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Abstract—Thyroid cancer, a prevalent endocrine malignancy, 

necessitates advanced diagnostic techniques for accurate and 

early detection. This study introduces an innovative approach 

that integrates hybrid Machine Learning (ML) algorithms with 

metabolomics, offering a novel pathway in thyroid cancer 

diagnostics. Our methodology employs a range of hybrid ML 

models, combining the strengths of various algorithms to analyze 

complex metabolomic data effectively. These models include 

ensemble methods, neural network-based hybrids, and 

integrations of unsupervised and supervised learning techniques, 

tailored to decipher the intricate patterns within metabolic 

profiles associated with thyroid cancer. The study demonstrates 

how these hybrid ML algorithms can efficiently process and 

interpret metabolomic data, leading to enhanced diagnostic 

accuracy. By leveraging the distinct characteristics of each ML 

model, our approach not only improves the detection of thyroid 

cancer but also contributes to a deeper understanding of its 

metabolic underpinnings. The findings of this study pave the way 

for more personalized and precise medical interventions in 

thyroid cancer management, showcasing the potential of hybrid 

ML models in revolutionizing cancer diagnostics. Our system 

analyzes thyroid cancer metabolomic data using ensemble 

methods, neural network-based hybrids, and unsupervised and 

supervised learning integrations. The research shows hybrid ML 

models may revolutionize cancer diagnoses by improving 

accuracy. LSTM+CNN, LSTM+GRU, and CNN+GRU have high 

accuracy rates, helping us comprehend thyroid cancer's 

biochemical roots. Hybrid ML models enhance thyroid cancer 

diagnosis and management, enabling more tailored and accurate 

medical treatments. The hybrid machine learning models like 

LSTM+CNN, LSTM+GRU, and CNN+GRU beat CNN, VGG-19, 

Inception-ResNet-v2, decision support, and random forests 

(99.45%).  
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I. INTRODUCTION  

AI improves diagnosis, treatment, and care. AI's pattern 
recognition, predictive analysis, and decision-making skills 
enable computers to analyze complicated medical data with 
unprecedented precision and scale [1, 2]. This discovery 
enhances early sickness detection, precise diagnosis, and 
individualized therapy. AI technologies enhance hospital 
operations, predict disease outbreaks, and significantly 
improve patient outcomes. AI is critical to provide equitable 
access to high-quality treatment across geographic boundaries. 

As AI advances, it will improve global health outcomes with 
increasingly complex healthcare applications. However, 
healthcare AI adoption is hard. User adoption of AI-driven 
help requires trust. Studying security, risk, and trust on 
healthcare, AI adoption shows that trust is crucial. Oncology's 
leading killer affects several organs [3, 4]. Thyroid carcinoma 
is a prevalent endocrine malignancy worldwide. The sixth most 
prevalent cancer in women aged 15–49 is thyroid cancer, hence 
better identification and treatment are needed (see Fig. 1). 
Thyroid cancer is becoming more common, and machine 
learning and metabolomics may enhance detection and therapy 
[5, 6, and 7]. 

Thyroid cancer has increased in recent decades, with the 
American Cancer Society expecting 43,800 new cases and 
2,230 fatalities in 2022 [8]. Thyroid cancer develops as a 
nodule at the throat's base when cells proliferate rapidly and 
escape the immune system. Unregulated cell reproduction 
spreads rogue cells into surrounding tissues. About 95% of 
thyroid malignancies are follicular or papillary. Effective 
management and damage reduction require early discovery and 
treatment of malignant thyroid nodules. Early thyroid cancer 
screening detects cancerous nodules. Neck palpation during 
physical examinations and ultrasonography, which may detect 
nodules smaller than 1 cm, are the main detection modalities. 
Ultrasonography helps distinguish benign from malignant 
nodules by their features [9]. 

 

Fig. 1. Various methods for detection of thyroid cancer.  
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Automated thyroid nodule identification using computer-
aided diagnostic (CAD) has evolved in recent years [10]. CAD 
tools using artificial intelligence analyze ultrasound features 
more intelligently, accurately, and consistently. This helps 
decrease needless biopsies. Machine learning and deep 
learning, key components of AI-based CAD systems, have 
changed medicine. These approaches use expert knowledge to 
choose important attributes from predetermined region-of-
interest criteria. Margin, form, echogenicity, calcifications, and 
composition in thyroid ultrasound images have helped build 
CAD systems. Support vector machines, GoogLeNet, and 
CNNs have transformed thyroid nodule detection, according to 
previous studies. Machine learning and AI have greatly 
improved the use of CAD tools in clinical practice [11]. 

