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Abstract—Chronic kidney disease (CDK) represents a 

significant public health concern globally, and its prevalence is 

on the rise. In the context of Kuwait, this study addresses the 

imperative of predicting CKD by leveraging the wealth of 

information embedded in electronic health records (EHRs). The 

primary objective is to develop a predictive model capable of 

early identification of individuals at risk for CKD, thereby 

enabling timely interventions and personalized healthcare 

strategies and equip clinicians with information that enhances 

their ability to make well-informed decisions regarding 

prognoses or therapeutic interventions. In this study, a dataset 

has been created from Kuwaiti healthcare institutions, 

emphasizing the richness and diversity of patient information 

encapsulated in EHRs and a feature engineering step has been 

applied for labeling it. Various ensemble learning algorithms, 

Ada Boost, Extreme Gradient Boosting, Extra Trees, Gradient 

Boosting, Random Forest, and various single learning 

algorithms, Decision Tree, K-Nearest Neighbors, Logistic 

Regression, Multilayer Perceptron, Stochastic Gradient Descent, 

Support Vector Machines, have been implemented. By examining 

the empirical findings of our tests, our results showcase the 

models’ capability to identify individuals at risk for CKD at an 

early stage, facilitating targeted healthcare interventions. 

Decision Tree was the best classifier achieving 99.5% accuracy 

and 99.3% macro averaged f1-score. 

Keywords—Chronic kidney diseases; Electronic Health 

Records (EHR); classification; machine learning 

I. INTRODUCTION 

The digitalization of patient health records has brought 
about a new era in healthcare, one that offers previously 
unheard-of possibilities for data-driven research and medical 
improvements [1]. With the right use, Electronic Health 
Records (EHR) can become a veritable gold mine of detailed, 
longitudinal patient data. With the right application, this data 
can revolutionize the way to anticipate and prevent disease. A 
major obstacle confronting the healthcare sector is the 
increasing prevalence of chronic diseases, which contribute 
significantly to worldwide morbidity and mortality [2]. A 
growing number of people are interested in using the potential 
of EHR to create strong predictive models that target early 
identification, risk assessment, and tailored intervention for 
chronic diseases. Millions of people worldwide suffer from 

CKD, a widespread, frequently silent illness that places a 
heavy burden on healthcare systems around the globe. 
Innovative methods for identifying those at risk are desperately 
needed as the frequency of CKD rises, as this will allow for 
early intervention and individualized care. In this quest, EHRs, 
which comprise an extensive patient data repository, proves to 
be a vital asset. They provide a dynamic platform for the 
creation of predictive models that have the potential to 
revolutionize the management CKD [3]. 

When it comes to identifying subtle signs and patterns that 
precede overt clinical symptoms, traditional diagnostic 
techniques frequently fall short. Within this framework, EHRs 
function as a repository for longitudinal patient data, 
encompassing test findings, medication records, and 
demographic details, offering a comprehensive perspective of a 
person's medical journey. By using EHR data, it is possible to 
identify complex patterns and risk factors related to CKD, 
which can lead to tailored interventions that can be 
implemented in a timely manner [3]. 

In earlier research [4], the same authors suggested using 
EHRs instead of paper ones to record patients' health 
information. Also, they highlighted the application of 
predictive analytics models, which use electronic health data to 
predict the emergence of chronic diseases early on. According 
to this study, CKD affects around 700 million people globally 
each year, and it causes nearly 1.2 million fatalities [4]. The 
current research contributes to improve the quality of life for 
those with or at risk of CKD in Kuwait by highlighting the 
revolutionary potential of predictive ensemble learning and 
single learning algorithms models using actual Kuwaiti EHRs 
which are collected from hospitals and health institutes in 
Kuwait and altering clinical workflows and resource allocation. 

Through patient follow-up, changes in several clinical 
markers could be seen over time and their relationship to the 
course of the disease. By using this method, we may record the 
time dynamics and find any patterns or trends that might point 
to deteriorating CKD. While our study primarily focused on 
the development and validation of the predictive model, we 
acknowledge the importance of discussing the practical aspects 
of its clinical implementation. Addressing issues related to data 
integration, workflow adaptation, and acceptance by healthcare 
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professionals is critical for the effective deployment of 
predictive models in routine clinical care. 

The following are the primary contributions of the article: 

 Using electronic health records instead of paper records. 

 Using accessible datasets from patients' medical 
records, machine learning techniques are used to predict 
the existence of chronic illnesses. 

