannot meet the current demand for big data
analysis. Influenced by the development of cloud computing
technology, more enterprises and research institutions are
inclined to use big data analysis platforms to complete data
analysis work. Traditional task scheduling algorithms are
usually based on static rules, which may be inflexible and
unable to adapt to real-time changing environments. In the big
data environment, the nature of tasks and the availability of
resources may dynamically change, which makes traditional
algorithms unable to effectively cope. Some traditional
algorithms may become complex when processing large-scale
data, leading to an increase in computational complexity.
Meanwhile, it is easy to fall into local optima, which can
affect the performance of task scheduling. Therefore, a
scheduling model based on Markov decision process is
proposed. This model applies the Deep Q-network (DQN)

algorithm to task scheduling in Directed Acyclic Graph
(DAG). Then, to address the shortcomings of the DQN
algorithm, a Policy Gradient (PG) algorithm is introduced to
improved it. The research content has four parts. The first part
briefly introduces the research topic of scheduling
optimization models. The second part is to analyze the main
methods used in this study. The third part analyzes the results.
The fourth part is a summary for the study and prospects for
future research.

II. RELATED WORKS

The scheduling model is a model established for
scheduling problems. Ammari A C et al. proposed a
scheduling strategy based on an improved firefly algorithm for
delay constrained applications in distributed green data centers.
Multiple heterogeneous applications were efficiently
scheduled with less cost and energy. The proposed scheduling
strategy model based on the improved firefly algorithm could
meet the scheduling problem of distributed green data centers
[3]. With the development of cloud and mobile applications,
the integration demand for applications and services in
business processes is also increasing. Many integrated
platforms used heuristic algorithms to schedule tasks executed
by computing resources. Therefore, Freire D L et al. proposed
a queue priority algorithm. This algorithm was based on
particle swarm optimization, which could handle massive
amounts of data in integrated task scheduling. The algorithm
could execute the integration process and schedule the data
under high data volume [4]. Zhou J et al. found that crowd
perception could solve the massive data collection faced by
most data-driven applications. Therefore, a workflow
framework was first proposed, which captured the unique
execution logic of perception tasks. Then, a phased approach
was proposed to decouple the original scheduling problem.
From the experimental results, the proposed model had good
performance in solving scheduling problems [5].

Mishra A et al. found that task scheduling was crucial for
improving the performance of large-scale collaborative and
distributed electronic science applications. Therefore, a
meta-heuristic crow search algorithm was proposed to address
the scheduling problem of multiple tasks across heterogeneous
virtual machines. This method could demonstrate better model
performance compared with traditional models [6]. The
computing demand in various application fields is increasing
day by day. To meet this requirement, on-site programmable
gate arrays have been widely used. Therefore, Tianyang L et
al. summarized the current research status of hardware task
dynamic scheduling based on the three basic elements of

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1023 | P a g e

www.ijacsa.thesai.org

existing on-site programmable gate array processing: time,
resources, and power consumption. The optimization effects
of various scheduling methods were analyzed and evaluated
from multiple dimensions. The research results indicated that
the research could make a certain contribution to scheduling
problems based on field programmable gate arrays [7]. Ye W
et al. proposed a new unmanned aerial vehicle assisted edge
computing system. The system dispatched edge nodes assisted
by drones to provide communication and computational
assistance for completing tasks generated by ground clients.
Firstly, a trajectory design and task allocation problem were
proposed, aiming to optimize the appropriate trajectory of
each drone and schedule tasks for each ground client. A
maximum drone trajectory and task allocation algorithm was
proposed, which solved the task allocation problem by jointly
optimizing the trajectory of the drone and the task scheduling
of the ground client. The proposed method demonstrated good
scheduling performance [8]. Wang et al. found that two-stage
mixed flow workshop scheduling with batch machines and
jobs arriving over time was complex and challenging. For
online scheduling problems, traditional heuristic rules can
quickly respond to dynamically arriving jobs, but their
performance is poor and unstable. Therefore, a scheduling
model based on the DQN algorithm was proposed. It
transformed the online scheduling problem into a
collaborative Markov decision process by defining the state
space, action space, and reward function of different agents.
The experimental results showed that the model could
effectively combine online batch formation and scheduling,
minimizing the total delay time [9]. Sun C et al. found that
task scheduling and load balancing in heterogeneous
computing environments received increasing attention in
recent years. Therefore, a new task scheduling and load
balancing method based on optimized deep reinforcement
learning is proposed. This method first formulates the task
scheduling problem into a Markov decision process. Then a
dual deep Q-learning network was used to search for the
optimal task allocation solution. The research results indicated
that the proposed method model had shorter task response
time and better load balancing effect [10].

