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Abstract—The liver is one of the most important organs in the 

human body. The liver's proper function is critical for overall 

health, and liver diseases or disorders can have serious 

consequences. Liver cancer is also known as hepatic cancer, 

which is divided into various types of cells that belong to the 

cancer. The most common type of liver cancer is hepatocellular 

carcinoma (HCC). HCC is one of the most common types of liver 

cancer that can affect up to 85% of people worldwide. Early 

detection of liver cancer is essential in healthcare because it 

increases the chances of successful treatment and patient 

outcomes. Many researchers have developed models that help 

detect and diagnose liver cancer. The first step in detecting liver 

cancer is identifying people at a higher risk. Chronic hepatitis B 

or C infection, cirrhosis, heavy alcohol use, obesity, and exposure 

to certain chemicals and toxins are all risk factors. This paper is 

mainly focused on detecting the cancer-affected regions that 

occur in the liver. In this paper, a combined ensemble model 

(CEM) for a liver cancer detection system is developed to find 

and detect liver cancer and liver disorders in their early stages. A 

pre-trained model, RESNET50 with transfer learning, is used to 

obtain the features from the pre-trained model—an advanced 

preprocessing technique involved in filtering the noise from input 

CT scan images. A hybrid feature extraction (HFE) technique 

also gets significant elements from the input CT scan images. 

Finally, the proposed CEM combines an Extreme Gradient 

Boosting (EGB) algorithm with a Recurrent Neural Network 

(RNN) that focuses on detecting the abnormal cancer cells 

present in input CT scan images. The performance of the CEM 

shows a high accuracy of 98.48% with a 10% high detection rate. 

Previously, it was 88.12%. 

Keywords—Liver Cancer; Hepatocellular Carcinoma (HCC); 

Combined Ensemble Model (CEM); RESNET50; Extreme 

Gradient Boosting (EGB); Recurrent Neural Network (RNN) 

I. INTRODUCTION 

Cancer is a most complex diseases characterized by 
unrestricted cell growth and division in the body [1]. It is a 
significant public health concern worldwide and can affect 
almost any body part. Cells in the body normally grow, divide, 
and die in a controlled manner [2]. The body's genetic 
instructions tightly control this process. When this control is 
disrupted, cells can divide and grow uncontrollably, forming a 
tissue mass called a tumor. Tumors of two types, such as 
benign or malignant, Benign is non-cancerous, which is not 
more dangerous than malignant. Malignant is more dangerous 
because it is cancerous and spreads very quickly to all the body 
parts [3] [4]. The process of converting healthy cells into 
cancerous cells is known as carcinogenesis. Usually, it 

involves DNA alterations in the cell. These alterations can be 
brought on by a genetic predisposition, viral infections, to 
carcinogens (such as tobacco smoke or certain chemicals). The 
kind and stage of a cancer diagnosis can have a significant 
impact on the symptoms. Common symptoms include sudden 
weight loss, exhaustion, pain, skin changes, chronic coughing 
or hoarseness, lumps or masses, and altered bowel or bladder 
habits [5] [6]. Physical examinations, imaging tests, and 
laboratory testing are commonly used to diagnose cancer. 
Effective therapy depends on early discovery. 

Image processing is an essential domain in detecting and 
diagnosing liver cancer. These models assist medical 
professionals in early cancer detection and treatment planning 
by extracting meaningful information from CT scans, MRIs, or 
ultrasound images [7]. Medical imaging, blood tests, and 
sometimes tissue biopsy are used to detect liver cancer. Early 
detection is critical for successful treatment and outcomes. A 
complete medical history taking into account risk factors such 
as alcohol use, hepatitis infection, and family history. They will 
also conduct a physical exam to look for signs of liver 
abnormalities like enlargement or tenderness [8] [9]. Several 
tests are available to aid in detecting and diagnosing liver 
cancer cells in CT scan images [10] [11]. Deep Learning (DL) 
is essential in detecting complex cancer patterns in liver CT 
scan images. Fig. 1 shows the sample liver lesions present in 
CT scan images. 

This paper introduced the pre-trained model, such as 
ResNet-50, extracts accurate features from CT scan samples. 
Transfer learning with pre-trained models can significantly 
improve the proposed model's performance, particularly for 
limited labeled data. Denoising techniques are used in many 
image processing techniques to process CT scan images. In 
conjunction with various denoising filters, this paper removes 
noise from input CT scan images. Gray-level run-length Matrix 
(GLRLM) and region-based features were used to improve 
feature extraction. 