 Examining medical records of all patients to ensure 
proper diagnosis of chronic disorders. 

 Identifying new patients with comparable symptoms 
and illness development phases based on physician 
supervision and medical record analysis for a specific 
type of chronic disease. 

The latter part of the manuscript will delve into related 
research in Section II, followed by an examination of the 
datasets employed in this study in Section III. Section IV will 
provide a comprehensive description of the proposed 
technique. Subsequently, Section V will present the test results 
and evaluate the effectiveness of the proposed strategy. Lastly, 
Section VI and Section VII will present the discussion and 
conclusions respectively. 

II. RELATED WORK 

Considerable work has been done to anticipate CKD. This 
section will include descriptions of a few of these works. 

To predict CKD using clinical data, Ekanayake and Herath 
[5] investigated the use of machine learning techniques. They 
noted the need of feature engineering, handling missing values, 
and integrating domain knowledge in the study. They presented 
a procedure that includes attribute selection, handling of 
missing values, and data preprocessing. The application of a 
KNN-based technique to handle missing values in datasets 
pertaining to several diseases was also taken into consideration 
in this work. According to the study, the random forest and 
extra trees classifiers produced the best results for predicting 
CKD, obtaining 100% accuracy for both training and testing. 
Furthermore, the study made no mention of any potential 
privacy or ethical issues with using patient data for predictive 
modeling. 

Q. Bai et al. [6] developed a predictive model for end-stage 
kidney disease (ESKD) using a dataset of 748 people with 
chronic kidney disease (CKD). To manage missing data, the 
authors used a five-set multiple imputation method. They then 
examined each model's performance on each imputed set, 
combining the findings to get the result. At 81%, the random 
forest algorithm produced the best overall performance as 
determined by the AUC score. On the other hand, the Kidney 
Failure Risk Equation (KFRE) model, which is based on three 
straightforward variables, showed the highest accuracy, 
specificity, and precision along with equivalent AUC scores. 
The research found a void in the literature about the 
applicability of predictive models for ESKD in other ethnic 
groups, including the Chinese population. It also brought 
attention to the possibility of predicting ESKD without the 
need for urine testing, which could result in a more 
straightforward model with comparable reliability. The KFRE 

model's default threshold sensitivity and the lack of previous 
attempts to use machine learning techniques to predict the 
occurrence of ESKD in CKD patients are among the study's 
shortcomings. 

Y. Zhu et al. [7] presented a unique method utilizing 
longitudinal patient Electronic Health Records (EHRs) to 
predict the course of CKD. They forecasted the course of CKD 
with impressive accuracy by combining an AI prediction 
model with an EHR preprocessing pipeline. Preprocessing the 
EHR incorporates multiple clinical factors and transforms them 
into time series data that may be used in Recurrent Neural 
Network (RNN) modeling. Their main goal was to forecast 
how quickly CKD will advance from early to late stages. 
Feature vectors that represent patient data prior to a given 
period are analyzed for each case patient. Based on patient 
race, sex, age, and duration of time series, control patients are 
matched when utilizing the time series of a single variable, 
eGFR, the RNN model predicts disease development within a 
year with an average AUROC of 0.957. Due to patient privacy 
issues and the proprietary nature of the data, there is a research 
gap in the lack of publicly available datasets. 

H. Nayeem et al. [8] applied machine learning approaches 
to predict chronic kidney disease (CKD). The 400 examples in 
the sample comprise 25 attributes total one dependent attribute 
and 24 independent attributes. To predict CKD, the study used 
methods from Support Vector Machine (SVM), Random Forest 
(RF), and Artificial Neural Network (ANN). An analysis of the 
classifiers' comparative performance revealed that ANN 
performed better than the other techniques, achieving 98.6% 
and 98% accuracy and f1-score, respectively. The study failed 
to examine the possibility of biases in the dataset or the 
applicability of the results to different groups with chronic 
kidney disease. 

D. Chicco et al. [9] examined CKD and found independent 
risk factors linked to stages 3-5 of the disease by examining a 
dataset of 491 individuals from the United Arab Emirates. The 
authors used two different methodologies, one based on 
machine learning techniques and the other on conventional 
univariate biostatistics testing. The results of the biostatistical 
tests showed that while 68.42% of the clinical parameters were 
significant, they were not precise. As a result, the writers 
ranked features using Random Forests. The study showed that, 
independent of temporal information, computational 
intelligence could predict the development of severe CKD, 
suggesting that the significance of clinical factors changes 
when the temporal component is considered. The study is 
significant because it uses machine learning to uncover critical 
clinical traits while thoroughly examining risk factors linked to 
CKD at stages 3-5. Remarkably, the study concentrated on 
developing and enhancing computational intelligence 
technologies rather than discussing the therapeutic implications 
of the results. 