In summary, many scholars have conducted research on
task scheduling and achieved some results. In this study, a
scheduling model based on Markov decision process is
proposed, which applies DQN algorithm to DAG task
scheduling. Then, to address the shortcomings of DQN
algorithm, the PG algorithm is introduced to improve the
model.

III. BIG DATA TASK SCHEDULING OPTIMIZATION MODEL

BASED ON DEEP Q-NETWORK

The first section of this chapter provides an explanation for
DAG task scheduling. The scheduling problem is optimized
into a Markov decision model. A task scheduling algorithm
based on DQN is proposed. In the second section, a PG
algorithm is proposed to address the shortcomings of task
scheduling algorithms based on DQN. Combined with the
DQN algorithm, a scheduling model based on PG-DQN
algorithm is proposed.

A. Directed Acyclic Graph Task Scheduling in Heterogeneous

Environments

Cloud computing task scheduling refers to the rational
allocation of tasks on cloud computing platforms to different
computing resources, improving computing efficiency and
resource utilization. Cloud computing servers usually have
three parts, namely scheduling servers, work nodes, and data
storage services. Performing computational tasks often
requires the output of other tasks as input, which can be
abstracted as a DAG representation. A DAG is a graph
structure composed of nodes and directed edges. Each edge
has a direction and there is no loop [11]. Starting from any
node in the graph and following the direction of the directed
edge, it will not return to that node. Its structure is shown in
Fig. 1.

1 2

3 4 5 6

7 8

Input

Output

Fig. 1. DAG model diagram.

In Fig. 1, the node without a predecessor node task is the
entry node, as shown in nodes 1 and 2 in the figure. There are
no other nodes that rely on this node, such as node 7 and node
8. The computational cost of the task on each processor is
shown in Eq. (1).

11 1

1

P

V P

V VP

ECT ECT

ECT

ECT ECT



 
 

  
   (1)

In Eq. (1), ECT represents the expected completion time.

P refers to the computing node. V refers to the current

task. The execution time is represented by the ECT matrix of
V P , which is the time required to allocate each task to

different nodes at the current moment [12]. In scheduling
problems, the most common definitions are the earliest start
time, earliest completion time, and maximum completion time.
The earliest start time refers to the time when the task cannot
start executing earlier than that, as shown in Eq. (2).

,
()

(,) max [], max { () }
k i

i j k k i
v pred v

EST v p avail j FT v c


 
  

  (2)

In Eq. (2), kv represents the task. ()kFT v refers to the

end time of the task execution. jp represents a node.

[]avail j represents the earliest time used to calculate the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1024 | P a g e

www.ijacsa.thesai.org

node. ,k ic represents the communication overhead between

two tasks. When the direct precursor of a node is on the same
processor as the node, the communication overhead between
the two nodes can be considered as zero [13]. The earliest
completion time indicates that the task cannot be completed
earlier than that time, as shown in Eq. (3).

,(,) (,)i j i j i jEFT v p EST v p  
 (3)

In Eq. (3), (,)i jEST v p refers to the earliest start time of

the task. ,i j represents the time required for the task to

perform calculations on the computing node. The earliest
completion time is equivalent to the sum of the earliest start
time and task execution time of the task [14]. The maximum
completion time represents the time required to complete the
last task in DAG, as displayed in Eq. (4).

max{ ()}exitMakespan FT v
 (4)

In Eq. (4), Makespan represents the maximum

completion time. eritv represents the export task. The

scheduling problem can be scheduled based on the execution
time of the task. This process can be considered as a Markov
decision process, which is a mathematical model used to
describe stochastic decision problems. This method is based
on an extension of Markov chain and decision theory. It is
used to model sequential decision problems that include
randomness and decision selection [15]. Its structure is shown
in Fig. 2.

a1

s1 s2

a2

s3

a3

s4

b1 b2 b3

Fig. 2. Markov decision process.