A. Contributions of this Work 

1) By integrating the distinct models, CEM is usually 

higher in forecasting because it consists of many basic models. 

Every model used in this work offers benefits while working 

on the proposed approach. 

2) Complex interactions between many clinical and 

genetic variables are frequently involved in identifying liver 

cancer. CEM can more accurately forecast outcomes by 
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capturing these complex interactions by combining many 

modeling methodologies. 

3) The proposed model uses the Pre-trained model 

RESNET50 to get the accurate cancer disease patterns in the 

given samples. 

4) An interesting features are obtained by using the hybrid 

feature extraction (HFE) that helps to improve the 

performance of final outcomes. 

II. LITERATURE SURVEY 

Kim et al. [12] proposed a one-sided ANOVA approach for 
extracting the feature set for accurate disease detection using a 
feature (aptamer) array. For 80 liver cancer patients and 310 
healthy people, the proposed approach combined AI with 10-
fold cross specifications verified by aptamer array response. 
The proposed ANOVA approach has an accuracy of about 
93.6% for ten features, which is 3.51% higher than the single-
way method. Ahmad et al. [13] proposed a new approach 
called DBN-DNN, which can fine-tune the proposed DNN 
approach. An advanced pre-processing technique improves 
performance by employing an active contour technique based 
on liver features that store memory and measure time. The 
evaluation result shows that the proposed approach's 
performance on test images achieved a Dice score of 95.34%, 
which is high, compared to existing models. Balagourouchetty 
et al. [14] developed a CAD system for diagnosing liver 
diseases. The proposed method uses an ensemble FCNet 
classifier to classify hepaticae lesions based on several 
significant factors obtained from GoogleNet-LReLU transfer 
learning approaches. The proposed approach is a fully 
connected layer that includes classification and extraction 
using the inception layer and is combined with the ReLU 
activation function. Finally, the variety is based on six different 
types of liver diseases, and it is highly accurate. Yamakawa et 
al. [15] developed a new model for detecting tumors in the 
liver. The proposed method combines CNN with VGGNet to 
classify the four types of tumors based on the affected regions. 
The dataset contains 988 images representing various cases. 
When combined with CADx, the proposed method predicts 
liver cancer tumors with an accuracy of 94.56%, which is a 
high detection rate. Aslam et al. [16] presented an integrated 
learning model that combines image processing techniques and 
deep learning (DL) approaches to detect early-stage liver 
cancer tumors. The proposed model also employs the 
ResUNet, the most advanced model, to achieve better results. 
The dataset includes 100 CT scan liver tumor images from 
various patients. Finally, the proposed approach's accuracy is 
around 99.67%, and its F1-score is 94.8%, which is high 
compared to other systems in this paper. Shukla et al. [17] 
presented the automated liver tumor detection model from MRI 
scan images. The proposed approach divides the concave 
surfaces combined with geodesic active contour. The author 
introduced the Cascaded Fully CNN approach to segment the 
tumor region from the input sample. The training process 
reduces the error rate for liver segmentation. The final liver 
tumor analysis for the proposed approach is to obtain 94.56% 
accuracy and 88.89 Sec for computation of liver analysis. 
Sanyal et al. [18] presented a new model for detecting NAFLD 
based on the stage of liver disease. The proposed approach 
provided clear information about the liver status and stage in 