In another study on the prediction of chronic renal illness, 
S. Pal [10] used three machine learning classifiers: Support 
Vector Machine (SVM), Decision Tree, and Logistic 
Regression. After the classifiers were assessed, it was 
discovered that the Decision Tree classifier performed the best, 
obtaining 95.92% accuracy, 0.99 precision, 0.98 recall, and 
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0.98 F1-score. To enhance the performance of the base 
classifiers, bagging ensemble methods were also used in this 
study. The Decision Tree classifier achieved the greatest 
accuracy of 97.23%. There may be a research gap because the 
study did not specify the precise dataset that was utilized to 
train and test the classifiers. 

M. Klamrowski et al. [11] used machine learning to create 
a prediction model for individuals with advanced chronic renal 
disease who are at risk of short-term kidney failure. They were 
intended to be integrated into electronic medical records for 
clinical use, and they made use of dynamic laboratory data to 
increase prediction accuracy. They showed that the prediction 
of short-term kidney failure requires the inclusion of more 
current follow-up data, especially dynamic lab data. The study 
also demonstrated how the prediction model may be used to 
lower the rates of unscheduled dialysis and the negative 
consequences that are linked with it. The study found that 
using machine learning methods, such as Cox regression, to 
take into consideration the complex interrelationships and 
complexity of the data was the best approach. This study found 
a knowledge gap on the requirement to increase the 
generalizability of prediction models to various populations. 
Furthermore, there is a lack of validating the prediction model's 
efficacy within the typical renal disease clinic workflow and 
integration of the model into clinical practice. 

A. Islam et al. [12] used machine learning techniques to 
forecast chronic kidney disease (CKD) in its early stages. To 
minimize the number of features and get rid of unnecessary 
data, relationships between various aspects were investigated 
and the models were trained and validated using input 
parameters. After preprocessing the dataset, principal 
component analysis (PCA) was used to determine which 
features were most important in CKD detection. This study 
discovered that, after using a filter feature selection approach, 
hemoglobin, albumin, and specific gravity had the greatest 
influence on CKD prediction. The best approach involved 
using machine learning algorithms to predict CKD at an early 
stage, with a focus on identifying the most dominant features 
for detecting the disease. The performance of the proposed 
model was evaluated, and it was suggested that CKD risk 
factor predicting could be used to identify individuals at risk 
within the community without the need for hospital admission. 
The challenge of locating a different dataset with comparable 
properties for a useful comparison was noted by the authors. 

III. DATA 

In this study, an EHR dataset comprising information about 
patients in Kuwaiti hospitals was constructed. Each row in the 
dataset represents a single patient, and the columns indicate all 
the patient's attributes (laboratory analysis), as detailed in 
Table I. This dataset was created for the purpose of predicting 
Kuwaiti Chronic Kidney Diseases (KCKD) by combining all 
characteristics from original datasets into a single csv file for 
use in training and testing prediction models, in addition to the 
personal information of all patients during all hospital visits. 
This EHR dataset has been acquired from the Department of 

Health Studies and Research at the Kuwaiti Ministry of Health 
to get clearance to access medical data and publish under the 
supervision of National Center for Health Information, and the 
Department of Prevention and Control of Non-Communicable 
Diseases in Kuwait. Data authorization has been obtained from 
the director of Al-Adan Hospital and forward the Request to 
the appropriate departments. Obtain clearance from the heads 
of the Medical Board, the Department of Clinical Radiology, 
the Department of Medical Laboratories, and the Department 
of Information Systems at Al-Adan Hospital for various 
departments. The dataset is available on Kaggle, KCKD, in the 
final version after feature engineering process. Another online 
labeled CKD dataset with the same features has been used for 
labeling the first one using feature engineering process that will 
be discussed in the next section. For the findings of this study 
to be applicable and generalizable to a wide range of 
populations, we must take ethnic and cultural heterogeneity 
into account in our research. We can evaluate potential 
differences in illness susceptibility, progression trends, and 
response to therapies by stratifying our dataset according to 
ethnicity or cultural background. Furthermore, our predictive 
models may be more accurate and relevant for demographic 
groups if pertinent cultural determinants of health are included. 