From Fig. 2, the future state only depends on the current
state and the currently selected action, rather than the past
state and action. This nature makes the Markov decision
process computable. Dynamic programming and other
methods can be used to solve the optimal strategy [16-17].
The probability of a system transitioning from one state to
another is defined as the state transition matrix, as shown in
Eq. (5).

11 1

1

n

n nn

P P

P

P P

 
 

  
   (5)

In Eq. (5), P represents the state transition matrix. The
goal of Markov decision process is to find a strategy that
maximizes long-term cumulative rewards. The quality of a
strategy is measured by defining a value function. It represents
the long-term cumulative reward that can be obtained by
adopting a certain strategy in a certain state, as shown in Eq.
(6).

1 2

0

1
k

t

k

tt ktG RR R 






    
 (6)

In Eq. (6), tR represents the reward obtained from the

environment after taking the action. t represents time. 

represents the attenuation factor, which reflects the future
returns on the current value of the intelligent agent [18]. If the
return is far from the current moment, the attenuation will be
greater. To measure the value of a state, the expected
cumulative reward is used as the state value, as displayed in
Eq. (7).

0

1 tt

k

k
kv RE S s   







 
  

  


 (7)

In Eq. (7),  represents the probability distribution of

taking action. s represents the state.  represents the

attenuation factor. S represents the finite set state of the

system. Based on the Markov decision process, a model is
established for task scheduling problems in heterogeneous
environments. The specific scheduling process is shown in Fig.
3.

Scheduling process

State Space

Design

Action Space

Design

Reward function

design

Fig. 3. Scheduling process.

The state space in a static environment is shown in Eq. (8).

1 ,1 ,[, , , , , ,]t M i i MS n EST EST T T
 (8)

In Eq. (8), t represents time. tS represents the system

state obtained by the scheduling model at t . M refers to the

computing node. n refers to the current tasks. jEST refers

to the start time of the task in the processor. T represents the
execution time. In task scheduling, the corresponding action
space is shown in Eq. (9).

1{ , , }t i MA p p p
 (9)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1025 | P a g e

www.ijacsa.thesai.org

In Eq. (9), tA represents the action space. The model

scheduling action at a certain moment is to schedule the
current task to a computing node. The design of the reward
function has significant impacts on the scheduling strategy.
The designed reward function is shown in Eq. (10).

1max{ (,) 1 } max{ (,) 1 }t i j i jR EST v p j q EST v p j q   
 (10)

In Eq. (10), EST represents the start time of the task in

the processor. In the Markov decision process, traditional
methods lead to an extremely large state space, making
modeling extremely slow and even impossible. Therefore, the
reinforcement learning method is used to build models, which
not only avoids the large state spaces, but also solves the
continuous state spaces. DQN is used to build model. The core
idea of DQN is to map the states and actions in the Markov
decision process to a value function, namely the Q-value
function. It is used to estimate the long-term return that can be
obtained by taking an action in the current state. By learning
this value function, DQN can select the optimal action in
different states to maximize cumulative returns. DQN uses
deep neural networks to approximate Q-value functions. The
input of a neural network is a state. The output is an estimate
of the Q-value for each action. After continuously adjusting
the weights of the neural network, the estimation of Q value is
closer to the true Q value. DQN uses an experience replay
mechanism to train neural networks, which balances the
sample correlation by saving and reusing previous experiences,
improving training efficiency and stability.

The iterative process of the task scheduling algorithm
based on DQN is as follows. Firstly, the set of tasks waiting
for scheduling is inputted. The priority queue of the tasks is
initialized. For tasks that meet the conditions, they will be
arranged at the end of the queue. Secondly, the network
parameters are initialized and weights are randomly generated.
When there are tasks in the priority queue, the first task in the
queue is selected as a pending scheduling task. Then the state
is obtained. The action with the highest Q value is calculated.
The task is scheduled to the corresponding computing node
based on the action. Then, the return is calculated, and the
DQN is backpropagated. Finally, the system status is updated.