In thyroid cancer, early and accurate detection may save 
lives. This cancer survives better with early detection and 
treatment [12]. Early detection may reduce benign tumor 
treatment costs and stress. Doctors can enhance patient care 
with fast and appropriate treatment. Cancer detection employs 
image processing, deep learning, and AI, notably in medical 
imaging. Reduce noise in ultrasound images to identify thyroid 
cancer. Next, segmentation separates cancer-prone regions. 
Cancerous or benign nodules are determined by these sites. 
First, gather ultrasound images, then segment them to focus on 
the affected area. These segments' attributes constitute a 
predictive model, and a classifier predicts [13]. The neck 
gland's thyroid carcinoma is treated better with early detection. 
Healthcare professionals use machine learning algorithms to 
handle pandemics and natural disasters [14]. These algorithms 
help physicians identify and treat patients by analyzing 
enormous medical data. Thyroid CAD systems must be precise 
to minimize delays or unnecessary treatments. Deep learning-
enhanced ultrasonography detects thyroid cancer using 
complex acoustic features. CAD and AI enhance thyroid 
cancer diagnosis. They simplify ultrasound-based risk 
categorization and enhance thyroid nodule identification and 
assessment. Traditional diagnostic methods like FNAB are 
20% incorrect. Machine learning improves insights and 
judgments using probability and statistics. ML-based 
classification models using large image datasets are promising 
for study. Progress is shown by statistical pattern identification 
and quantification algorithms in thyroid node categorization 
systems like AmCAD-UT [15]. 

In this paper, the advent of deep learning models, 
particularly Long Short-Term Memory (LSTM), Gated 
Recurrent Units (GRU), Convolutional Neural Networks 
(CNN), and their hybrid combinations like LSTM+CNN, 
LSTM+GRU, and GRU+CNN, presents a transformative 
approach in thyroid cancer diagnostics. These advanced 
computational models offer unparalleled precision in analyzing 
complex medical data, significantly enhancing our ability to 
detect and diagnose thyroid cancer early and accurately. As we 
continue to integrate these sophisticated AI methodologies into 
medical practices, the potential for improving patient outcomes 
and revolutionizing the field of oncology is immense. 

II. RELATED AND RECENT WORK 

AI has substantially improved medical diagnostics, notably 
tricky thyroid disorders. Improved ultrasound picture 

interpretation and quicker processing are the main reasons. 
Ultrasonography, FNA, and thyroid surgery now utilize deep 
learning (DL) and machine learning (ML) to classify thyroid 
nodules automatically [16]. Many research have shown AI's 
potential in cancer detection, where data volume and 
classification accuracy are critical. Ultrasound, CT, MRI, 
radioactive iodine, and histopathology diagnosis thyroid 
cancer. Many research have built AI-based CAD models to 
detect thyroid abnormalities in ultrasound and 
histopathological pictures. Xu et al. created a contrast-
enhanced thyroid ultrasound diagnostic model using CNN 
feature extraction and LSTM classification. Zhao et al. offered 
CNN-extracted characteristics and image texture for 
ultrasonography thyroid classification [17]. CNNs classify 
thyroid and breast cancer ultrasound images, whereas U-Net 
models segment thyroid ultrasounds. Additionally, multi-scale 
region-based detection networks like Resnet50 and ZFnet are 
more accurate. Transfer learning reduces overfitting in thyroid 
nodule classification models employing inception networks, 
VGG16, and GoogLeNet. Using simple CNN models and 
spatial and frequency domains, Nguyen et al. categorized the 
TDID dataset using voting ensemble [18]. In ensemble 
learning, hunger games search algorithm and D-CRITIC 
TOPSIS model ranking educated deep vision Transformer and 
Mixer models. Sun et al. employed the TC-ViT model, a vision 
transformer with contrast learning, to classify thyroid imaging 
data by TI-RADS scores [19]. 

New AI technologies may standardize and enhance 
uncertain thyroid nodule categorization. Digital thyroid fine 
needle aspiration biopsy images are employed in these studies. 
EfficientNetV2-L image classification works in thyroid fine 
needle aspiration cytology, according to Hirokawa et al [20]. 
Kezalarian [21] studied AI's role in follicular cancer vs. 
adenoma, whereas Alabrak et al. proposed a CNN model with 
good accuracy, sensitivity, specificity, and AUC-score [22].  