TABLE I.  NAME AND TYPE OF EACH FEATURE OF THE EHR DATASET 

Feature Name Type 

Potassium Numeric 

Sodium Numeric 

CL Numeric 

Ceriatinin Numeric 

Blood Urea Numeric 

IV. METHODOLOGY 

In this section, the methodology of the proposed work will 
be represented and provide an explanation for every step. Fig. 
1 represents the block diagram of the proposed work and steps 
including two phases. 

A. Feature Engineering 

This paper introduces a feature engineering approach [13] 
for kidney disease classification, focusing on leveraging known 
features from a labeled dataset to enhance predictive modeling 
on an unlabeled dataset. The methodology involves meticulous 
extraction and refinement of relevant features, employing 
preprocessing techniques to ensure data quality, and training 
multiple machine learning [14] classification algorithms. The 
best-performing model is then selected based on cross-
validation results on the labeled dataset. Subsequently, this 
chosen model is applied to predict classes for the unlabeled 
dataset, providing a seamless transfer of knowledge between 
labeled and unlabeled data. The paper concludes with an 
analysis of the model's performance, highlighting the efficacy 
of the proposed feature engineering process in improving the 
accuracy and generalization of kidney disease classification. 

https://rb.gy/2za9l8
https://www.kaggle.com/datasets/mahmoudlimam/preprocessed-chronic-kidney-disease-dataset
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B. Data Preprocessing 

Preprocessing steps are crucial for kidney datasets as they 
play a vital role in enhancing the quality of the data and 
ensuring that machine learning models can effectively learn 
patterns and make accurate predictions. Here are some key 
preprocessing steps and their importance for kidney datasets. 

1) Handling missing value: Kidney datasets may often 

have missing values due to various reasons such as incomplete 

sample collection or laboratory errors. Imputing or handling 

missing values is critical to maintain the integrity of the 

dataset and ensure that the analysis is based on as much 

relevant information as possible. By checking for null values 

in the aggregated dataset we noticed that there are some 

missing values in the input features as shown in Table II. 

TABLE II.  NUMBER OF NULL VALUES IN THE AGGREGATED DATASET 

Feature Name # Null values # All records 

Blood Urea (mgs/dL) 14 

680 
Serum Creatinine (mgs/dL) 12 

Sodium (mEq/L) 67 

Potassium (mEq/L) 68 

2) Normalization / Scaling: Different features in the 

dataset may have different scales. Normalizing or scaling 

features, especially numeric ones like blood pressure or serum 

creatinine, helps in bringing them to a similar scale, 

preventing certain features from dominating others during 

model training. We utilized the Standard Scaler [2] during 

preprocessing for the kidney dataset. This technique 

normalizes features to have a mean of 0 and a standard 

deviation of 1, ensuring uniform scales and enhancing the 

effectiveness of machine learning models, especially those 

reliant on distance measures. 

3) Data splitting: In the experimentation of this study, for 

the aggregated dataset, we divided the aggregated kidney 

dataset into training (85%) and testing (15%) sets. This 

resulted in 571 instances for training and 101 instances for 

testing, out of the total 672 instances in the dataset. After 

labeling the second dataset, we divided it into two portions 

80% (1600 samples) for training and 20% (401 samples) for 

testing as shown in Table III. This approach ensures a 

comprehensive evaluation of model performance, balancing 

training, and testing for reliable insights into the effectiveness 

of the proposed models for kidney disease classification. 

TABLE III.  NUMBER OF INSTANCES  IN AGGREGATED CKD AND KCKD  

DATASETS 

Dataset Split ratio 
Training 

instances 

Testing 

instances 

Total 

instances 

Aggregated 

Dataset 

85% 

Train 

15% 

Test 
571 101 672 

Dataset after 

labeling 

80% 

Train 

20% 

Test 
1600 401 2001 

 
Fig. 1. Proposed method architecture. 
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TABLE IV.  NUMBER OF INSTANCS BEFORE AND AFTER OVER SAMPLING IN 

THE AGGREGATED DATASET AND NEW DATASET 

Dataset Label 
# samples before 

balancing 

# samples after 

balancing 

Aggregated 
Dataset 

non-CKD 216 355 

CKD 355 355 

Dataset after 

labeling 

non-CKD 345 1255 

CKD 1255 1255 

Total 2171 3220 

Table IV displays the impact of oversampling on instance 

counts in both the Aggregated Dataset and new labeled dataset 

after feature engineering. In the Aggregated Dataset section, 

the initial counts show 216 instances for the "non-CKD" class 

and 355 instances for the "CKD" class. After balancing, both 

classes have 355 instances, resulting in a total of 710 

instances. Moving to the dataset after labeling using feature 

engineering, the “non-CKD” class initially has 345 instances, 

while the "CKD" class has 1255 instances. Following 

oversampling, both classes achieve balance with 1255 

instances each, contributing to a total of 2510 instances. This 

oversampling strategy aims to ensure a more equitable 

representation of classes for enhanced model training and 

evaluation. 