B. Task Scheduling Optimization model Based on Deep

Q-Network

The DQN algorithm has wide applicability and strong
expressive ability. Combining deep learning with
reinforcement learning, the DQN algorithm can be applied to
various sequential decision problems, including game agent
control, autonomous driving, robot path planning, etc.
Therefore, it has high universality and flexibility. The DQN
algorithm uses deep neural networks to approximate value
functions, which can handle high-dimensional and complex
state spaces [19]. Therefore, the DQN algorithm can provide
better expressive power and performance when dealing with
large-scale problems. The DQN algorithm combines deep
learning and reinforcement learning, utilizing deep neural
networks to learn the approximation of value functions. It can
effectively deal with continuous state and action space
problems, achieving good performance. The DQN algorithm
uses experience replay and fixed target network methods to

improve the sample utilization efficiency and training stability,
avoiding the sample correlation and instability in traditional
reinforcement learning methods.

However, the DQN algorithm model has some problems,
such as the inability to represent random policies and
difficulty in convergence. Therefore, the PG algorithm is
adopted to improve the DQN algorithm. The PG algorithm is a
method used to solve reinforcement learning problems by
optimizing policy parameters to maximize cumulative rewards.
Unlike traditional value function methods, the PG algorithm
directly optimizes the policy function by using policy
parameters as learnable parameters. The most commonly used
method in PG algorithms is to use gradient ascent to update
policy parameters. The core idea of the algorithm is to
estimate the expected cumulative reward by sampling multiple
trajectories. The gradient ascent method is used to update
policy parameters to maximize expected rewards. To
maximize cumulative rewards, a gradient ascent is applied to
the cumulative rewards. The strategy function is shown in Eq.
(11).

(,) { , }r t t ta s P A a S s      
 (11)

In Eq. (11), s represents the environmental state at time

t .  represents the model parameters. rP represents the

probability that a task is assigned to a computing node for
execution. The task scheduling and model parameter
optimization process is shown in Fig. 4.

Scheduling model
Compute Cluster

Transition matrix

Task

Cluster status

ReturnUpdate

Model
Fig. 4. Task scheduling and model parameter optimization process.

From Fig. 4, the scheduling model obtains a computing
cluster through computing nodes. Then the computing cluster
influences and updates the scheduling model through cluster
status and returns [20]. For scheduling tasks, each task
executes the above process to form a scheduling trajectory.
The probability of generating scheduling trajectories is shown
in Eq. (12).

1 1 1

0

() () (,) ()

T

t t t t t

t

P s P s s a a s   



 
 (12)

In Eq. (12),  represents the scheduling trajectory. 

represents the scheduling strategy. t represents the time step.

The expected cumulative reward is shown in Eq. (13).

~
() [()]J E R




 

 
 (13)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1026 | P a g e

www.ijacsa.thesai.org

In Eq. (13), ()R  represents the cumulative reward. The

training model needs to maximize the cumulative return.
Therefore, the parameters are updated through the gradient
ascent method. The iterative process based on PG is displayed
in Fig. 5.

Input Task Initialize Task
Initialize Policy

Network

Select

scheduling task

Get Status
Selection

Strategy
Perform gradient

ascent

Update system

status

Fig. 5. The process of task scheduling algorithm based on PG.

In Fig. 5, the first step is to input a set of tasks waiting for
scheduling, and initialize the priority queue of the tasks. For
tasks that meet the conditions, they will be arranged at the end
of the queue. Next, the policy network is initialized. If there
are tasks in the priority queue, the first task in the queue is
selected as a pending scheduling task. Then the state is
obtained and the probability values for executing various
scheduling actions are output. Based on the probability value,
the current strategy action is selected. According to the policy
action, the task is scheduled to the corresponding computing
node. Then the reward of the scheduling action is calculated.
Finally, the policy network is backpropagated and the system
state is updated through the gradient ascent. The PG method is
combined with the DQN algorithm to schedule tasks. The PG
algorithm is responsible for outputting behavior, while the
DQN algorithm evaluates behavior based on returns.
Moreover, both the PG algorithm and the DQN algorithm
simulate and update functions through neural networks. The
combination of the two methods will result in better
performance, as shown in Fig. 6.