the early stages of the disease. As a result, this approach offers 
the default disease information that aids in detecting and 
diagnosing NAFLD. Li et al. [19] investigated NAFLD using 
various methodologies. Zhou et al. [20] proposed NAFLD for 
the detection of liver cancer. The author discussed about 
various models that helps to diagnose the cancer cells in liver. 
Marengo et al. [21] presented a new model for detecting HCC, 
a type of common liver cancer. Other factors, such as type 2 
diabetes, NAFLD, and obesity, contribute to the rapid growth 
of HCC. It is a rapidly spreading cancer in the general 
population that should be detected in its early stages. The 
author discussed several techniques and methods for treating 
HCC and devised a limited solution. Sun et al. [22] talked 
about a variety of liver diseases. The author concentrated on 
detecting obesity-related health issues and their consequences. 
According to epidemiological studies, obesity is the root cause 
of various cancers. Obesity is strongly linked to other liver 
diseases such as NAFLD, NASH, and cancer. Kwon et al. [23] 
introduced a method for segmenting liver CT scan images 
using DL. The author wishes to identify additional factors 
influencing liver cancers based on human activities and habits. 
Manjunath et al. [24] presented a DL approach for detecting 
liver disease based on tumors growth. The tumor images are 
collected online and classified into Metastasis and 
Cholangiocarcinoma. The proposed approach gets better 
accuracy with 97.89% and a dice score of 98.23%. 
Lakshmipriya et al. [25] compared various DL algorithms 
based on classification, segmentation, and medical details of 
liver diseases. The author discussed different DL algorithms 
and found new challenges from the existing algorithms. Piyush 
Kumar Shukla et al. [26] presented an automated liver disease 
detection system that finds the tumors and lesions in the MRI 
images belonging to abdomen images that are gathered from 
3D-related abhorrent and shape-based model results. The 
proposed approach combined with geodesic active contour 
analysis to find the different liver regions in the body. Finally, 
the training approach reduces the error rate by using the 
CFCNs to detect the segmented tumor image. In the final step, 
the segmentation approach obtained a tumor detection accuracy 
of 94.67% with a computation time of 17 seconds for one 
photo. The DL technique, which identifies liver tumors from 
CT scan pictures, was first presented by Heng Zhang et al. 
[27]. The CNN model was employed to segment CT scan 
images. Based on experimental results, comparisons between 
several segmentation approaches are presented. The automated 
KMC method, which offers a region-based growth strategy to 
locate the tumor region and display tumor grades, was 
proposed by Liping Liu et al. [28]. The deficiencies belong to 
blood vessels in the portal venous phase (PVP) based on the 
poor density of the liver CT scan pictures. In the last stage, 
patients with 26.67% having low blood deposition effect and 
54.34% having high blood were discovered. Nayantara et al. 
[29] introduced the effective segmentation that detects liver 
diseases accurately on CT scan images. The author analyzed 
several DL algorithms that find liver diseases accurately. 
Zhang et al. [30] presented the diagnosis of liver diseases using 
Dl algorithms. Mubashir Ahmad et al. [31] developed the 
patch-based DL algorithm that segments the liver CT scan 
images using SAE. The proposed approach processes every 
pixel of the image and finds the accurate patches of initialize 
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the liver disease-affected regions. The preprocessing method 
improved the images and created overlapping patches from 
each one, which were then fed into the SAE to extract features. 
In the last step, the classification is used to classify the affected 
regions based on the feature extraction. The proposed approach 
obtained the dice score similarity up to 97.23%, which shows 
high accuracy. Manoj Kumar et al. [32] proposed a 
comparative study that finds the overall liver disease patients 
based on three stages. The preprocessing technique min-max 
normalization is applied, and in the second step, the PSO 
feature extraction is used to extract the significant data from 
the input CT scan images and improve the disease detection 
rate. Li et al. [33] proposed a novel approach that detects liver 
cancer from liver CT scan images. Two datasets, such as 
MICCAI 2017 and 3DIRCADb data sets, are used for 
evaluation. The proposed approach focused on detecting the 
cancer-affected regions by using segmentation with the FCNN 
model and UNet (H-DenseUNet) that effectively extract the 
hybrid feature fusion layer. The comparison between several 
algorithms shows the proposed approach obtains good 
outcomes. Amita Das et al. [34] introduced the WGDL 
approach for detecting cancer lesions using CT scan images. 
The input CT scan images are separated using watershed 
segmentation and GMM to divide the cancer lesion. Finally, 
the DNN is used for classification based on segmentation 
outcomes. Anandan et al. [35] presented the enhanced filtering 
approach called NMADF that helps filter the input CT scan 
images. The proposed approach uses the two-fold segmentation 
that segments the liver cancer images. The canny edge 
detection approach is used as a preprocessing technique—
finally; the improved DNN approach is used to classify liver 
cancer images. The results show the better performance of the 
proposed approach compared with existing models. 

A. Limitations of Existing Models 

1) The existing model requires massive training data to 

solve the sample imbalance. 

2) There needs to be more accurate classification of 

normal and cancerous samples. 

3) The existing models require high-quality images to 

detect accurate results. 

4) There must be more issues in finding the accurate 

affected region in the given sample. 