4) Cross Validation (CV): To rigorously assess proposed 

machine learning models, we adopted a five-fold cross-

validation approach [15]. This method divides the dataset into 

five subsets, iteratively training the model on four and testing 

on the remaining one. By calculating and averaging 

performance metrics, such as accuracy and precision, across 

all iterations, we obtain a robust evaluation of proposed 

model's generalizability. This strategy ensures reliability by 

preventing over-sensitivity to a particular training set 

composition and guides hyperparameter tuning efforts for 

optimized model performance. 

C. Machine Learning Methods 

In this study, we employed two categories of machine 

learning algorithms, namely ensemble learning algorithms and 

single learning algorithms, as outlined below. 

1) Single learning: In this research, we employed a 

diverse set of single learning algorithms, each contributing 

distinct strengths to analysis. The single learning algorithms 

used are illustrated below. 

a) Decision Tree (DT) [16]: A clever and 

straightforward machine learning predictive model technique 

called a decision tree classifier uses a tree representation to go 

from an item's observation to a judgment about the item's 

target value. The decision tree is a tool for classification, 

description, and generalization of a given collection of data 

that combines mathematics and computational techniques. 

b) Logistic Regression (LR) [17]: Predicting Binary 

Probabilities: Logistic Regression serves as a linear 

classification method that predicts the likelihood of a binary 

outcome. It accomplishes this by fitting a logistic curve to the 

data, making it particularly suitable for applications like 

binary classification tasks such as spam detection or medical 

diagnoses. 

c) Stochastic Gradient Descent (SGD) [18]: SGD stands 

out as an optimization technique widely employed in machine 

learning model training. It refines model parameters through 

iterative and stochastic updates, proving notably efficient for 

handling extensive datasets. SGD finds frequent use in tasks 

involving neural network training and other iterative 

optimization challenges. 

d) Support Vector Classifier (SVC) [19]: Using training 

data at class boundaries, the SVM is a linear classifier. Radial 

Basis Function (RBF) kernels, which were employed in this 

work, sigmoid, linear, and other kernel functions are used by 

the SVM model to classify non-linear data. Assuming that the 

new sample and the existing samples are similar, the KNN 

algorithm assigns the new sample to the category that most 

closely matches the existing categories [19]. 

e) K-Nearest Neighbours (KNN) [20]:  KNN, a 

straightforward yet powerful algorithm, is adept at 

classification and regression duties. Its principle lies in 

classifying data points by considering the majority class 

among their k-nearest neighbours. KNN's simplicity and ease 

of implementation make it suitable for diverse applications, 

ranging from recommendation systems to pattern recognition. 

f) Multi-Layer Perceptron (MLP) [21]: MLP, 

categorized as a neural network with multiple layers, exhibits 

proficiency in discerning intricate patterns and relationships 

within datasets. This algorithm's versatility is evident across 

applications like image recognition, natural language 

processing, and speech recognition. The depth of the network 

facilitates the capture of intricate hierarchical features in the 

data. 

These models operate independently, with each algorithm 
focusing on learning patterns and relationships within the data 
individually. The application of these single learning 
techniques allows us to harness the specific capabilities of each 
algorithm to enhance the understanding of the intricate 
dynamics within the kidney dataset. 

2) Ensemble learning: To further fortify the predictive 

capabilities of proposed models, we incorporated ensemble 

learning algorithms, a category renowned for amalgamating 

multiple models to achieve superior performance. The 

ensemble learning algorithms utilized in this research 

encompassed the following types: 

a) Random Forest [22]: Random Forest, an ensemble 

learning algorithm, builds numerous decision trees during 

training, consolidating predictions to improve reliability and 

mitigate overfitting. Its versatility has proven effective across 

diverse domains, including the focus of this research. 

b) Ada Boost [23]: Ada Boost, a boosting algorithm, 

combines weak learners sequentially to form a robust model. 