In Fig. 6, all threads share a neural network, which
includes the PG network and the DQN network. Each thread
contains a neural network that is the same as the public
network. Each network can be updated separately.

Global network

Strategy Dispatch

Neural

network

Input

Strategy Dispatch

Neural

network

Input

Strategy Dispatch

Neural

network

Input

Fig. 6. PG-DQN network structure diagram.

IV. PERFORMANCE ANALYSIS OF BIG DATA TASK

SCHEDULING OPTIMIZATION MODEL BASED ON DEEP

Q-NETWORK

The first section of this chapter introduces the Predict
Earliest Finish Time (PEFT) algorithm. It is compared with
the proposed algorithm. Chapter 2 compares the cumulative
rewards and the maximum completion time for dynamic
scheduling models.

A. Performance Analysis of Static Task Scheduling

Optimization Model based on Improved Deep Q-network

The operating system used in this experiment is Windows
10. The CUP is the Intel Core i7-4710MQ processor, with a
main frequency of 2.5GHz and 8.00GB of memory. The
estimated earliest completion time algorithm and PG
algorithm are compared with the algorithm used in this study
[21-22]. The result is shown in Fig. 7.

0

0

0.25

0.50

0.75

1.00

0 100 300 400200 500

0

0.25

0.50

0.75

1.00

R
e
ca

ll

Dataset size

(a)Recall rates under four algorithmic models (b)F1 values under four algorithmic models

F
1

PG-DQN

PG

100 300 400200 500

Dataset size

DQN
PEFT

PEFT

PG-DQN

PG
DQN

Fig. 7. Recall rates and F1 values of four methods.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1027 | P a g e

www.ijacsa.thesai.org

Fig. 7(a) shows the recall rates of four algorithms on
different datasets. Fig. 7(b) displays the F1 values of four
algorithms on different datasets. In Fig. 7(a), the recall rates of
the four models all increased with the increase of the training
set. The proposed PG-DQN algorithm performed well among
the four methods. When the dataset size was around 500, the
recall rates of PG-DQN, PG, DQN, and PEFT were 0.96, 0.83,
0.79, and 0.63. In Fig. 7(b), the F1 values continued to
increase with the increase of the training set. When the dataset
size was 500, the F1 values of the four algorithms were 0.97,
0.90, 0.76, and 0.65, respectively. The proposed PG-DQN
exhibits good performance in terms of recall and F1 value
among the four models. Moreover, the PG-DQN has good
performance on smaller datasets. The scheduling length ratio
in the scheduling task is used as an indicator for comparison.
Fig. 8 displays the results.

In Fig. 8, compared with the traditional PEFT, DQN and
PG had a smaller scheduling length ratio. The proposed
PG-DQN had a smaller scheduling length ratio than the other
three algorithms when scheduling 200-1000 tasks. The
PG-DQN can explore more reward actions. The proposed
PG-DQN algorithm performs well. It can still maintain good
performance in multiple tasks. The training time and
scheduling time are compared. Fig. 9 displays the results.

Fig. 9 (a) shows the training time on different datasets and
Fig. 9(b) presents the processing time of the algorithm under
different task quantities. From Fig. 9(a), the FEPT exhibited
longer training time under different dataset sizes. The training
time of the PG-DQN was slightly longer than that of the PG
and slightly shorter than that of the DQN. This is because the
proposed algorithm model is a hybrid model of two methods,

resulting in a more complex structure and more calculated
parameters. In Fig. 9(b), the proposed PG-DQN only had
slightly higher processing time than the PG in various
quantities of task scheduling. Although the proposed PG-DQN
does not take the least time, considering the scheduling
performance, the overall performance of the PG-DQN is still
better.

B. Performance Analysis of Dynamic Task Scheduling

Optimization model based on Improved Deep Q-network

The experiment randomly generates 100 DAG tasks, each
containing 10 sub-tasks, which are used as the dataset. The
result is shown in Fig. 10.