III. DATASET DESCRIPTION 

The dataset was obtained from Kaggle and contains CT 
scan images related to contrast and patient age. The default 
viewpoint is to find various image textures tested for analyzing 
trends in CT scan images and statistical patterns. It features 
strongly correlated with these traits and possibly builds simple 
tools for automatically classifying these images when they 
have been misclassified. The total images used for training is 
500 and testing is 500 CT scan liver images. The size of image 
in dataset is 500 x 500 width and height and size is 5-6 MB. 
The sample datasets with different types of images are shown 
in Fig. 1. All the images are in same size and pixel rate. 

A. RESNET50 (Pre-Trained Model) 

A common and practical approach in medical image 
analysis is the ResNet-50 model for cancer cell detection. 

ResNet-50 is deep convolutional neural network (DCNN) 
architecture with great success in image classification and 
object detection. When used to detect cancer cells, it can aid in 
identifying and classifying cancerous cells in medical images 
such as histopathology slides or radiological scans. ResNet-50 
comprises 50 Convolutional layers connected by skip 
connections (residual blocks). The ResNet-50 weights were 
fine-tuned on a liver cancer cell dataset using popular deep-
learning libraries such as TensorFlow. On the training data, 
train the ResNet-50 model with appropriate loss functions such 
as binary cross-entropy or focal loss for binary classification 
(cancerous or non-cancerous). To attain the highest validation 
set performance, track and modify hyper parameters like 
learning rate and batch size. To avoid over-fitting, techniques 
such as early stopping are used. If necessary, the post-process 
approach is used to predict to remove noise or refine the 
detected cancerous regions. The overall architecture of 
RESNET 50 is explained in Fig. 3. The input image and final 
output is obtained after processing all layers. 

B. Pre-processing and Noise Removal 

Pre-processing is essential in removing noise from input 
liver CT scan images. This paper combines an advanced pre-
processing technique with Iterative Reconstruction (IR) and 
Anisotropic Diffusion (AD). It is beneficial for removing noise 
and improving image quality and diagnostic accuracy in CT 
(computed tomography) scan images. Various noise reduction 
techniques can be used depending on the specific noise 
characteristics and the image processing goals. Fig. 2 and Fig. 
5 shows the input and output of the image selected from 
dataset. 

C. Iterative Reconstruction (IR) 

Iterative reconstruction is a computational technique used 
in medical imaging to improve image quality and reduce 
radiation exposure, particularly in CT (computed tomography) 
scans. It is an alternative to traditional filtered back projection 
(FBP). It is a simpler and faster method but may result in 
lower-quality images, mainly when data is limited, or 
measurements are noisy. Iterative reconstruction algorithms 
can address these issues by refining the vision iteratively based 
on the acquired data and a mathematical model of the imaging 
process. A CT scanner captures a series of X-ray projections as 
it rotates around the patient. These projections are different 
angles of CT-Scan attenuation through the patient's body. The 
iterative reconstruction process estimates the patient's internal 
structures, usually a simple or uniform image. The initial image 
generates CT-Scan projections as if the image were actual. 
This step uses a mathematical model that accounts for the CT-
Scan attenuation properties of the tissues being imaged. 

x: The true underlying image we want to reconstruct. 

y: The acquired data (e.g., projection data in CT imaging). 

R: The reconstruction operator that maps the image x to the 
acquired data y. 

ϵ: The noise or error in the data. 

The iterative reconstruction process can be represented 
mathematically using the following equation: 
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y = R(x)+ ∈ 

The goal is to find the best estimate xk of the true image x 
iteratively minimizing the variance among the acquired and 
estimated data R(xk).  this is typically done by solving the 
optimization issue at every iteration: 

xk+1 = argminx{||y − R(x)||2 + ⋋ Φ(x)} 

||y − R(x)||2 Represents the data fidelity term, Φ(x) is a 
regularization term that enforces some desired properties on the 
reconstructed image, such as smoothness or sparsity. 

⋋ is a regularization parameter that controls the trade-off 
between data fidelity and regularization. 