Its iterative approach corrects errors from previous models, 

with a focus on challenging instances. In this research, Ada 

Boost plays a pivotal role in elevating accuracy in ensemble 

predictions. 
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c) Gradient Boosting (GBoost) [24]: Gradient Boosting, 

an iterative ensemble algorithm, constructs decision trees 

sequentially to rectify the errors of preceding trees. Known for 

achieving high precision, GBoost is particularly valuable in 

scenarios requiring accurate predictions, as exemplified in this 

research. 

d) XGBoost [25]: XGBoost, or Extreme Gradient 

Boosting, represents an optimized form of gradient boosting 

with a focus on speed and efficiency. Its parallelized training 

and regularization techniques make it scalable and efficient for 

handling extensive datasets. In this research, XGBoost 

enhances the effectiveness of ensemble learning. 

e) Extra Trees [26]: Extra Trees, or Extremely 

Randomized Trees, is an ensemble algorithm introducing 

additional randomization during tree construction. This 

intentional randomness enhances model robustness and 

generalization. In this research, Extra Trees contributes to the 

ensemble's diversity, fostering a more resilient predictive 

model. 

Leveraging the collective wisdom of diverse models, these 
ensemble learning techniques aimed to amplify the robustness 
and accuracy of the predictions, particularly in the context of 
kidney disease classification. 

D. Performance Metrics 

In this section, we detail the evaluation metrics used in the 
thesis to assess the performance of statistical and machine 
learning algorithms, including accuracy, the confusion matrix, 
and the classification report. 

1) Confusion Matrix: This matrix [27], a vital tool for 

classification model evaluation, provides a comprehensive 

summary of predictions versus actual labels. Comprising 

elements like True Positive (TP), False Positive (FP), True 

Negative (TN), and False Negative (FN), it illuminates the 

model's performance for positive and negative classes. 

2) Classification Report: Offering a detailed assessment 

across different classes, the classification report presents 

various metrics per class. It includes equations for accuracy in 

Eq. (1), precision in Eq. (2), recall in Eq. (3), and F1 score in 

Eq. (4) derived from the report [28]: 

Accuracy = 
     

           
               (1) 

Precision = 
  

         
        (2) 

Recall = 
  

         
      (3) 

F-measure = 
      

                  
  (4) 

3) ROC AUC Curve: Illustrating a binary classification 

model's performance across decision thresholds, the ROC 

curve [29] and its AUC metric (ranging from 0 to 1) indicate 

discrimination ability, with higher values denoting superior 

performance. 

V. EXPERIMENTAL RESULTS 

Several experiments have been conducted to assess the 
proposed model. The Python programming language and 
various machine learning toolboxes, such as scikit-learn, 
imblearn, NumPy, and matplotlib, were used for all 
experiments, which were conducted using the Jupiter notebook 
editor. 

As shown in Table V, a feature engineering process has 
been applied for an aggregated CKD dataset with the same 
attributes to obtain the optimal labels for new EHRs dataset. 
The aggregated CKD dataset has been trained using nine 
classifiers, five ensemble learning algorithms (Ada Boost, 
XGBoost, Extra Trees, GBoost, and RF) and six single 
learning algorithms (DT, KNN, LR, MLP, SGD, and SVM), 
and the highest performance was obtained by GBoost 
classifier, which achieved 97.7%, 97.8, 98%, and 97.8% for 
precision, recall, accuracy, and macro-averaged f1-score 
respectively. The RF classifier was in second place achieving 
95.6%, 95.6%, 96%, and 95.5% for precision, recall, accuracy, 
and macro-averaged f1-score respectively. 

After obtaining the best labels for each patient in KCKD 
dataset, it was ready for building the classification model with 
the same classifiers mentioned above, which can predict the 
case of patients in Kuwait hospitals, who have the same 
symptoms with different values. 