0 200 400 600 800 1000
4.0

4.5

5.0

5.5

6.0

6.5

Number of tasks

S
c
h
ed

u
li

n
g
 l

en
g

th
 r

at
io

PEFT

DQN

PG

PG-DQN

100 300 500 700 900

Fig. 8. The relationship between the scheduling length ratio index of

different algorithms and the number of tasks.

100
0

10

20

30

40

50

T
im

e
(s

)

Dataset size

(a)Model training time under different datasets

DQN
PG

PG-DQN

PEFT

200 400 500 100
0

5

10

15

20

25

T
im

e
(s

)

Number of tasks

200 400 800

(b)Model processing time under different task

quantities

DQN
PG

PG-DQN

PEFT

Fig. 9. Calculation time required for scheduling different algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1028 | P a g e

www.ijacsa.thesai.org

PG-DQN

PG DQN

(a) Cumulative rewards for different task

scheduling algorithms with 100 iterations

(b) Cumulative rewards for different task

scheduling algorithms with 500 iterations

PEFT

PG-DQN

PG DQN

PEFT

Fig. 10. Cumulative rewards of task scheduling algorithm under different iterations.

Fig. 10(a) presents the cumulative rewards of different task
scheduling algorithms at 100 iterations. Fig. 10(b) displays the
cumulative rewards of different task scheduling algorithms at
500 iterations. In Fig. 10(a), at 100 iterations, the cumulative
reward for the PG-DQN, PG, DQN, and PEFT were 350, 320,
290, and 210, respectively. In Figure 10 (b), at 500 iterations,
the cumulative reward for the PG-DQN, PG, DQN, and PEFT
were 460, 400, 350, and 260, respectively. The cumulative
return of the model is lower when the number of iterations is
small. After reaching 500 iterations, the cumulative return of
the model is good. The proposed PG-DQN has the highest
cumulative return among the four models, indicating that the
PG-DQN has good performance. The maximum completion
time is compared, as displayed in Fig. 11.

Fig. 11(a) displays the maximum completion time at
different iterations. Fig. 11(b) displays the maximum
completion time at different task quantities. According to Fig.
11 (a), when the number of iterations was 100, 300, 500, and
700, the maximum completion time of PG-DQN was 723s,
654s, 591s, and 576s, respectively, which were lower than the
other three algorithm models. In Fig. 11(b), when the
scheduling tasks were 100, 200, 300, and 400, the maximum
completion time of PG-DQN was 342s, 387s, 410 s, and 442s,
respectively. The proposed algorithm model has good model
performance at different iterations and task quantities. 50
users are randomly selected and divided into an average of
five groups to rate the model, as shown in Table I.

According to Table I, the scores of the five groups on the
PG-DQN were 84.4, 97.2, 92.5, 94.7, and 90.1, respectively.
The scores for the PG were 80.2, 94.5, 90.4, 90.6, and 86.5,
respectively. The scores for the DQN were 78.6, 80.7, 85.4,
87.6, and 82.4, respectively. The scores for the PEFT were
76.8, 78.3, 82.4, 86.1, and 78.1. The PG-DQN has better
scores among the four models, which has received widespread
praise.

TABLE I. USER EVALUATION FORM

/ Group 1 Group 2 Group 3 Group 4 Group 5

PG-DQN 84.4 97.2 92.5 94.7 90.1

PG 80.2 94.5 90.4 90.6 86.5

DQN 78.6 80.7 85.4 87.6 82.4

PEFT 76.8 78.3 82.4 86.1 78.1

800

100

M
a
k

es
p

an
(s

)

PG-DQN PG DQN PEFT

300 500 700
Iterations

700

600

500

600

100

M
a
k

es
p

an
(s

)

PG-DQN PG DQN PEFT

200 300 400

Number of tasks

500

400

300

(a)Makespan of four algorithms under different

iterations

(b)Makespan of four algorithms under different

task quantities
Fig. 11. Comparison of maximum completion time for tasks.