D. Anisotropic Diffusion (AD) 

Anisotropic Diffusion (AD) is a method for edge-
preserving smoothing in image processing. When used to 
enhance or denoise photos while maintaining structural 
integrity, it is especially helpful. AD can be used in the context 
of medical imaging to enhance the visibility of pertinent 
features, such as scans showing malignancy. Anisotropic 
diffusion is based on the principle of performing diffusion in a 
way that is less noticeable in homogenous regions and more 
evident along the image's borders. This reduces noise while 
maintaining significant edges and structures. 

The AD equation is represented as: 

∂I

∂t
= ∇. (c(||∇I||)∇I) 

I is the image intensity 

∇ is the gradient operator 

||∇I|| is the magnitude of the gradient, 

c(||∇I||) is the diffusion coefficient. 

t is the time. 

Based on the gradient's magnitude, the diffusion coefficient 

c(||∇I||) is a function that establishes the appropriate amount 

of diffusion at each location. The role that is applicable as: 

c(||∇I||) = e
−(

||∇I||2

K2 )
 

The amount of diffusion is controlled by the parameter K in 
this case. Greater diffusion is permitted by smaller K values, 
while greater K values better maintain edges. Iteratively 
solving the equation over the image is done until the desired 
degree of smoothing is attained. The goal of the procedure is to 
maintain edges and fine structures while smoothing the image 
more over homogeneous areas. Anisotropic diffusion can be 
used to improve the visibility of significant characteristics in 
cancer images, which will facilitate medical experts' analysis 
and interpretation of the images. 

E. Gray-Level Run-Length Matrix (GLRLM) 

A popular texture analysis technique in medical image 
processing is the GLRLM. CT scan images are analyzed for a 
variety of purposes, including cancer detection. GLRLM 
provides texture pattern information by quantifying the 

distribution of grey-level runs in an image. The GLRLM 
describes the correlations between pixel intensities along 
various directions and is commonly obtained from the co-
occurrence matrix. Features that characterize an image's texture 
can be extracted using the GLRLM and used for classification 
or other analysis purposes. 

1) Run-Length Matrix (RLM): The RLM P(a, b)  is 

calculated by counting the number of consecutive pixels with 

intensity a and length b in a specified direction. Let N be the 

number of gray levels. 

P(a, b) = ∑ ∑ δ(I(x, y) = i and R(x, y) = j)
M

y=1

N

x=1
 

Normalized Gray-Level Run-Length Matrix (NGLRLM): 

Normalize the RLM to obtain the NGLRLM: 

Pnorm(a, b) =
P(a, b)

∑ ∑ P(a, b)M
y=1

N
x=1

 

2) Gray-Level Run-Length Matrix (GLRLM) Features: 

Several statistical measures can be computed from the 

GLRLM to extract features. Some of significant features are 

given below: 

Short Run Emphasis (SRE): 

SRE =
∑ ∑

P(a,b)

j2
M
j=1

N
i=1

∑ ∑ P(a, b)M
j=1

N
i=1

 

Long Run Emphasis (LRE): 

LRE =
∑ ∑ P(a, b) ∙ j2M

j=1
N
i=1

∑ ∑ P(a, b)M
j=1

N
i=1

 

Gray-Level Non-Uniformity (GLN): 

∑ ∑ P(a, b)2
M

j=1

N

i=1
 

Run Length Non-Uniformity (RLN): 

∑ ∑ P(a, b)2
M

j=1

N

i=1
 

F. U-Net Architecture 

It is used for segmentation of cancer cells in given dataset 
images. The architecture consists of a contracting path, a 
bottleneck, and an expansive path. 

1) Contracting path: It is responsible for capturing context 

and reducing the spatial resolution of the input image. 

Conv(x, filters, kernelsize, activation =′ relu′, padding

= ′same′ 

x is the input tensor. 

filters is the number of filters in the convolutional layer. 

kernelsize is the size of the convolutional kernel. 
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activation is the activation function, typically ReLU. 

padding is set to 'same' to maintain the spatial dimensions. 

maxpool(x, poolsize, strides 

where, 

poolsize is the size of pooling window. 

Strides is the stride of the pooling operation. 

2) Skip connections: In order to concatenate feature 

mappings from the contracting path to the appropriate layer in 

the expansive path, the U-Net design uses skip connections. 

concatenate(convblockoutput
, correspondingconvblockoutput

) 

3) Output layer: It is also a convolutional layer with a 

sigmoid activation function, producing the final segmentation 

map. 

conv(x, 1, 1, activation =′ sigmoid′) 

where: 

1 is the number of filters (assuming binary segmentation, 
i.e., cancer cell or background). 