TABLE V.  TRAINING PERFORMANCE OF ALL CLASSIFIERS FOR THE 

AGGREGATED CKD DATASET 

 Classifier Precision Recall Accuracy F1-score 

Single 

Learning 

DT 94.3% 94.9% 95.0% 94.6% 

KNN 92.2% 92.7% 93.1% 92.4% 

LR 86.5% 85.1% 87.1% 85.6% 

MLP 94.1% 90.9% 93.1% 92.2% 

SGD 87.0% 87.0% 88.1% 87.0% 

SVM 86.8% 87.6% 88.2% 87.2% 

Ensemble 
Learning 

Ada Boost 86.8% 82.6% 77.6% 74.7% 

XGBoost 94.9% 94.5% 90.2% 92.6% 

Extra Trees 81.8% 85.7% 53.6% 54.8% 

GBoost 89.9% 88.5% 68.4% 82.3% 

RF 86.8% 84.6% 71.0% 75.3% 

Table VI shows the performance of all classifiers for 
KCKD dataset. The highest performance was obtained by DT 
classifier, which achieved 98.9%, 99.7%, 99.5%, and 99.3% 
for precision, recall, accuracy, and macro-averaged f1-score 
respectively. The second place for Ada Boost classifier, which 
we achieved 98.4%, 99.5%, 99.2%, and 98.9% for precision, 
recall, accuracy, and macro-averaged f1-score respectively. 

A recognized confusion matrix is obtained in Table VII and 
Table VIII for the purpose of estimating four different 
measures: recall, accuracy, precision, and f-score. The 
confusion matrix displays the classification results as a matrix. 
Information for both existing and anticipated classes created 
with the classification framework is included. The cell shows 
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the sample size that was mistakenly identified as false while 
quiet (i.e., TN) and as true when it was truly true (i.e., TP). The 
number of pieces that were erroneously classified is indicated 
by the two remaining cells. 