V. CONCLUSION

The task scheduling algorithm has significant value for the
platform operation efficiency. A scheduling model based on
Markov decision process is proposed, which applies DQN
algorithm to DAG task scheduling. Then, to address the
shortcomings of DQN algorithm, the PG algorithm is
introduced to improve the model. According to the results, the
recall rates of the four models increased with the increase of
the training set. When the dataset size was around 500, the
recall rates of the PG-DQN, PG, DQN, and PEFT were 0.96,
0.83, 0.79, and 0.63. The F1 values of the four algorithms
were 0.97, 0.90, 0.76, and 0.65. Under different dataset sizes,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1029 | P a g e

www.ijacsa.thesai.org

the training time of the PG-DQN was slightly longer than that
of the PG and slightly shorter than that of the DQN. In various
task scheduling quantities, the proposed PG-DQN only had
slightly higher processing time than the PG. At 100 iterations,
the cumulative reward for the PG-DQN, PG, DQN, and PEFT
were 350, 320, 290, and 210, respectively. At 500 iterations,
the cumulative reward for the PG-DQN, PG, DQN, and PEFT
were 460, 400, 350, and 260, respectively. The proposed
method has good scheduling performance. However, there are
also shortcomings in the research. The study only considers
the execution time prediction for single threaded tasks. Future
research will be conducted on multi-threaded tasks. For the
task scheduling model, in the future, parameters will be
adjusted based on the existing foundation. The model structure
will continue to be optimized to achieve better scheduling
results. The model architecture will also be considered for
multi-objective optimization, such as fairness between tasks
and priority scheduling of tasks.

VI. DISCUSSION

The scheduling model is a model established for
scheduling problems. This study proposes a scheduling model
based on Markov decision process, which applies the DQN
algorithm to DAG task scheduling. Then, to address the
shortcomings of the DQN algorithm, a PG algorithm is
introduced to combine it and improve the model. The
experimental results showed that the DQN algorithm had a
smaller scheduling length ratio compared with the traditional
PEFT algorithm and PG algorithm. The proposed PG-DQN
algorithm had a smaller scheduling length ratio than the other
three algorithm models when scheduling 200-1000 tasks,
indicating that the PG-DQN algorithm model can explore
more rewarding actions. Under different dataset sizes, the
FEPT algorithm exhibits longer training times. The training
time of PG-DQN algorithm model was slightly longer than
that of PG algorithm and slightly shorter than that of DQN
algorithm. This is because the proposed algorithm is a hybrid
model of two methods, resulting in a more complex structure
and more calculated parameters. When the number of
iterations were 100, 300, 500, and 700, the maximum
completion time of PG-DQN was 723s, 654s, 591s, and 576s,
respectively, which were lower than the other three models.
When the scheduling tasks were 100, 200, 300, and 400, the
maximum completion time of PG-DQN was 342s, 387s, 410 s,
and 442s, respectively. The research results indicated that the
proposed method model has better performance and
efficiency.

FUNDINGS

The research is supported by National Social Science
Foundation Project "Research and Application of Key
Technologies for Intelligent Ideological and Political
Classroom in Universities Based on Big Data"
(No.19VSZ084); Chongqing Natural Science Foundation
Project "Collaborative Mining and Online Classification
Method Research for Multi-Source Partial Label Big Data in
the Federated Learning Framework" (No.
CSTB2022NSCQ-MSX1421).

CONFLICT OF INTEREST

The authors have no relevant financial or non-financial
interests to disclose.

REFERENCES

[1] Dai X, Zhao L, Li Z, Du W, Zhong W, He R, Qian F. A data-driven
approach for crude oil scheduling optimization under product yield
uncertainty. Chemical Engineering Science, 2021, 246(32):124-133.

[2] Jiang J. Intelligent City Traffic Scheduling Optimization Based on
Internet of Things Communication. Wireless Communications and
Mobile Computing, 2021, 10(2):1-10.

[3] Zhang Z L, Zhang H J, Xie B, Zhang X. Energy scheduling optimization
of the integrated energy system with ground source heat pumps. Journal
of cleaner production, 2022, 365(10):1-19.

[4] Ammari A C, Labidi W, Mnif F, Yuan H, Zhou M, Sarrab M. Firefly
algorithm and learning-based geographical task scheduling for
operational cost minimization in distributed green data centers.
Neurocomputing, 2022,490(14):146-162.