1 x 1 convolutional kernel is used. 

IV. EXTREME GRADIENT BOOSTING (XGBOOST) 

In this paper, the Extreme Gradient Boosting (XGBoost) 
approach is used for the classification of input cancer and non-
cancer images. Usually, a binary classification model with the 
target variable being a binary value indicating whether or not a 
patient has liver cancer is used to identify liver cancer using 
XGBoost. The two components of the XGBoost objective 
function are the regularization term, which penalizes the 
model's complexity in order to prevent over fitting, and the loss 
function, which calculates the difference between the true and 
predicted values. 

Objective = ∑ loss(yi, ŷi) +  ∑ Ω
K

k=1
(fk)

n

i=1
 

𝑛 -total training samples 

yi -True table for ith sample. 

ŷi -predicted output for ith sample. 

K- Total trees ensemble. 

Ω(𝑓𝑘) Regularization term for the kth tree. 

1) Loss Function: In this scenario, the loss function which 

is used for classification of cancer images is logistic loss: 

loss(yi, ŷi) = −[𝑦𝑖 log(�̂�𝑖) + (1 − yi) log(1 − �̂�𝑖)] 

yi is the true label. 

ŷi Predicted probability of class 1. 

2) Regularization term: These terms are used by XGBoost 

to regulate the total model's complexity as well as the 

complexity of each individual tree. The regularization term for 

the kth tree is a sum of the leaf scores: 

Ω(fk) = γT +  
1

2
⋋ ∑ wj

2
T

j=1
 

T total leaves in the tree. 

𝑤𝑗  score associated with the j-th leaf. 

γ and ⋋ Regularization parameters. 

3) Tree Building Process: XGBoost builds trees in an 

additive manner, where each new tree is trained to correct the 

errors of the combined existing ensemble. The update at each 

step is given by: 

ŷi
(t+1)

= ŷi
(t)

+  η ∙  ft(xi) 

The final equation classifies the input liver sample as tumor 
affected or not. The final architecture is given in Fig. 4 with 
step-by step approaches used to obtain the better output. 

V. PERFORMANCE METRICS 

This section focuses mainly on showing the effectiveness 
of the proposed approach based on the outcomes. The 
performance metrics are obtained by using the proposed 
approach. The count values are obtained by the proposed 
classification approach. XGBoost is the classification model 
implemented by using the Python language with potential 
libraries. There are several libraries that help provide accurate 
results with the particular libraries. The performance is 
measured by using the following metrics. The count values are 
measured from the proposed approach. Fig. 6 shows the 
attributes of performance measures based on confusion matrix. 

Precision =
TP

TP + FP
 

Accuracy =
TP + TN

TP + TN + FP + FN
 

Recall =
TP

TP +  FN
 

Specificity =
TN

TN +  FP
 

F1 − Score = 2 ∗ 
(Precision ∗ Recall)

(Precision + Recall)
 

A. Experimental Results 

This section mainly focused on analyzing the performance 
of the proposed approach is compared with several existing 
models. This section focused on providing the analysis of 
every parameter that shows the huge impact on output. It 
includes the training and testing loss and training and testing 
accuracy for the given pre-trained model. Also, this consists of 
comparative performances of several existing algorithms 
compared with the proposed algorithm. 

The training loss measures the performance of model on 
training data. It initializes the error between the estimated 
output and original output at the time of training phase. In this 
paper, the loss is minimized by updating the model parameters 
by using several optimization algorithms. Testing loss mainly 
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generalizes the model performance on new and unknown data. 
It is evaluated on a different dataset that the model has not seen 
during training. The proposed model shows the better 
performance by showing the balanced outcomes. The 
performance metrics based on the reduced testing and training 
loss are displayed in Fig. 7. It shows the proportion of 
successfully predicted instances to all instances in the dataset 
and is commonly stated as a percentage. There are two main 
types of accuracy: training and testing accuracy. Training 
accuracy gives an indication of how well the model has learned 
the training data. High training accuracy does not, however, 
guarantee that the model will perform well when applied to 
novel or unidentified data. The model's accuracy on a different 
dataset that it was not exposed to during training is known as 
testing accuracy. Since testing accuracy shows how well the 
model is likely to function on unknown data, it is a more 
significant parameter. Fig. 8 shows the performance of training 
phase testing phase. 