TABLE VI.  TRAINING PERFORMANCE OF ALL CLASSIFIERS FOR KCKD 

DATASET AFTER LABELING 

 Classifier Precision Recall Accuracy F1-score 

Single 

Learning 

DT 98.9% 99.7% 99.5% 99.3% 

KNN 91.3% 95.1% 94.7% 92.9% 

LR 95.2% 96.5% 97.0% 95.8% 

MLP 97.4% 97.7% 98.2% 97.5% 

SGD 94.1% 96.6% 96.5% 95.3% 

SVM 91.8% 97.1% 95.5% 94.1% 

Ensemble 

Learning 

Ada Boost 98.4% 99.5% 99.2% 98.9% 

XGBoost 97.9% 96.4% 98.0% 97.1% 

Extra Trees 38.4% 50.0% 76.8% 43.4% 

GBoost 98.2% 98.9% 99.0% 98.6% 

RF 98.3% 99.2% 99.2% 98.9% 

TABLE VII.  CLASSIFICATION REPORTS OF SVM, DT, AND MLP 

CLASSIFIERS FOR AGGREGATED CKD DATASET 

Dataset Classifier Precision Recall F-measure Class 

Single 

Learning 

DT 
91.89 94.44 93.15 0 

96.88 95.38 96.12 1 

KNN 
89.19 91.67 90.41 0 

95.31 93.85 94.57 1 

LR 
84.85 77.78 81.16 0 

88.24 92.31 90.23 1 

MLP 
96.77 83.33 89.55 0 

91.43 98.46 94.81 1 

SGD 
83.33 83.33 83.33 0 

90.77 90.77 90.77 1 

SVM 
81.58 86.11 83.78 0 

92.06 89.23 90.62 1 

Ensemble 

Learning 

Ada Boost 
96.67 80.56 87.88 0 

90.14 98.46 94.12 1 

XGBoost 
89.74 97.22 93.33 0 

98.39 93.85 96.06 1 

Extra 

Trees 

89.47 47.22 61.82 0 

76.83 96.92 85.71 1 

GBoost 
97.22 97.22 97.22 0 

98.46 98.46 98.46 1 

RF 
94.44 94.44 94.44 0 

96.92 96.92 96.92 1 

TABLE VIII.  CLASSIFICATION REPORTS OF SVM, DT, AND MLP 

CLASSIFIERS  FOR KCKD DATASET 

Dataset Classifier Precision Recall F-measure Class 

Single 

Learning 

DT 
97.89 100.0 98.94 0 

100.0 99.35 96.67 1 

KNN 
93.96 95.70 89.45 0 

98.64 94.48 96.52 1 

LR 
91.75 95.70 93.68 0 

98.86 97.40 98.04 1 

MLP 
95.74 96.77 96.26 0 

99.02 98.70 99.86 1 

SGD 
89.11 96.77 92.78 0 

99.00 96.43 97.70 1 

SVM 
83.87 100.0 91.18 0 

100.0 94.16 96.99 1 

Ensemble 

Learning 

Ada Boost 
96.88 100.0 98.41 0 

100.0 99.03 99.51 1 

XGBoost 
97.75 93.55 95.60 0 

98.08 99.35 98.71 1 

Extra 

Trees 

00.00 00.00 00.00 0 

76.81 100.0 86.88 1 

GBoost 
96.84 98.92 97.87 0 

99.67 99.03 99.35 1 

RF 
96.88 100.0 98.41 0 

100.0 99.03 99.51 1 

The cells indicating the sample size labeled true when it 
was incorrect (i.e., FP) and false when it was true (i.e., FN). All 
measures were calculated using the formulas listed in the 
previous subsection, 2.4.2. In the class column, "1" means 
CKD patient and "0" means non-CKD patient. 

 

 
Fig. 2. ROC curve of DT, RF, AdaBoost, GBoost curve for Kuwaiti CKD, 

from left to right, respectively. 
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Fig. 2 shows the ROC curve of the best ensemble and 
single learning classifiers applied for Kuwaiti CKD, DT, RF, 
AdaBoost, GBoost. 

VI. DISCUSSION 

The labeled dataset of CKD, as demonstrated in Table VI, 
presents a comprehensive evaluation of various classifiers, 
each assessed on key performance metrics including precision, 
recall, accuracy, and F1-score. Among these classifiers, the 
results distinctly highlight the exceptional performance of the 
Decision Trees (DT) algorithm. With a precision of 98.9%, 
recall of 99.7%, accuracy of 99.5%, and an F1-score of 99.3%, 
DT emerges as the standout performer across all metrics. The 
superiority of DT can be attributed to several inherent 
advantages it offers. Notably, its innate interpretability lends 
itself well to domains such as CKD, where comprehensible 
decision-making is crucial for clinical applications. Moreover, 
DT's ability to effectively capture non-linear relationships 
within the data proves invaluable in handling the complex 
patterns often present in CKD datasets. Furthermore, its 
robustness to irrelevant features ensures efficient feature 
selection, enhancing model performance and generalization. 
Given the scalability and efficiency of DT, particularly in 
managing large datasets, it emerges as not only the best-
performing classifier in this evaluation but also a pragmatic 
choice for real-world CKD classification tasks. This robust 
performance underscores the utility of Decision Trees as a 
reliable and effective tool for medical diagnosis and decision 
support in the context of chronic kidney disease. We carefully 
selected algorithms based on their proven effectiveness for the 
task. Through rigorous testing, we found that our chosen 
ensemble and single learning algorithms consistently delivered 
high performance. While we acknowledge the potential for 
different results with alternative algorithms, our focus was on 
leveraging well-established methods known for their reliability. 
Our thorough validation process supports the confidence in the 

efficacy of our selected algorithms for this study. We recognize 
the importance of clinical interpretability in healthcare settings. 
While our study primarily focused on performance metrics like 
accuracy, precision, recall, and F1-score, we understand the 
need to understand model predictions. By addressing 
interpretability, we aim to bridge the gap between model 
performance and real-world healthcare applications, enhancing 
trust among healthcare professionals. 

VII. CONCLUSION AND FUTURE WORK 

To predict KCKD, we created EHRs dataset using patients’ 
symptoms collected from Kuwait hospitals and health 
institutions, a feature engineering process has been utilized for 
this dataset to obtain the optimal labels for each patient by 
training another CKD dataset with the same attributes using 
several ensemble learning classifiers, Ada Boost, XGBoost, Extra 
Trees, GBoost, RF, and several single learning classifiers, DT, KNN, 

LR, MLP, SGD, and SVM. The study's findings suggest that 
chronic disease identification and prediction can be 
accomplished with the help of data mining tools. According to 
the findings, the DT algorithm was the best option with the 
highest performance for predicting Kuwait CKD, achieving 
99.5% accuracy and 99.3% f1-score, while the GBoost 
algorithm was the most effective for training the aggregated 

CKD dataset and obtaining the optimal labels of Kuwait CKD 
dataset, achieving 98% accuracy and 97.8% f1-score. Strong 
performance was also shown by the RF and Ada Boost 
algorithms on both datasets. In further work, we intend to 
include a portion addressing the practical issues and difficulties 
related to applying our predictive model in clinical settings. 
The predictive model's seamless integration into clinical 
decision-making processes, workflow adaptation to ensure 
healthcare professionals' acceptance and adoption of the model, 
and data compatibility and integration with current electronic 
health record systems will all be covered in this. 
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