[5] Freire D L, Frantz R Z, Roos-Frantz F, Basto-Fernandes V.
Queue-priority optimized algorithm: a novel task scheduling for runtime
systems of application integration platforms. Journal of supercomputing,
2022, 78(1):1501-1531.

[6] Zhou J, Fan J, Wang J. Task scheduling for mobile edge computing
enabled crowd sensing applications. International Journal of Sensor
Networks, 2021, 35(2):323-329.

[7] Mishra A, Sahoo M N, Satpathy A. H3CSA: A makespan aware task
scheduling technique for cloud environments. Transactions on Emerging
Telecommunications Technologies, 2021, 32(10):381-397.

[8] Tianyang L, Fan Z, Wei G, Sun M, Chen L. A Survey: FPGA-Based
Dynamic Scheduling of Hardware Tasks. Chinese Journal of
Electronics, 2021, 30(6):991-1007.

[9] Wang M, Zhang J, Zhang P, Cui L, Zhang G. Independent double
DQN-based multi-agent reinforcement learning approach for online
two-stage hybrid flow shop scheduling with batch machines.Journal of
Manufacturing Systems, 2022, 65(32):694-708.

[10] Sun C, Yang T, Lei Y. DDDQN-TS: A task scheduling and load
balancing method based on optimized deep reinforcement learning in
heterogeneous computing environment.International journal of
intelligent systems, 2022, 37(11):9138-9172.

[11] Ye W, Luo J, Wu W, Shan F, Yang M. MUTAA: An online trajectory
optimization and task scheduling for UAV-aided edge computing.
Computer networks, 2022, 218(9):1-13.

[12] Gordon C A K, Pistikopoulos E N. Data‐driven prescriptive maintenance
toward fault‐tolerant multiparametric control. AIChE Journal, 2022,
68(6):1745-1761.

[13] Deng Q, Santos B F. Lookahead approximate dynamic programming for
stochastic aircraft maintenance check scheduling optimization. European
Journal of Operational Research, 2022, 299(3):814-833.

[14] Gao Z, Sun D, Zhao R, Dong Y. Ship-unloading scheduling
optimization for a steel plant. Information Sciences, 2021,
544(21):214-226.

[15] Du H, Zhang K, Xiang Q. Stargazer: Toward efficient data analytics
scheduling via task completion time inference. Computers & Electrical
Engineering, 2021, 92(8):1070-1092.

[16] Gil-Mena A J, Bouakkaz A, Salim H. Online Load-Scheduling Strategy
and Sizing Optimization for a Stand-Alone Hybrid System. Journal of
Energy Engineering, 2021, 147(1):431-442.

[17] Maiorino A, Mota-Babiloni A, Manuel D, Ciro A. Scheduling
Optimization of a Cabinet Refrigerator Incorporating a Phase Change
Material to Reduce Its Indirect Environmental Impact. Energies, 2021,
14(8):241-252.

[18] David M, Boland J, Cirocco L, Lauret P, Voyant C. Value of
deterministic day-ahead forecasts of PV generation in PV + Storage
operation for the Australian electricity market. Solar Energy, 2021,
224(8):672-684.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

1030 | P a g e

www.ijacsa.thesai.org

[19] Zhang J, Xing L. An improved genetic algorithm for the integrated
satellite imaging and data transmission scheduling problem. Computers
& operations research, 2022, 139(5):1392-1405.

[20] Mehdi G, Hooman H, Liu Y, Peyman S, Arif S. Data Mining
Techniques for Web Mining: A Survey, Artificial Intelligence and
Applications，2022, 1(1):1-13

[21] Liang J, Li K, Liu C, Li K. Are task mappings with the highest
frequency of servers so good? A case study on Heterogeneous Earliest
Finish Time (HEFT) algorithm.Journal of systems architecture, 2021,
121(41):1355-1362.

[22] Weerakody P B, Wong K W, Wang G. Policy gradient empowered
LSTM with dynamic skips for irregular time series data.Appl. Soft
Comput. 2023, 142(21):110314-110321.