Table I shows the performance of ML algorithms without 
using any ensemble techniques or pre-trained models. It is the 

classification models obtained by the implementation of ML 
algorithms. Fig. 9 shows the comparisons between ML 
algorithms. 

B. Figures and Tables 

 
Fig. 1. Sample liver lesions.

 
Fig. 2. Liver cancer CT scan image from dataset. 

 
Fig. 3. Architecture of RESNET50. 
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Fig. 4. The proposed architecture.

 
Fig. 5. The output after the Preprocessing technique. 

 

Fig. 6. Confusion matrix. 
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Fig. 7. Performance in terms of proposed pre-trained model. 

 
Fig. 8. The performance of pre-trained model in terms of training and testing 

accuracy. 

TABLE I.  THE PERFORMANCE OF VARIOUS ML MODELS 

Parameters Random  Forest (RF) CNN XGBoost 

Precision 73.23 76.23 86.56 

Accuracy 74.53 80.34 88.12 

Recall 75.12 81.23 89.23 

Specificity 71.23 83.56 90.34 

F1-Score 73.34 84.23 91.34 

Table I shows the obtained results that are obtained by 
using existing algorithms such as RF, CNN and XGBoost. 
Among all these algorithms the XGBoost gained the better 
classification results compared with existing approaches. The 
traditional XGBoost obtained the high performance in terms of 
accuracy of 88.12%, precision of 86.56%, recall of 89.23, 
Specificity of 90.23 and F1-Score of 91.34. 

 
Fig. 9. The comparative performances of various ML algorithms. 

TABLE II.  THE OVERALL PERFORMANCE OF ALL THE ADVANCED 

ALGORITHMS THAT EVERY ALGORITHM IS COMBINED WITH VARIOUS 

PREPROCESSING AND FEATURE EXTRACTION TECHNIQUES 

Parameters Random  Forest (RF) CNN 
Combined Ensemble 

model (CEM) 

Precision 83.45 88.23 97.81 

Accuracy 84.23 89.34 98.48 

Recall 85.12 90.23 98.65 

Specificity 81.23 90.56 98.45 

F1-Score 82.87 91.23 98.19 

Table II shows the comparison between traditional and 
Ensemble Algorithms that shows the high performance in 
terms of various parameters. The proposed CEM is the 
ensemble algorithm that combines with the U-Net and 
XGBoost. It achieved the high accuracy of 98.48% based on 
correctly classified outcomes. The remaining parameters are 
also shows the high rate. Finally, Fig. 10 shows the overall 
performances of existing and proposed algorithms. 

 

Fig. 10. The overall performances of existing and latest algorithms. 
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VI. CONCLUSION 

In this work, we looked into the use of a Combined 
Ensemble Model (CEM) in liver cancer diagnosis. Utilizing 
each model's unique characteristics to improve overall forecast 
accuracy and reliability was the main goal. Our results show 
that the CEM technique has the potential to enhance liver 
cancer diagnostic skills. The ensemble model performed better 
than the individual models alone. It was created by combining 
many algorithms, such as [list of individual models]. By 
combining several algorithms, the constraints of using a single 
model were effectively mitigated and a more reliable and 
accurate prediction of liver cancer was made. Furthermore, the 
CEM demonstrated enhanced generalization capabilities, 
suggesting its potential applicability to diverse patient 
populations and datasets. The ensemble approach not only 
improved sensitivity and specificity but also provided a more 
comprehensive understanding of the complex patterns within 
the data. While the CEM outperformed individual models, it is 
crucial to acknowledge the importance of continuous 
refinement and optimization. Future work should focus on fine-
tuning the ensemble model, exploring additional algorithms, 
and incorporating new features to further enhance its 
diagnostic capabilities. The implications of our study extend 
beyond the realm of liver cancer diagnosis. The success of the 
CEM approach highlights the value of ensemble techniques in 
medical decision-making, emphasizing the significance of 
model diversity and collaboration. This research contributes to 
the growing body of evidence supporting the use of ensemble 
models in healthcare applications. Finally, the Combined 
Ensemble Model presents a promising avenue for improving 
the accuracy and reliability of liver cancer diagnosis. As we 
move forward, it is essential to continue refining and validating 
the model on larger and more diverse datasets, ultimately 
paving the way for its potential integration into clinical 
practice. 
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