AI-based thyroid pathology whole slide image analysis 
utilizing modified QUADAS-2 was evaluated by Girolami et al 
[23]. Using numerous histopathology pictures, Wang et al. 
trained VGG-19 and Inception-ResNet-v2 models to diagnose 
thyroid diseases [24]. Chandio et al. suggested a CNN-based 
MTC detection decision support system. Hossiny et al. 
correctly identified thyroid tumors using cascaded CNN and 
split classification [25]. Do et al.'s thyroid cancer MI Inception-
v3 model improved classification accuracy [26]. Bohland et al. 
found feature-based and deep learning-based thyroid 
carcinoma classification equivalent [27]. Transformer and 
Mixer models improve vision, but thyroid feature extraction is 
uncertain. Vector redundancy may cause feature extraction 
overfitting. Espadoto et al.'s dimensionality reduction survey 
was impressive [28]. Meta-heuristic feature selection 
approaches like moth flame and cuckoo optimization are 
common for high-dimensional datasets. In data-limited medical 
disciplines, ensemble techniques using numerous weak learners 
increase classification model accuracy. The weighted average 
ensemble technique is intriguing, but weight selection is tricky. 
FOX optimization, which performs well in traditional 
benchmarks, holds potential in feature selection and ensemble 
learning but has not been implemented [14]. 
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TABLE I. COMPARATIVE STUDY ON VARIOUS METHODS FOR DETECTION OF THYROID CANCER 

Authors Method Accuracy Key Contributions 

Alabrak et al.  2023 

[22] 
CNN model 78% 

Proposed a CNN model to classify thyroid cancer with good accuracy, 

sensitivity, specificity, and AUC-score. 

Wang et al. 2019 [24] 
VGG-19 and Inception-

ResNet-v2 models 
97.34% and 94.42% Trained models to diagnose thyroid diseases using histopathology images. 

Chandio et al. 2020 

[39] 

CNN-based decision support 

system 
99.00% Suggested a system for detecting medullary thyroid cancer using CNN. 

Hossiny et al. 2021 

[25] 

Cascaded CNN and split 

classification techniques 
98.74% Identified thyroid tumors with high accuracy. 

Bohland et al. 2021 

[27] 

Feature-based and deep 

learning-based models 

89.70% (feature-

based), 89.10% (deep 
learning-based) 

Comparison of thyroid tumor classification models. 

Kouznetsova et al. 

(2021) [34] 

ML model using saliva 

metabolites 
Not Specified Differentiated between malignant oral lesions and periodontitis. 

Cai et al., 2015 [35] Random forest ML model 86.54% Classified lung cancer using DNA methylation markers. 

The American Thyroid Association endorsed intraoperative 
frozen sections (FSs) for classical papillary thyroid cancer 
detection in 2015. However, onsite pathologists may struggle 
to detect rare cancers and poorly prepared specimens using 
paraffin sections. PTC is one of the most frequent thyroid 
cancer, although follicular, medullary, and undifferentiated 
carcinomas stain poorly.   Rare lung and breast cancers are 
hard to diagnose. Diagnostic discrepancies and CNN model 
building are difficult due to the lack of pathological imaging 
data from uncommon cancers [29]. Computational pathology 
must find rare or intermediate groupings. Deep learning in 
several fields, including CNNs and RNNs, has led to computer-
aided histopathological diagnostic systems. Digital pathology 
allows histopathological diagnosis using deep learning 
algorithms. Thanks to CAMELYON16 and the TCGA, patch-
based CNNs for whole-slide images (WSIs) have improved 
cancer histology [30]. CNN methods for breast cancer lymph 
node metastatic diagnosis are examined. InceptionV3, utilizing 
CAMELYON16, achieves 98.6% AUC and 87.3% FROC. 
WSI patch image analysis using Resnet and conditional 
random fields was also helpful [31]. CNNs are cancer-trained 
and tested. On TCGA non-small cell lung cancer 
histopathology pictures, InceptionV3 and pathologists fared 
similarly. Deep learning model interpretability has improved 
with new bladder cancer and other cancer screening methods. 
Positive pathologist diagnostic accuracy comparisons [32]. 

ML has been used for about two decades to diagnose and 
track cancer. Cancer diagnosis has relied on decision trees and 
ANNs since the mid-1980s [33]. Age, health, sickness kind, 
location, tumor grade, and size affect cancer prognosis. ML 
predicts nodes and patient severity using this data. Protein 
markers and microarray data are used in breast and prostate 
cancer research to identify cancer types, predict risk, and test 
patients. Diagnostics improve using ML models for CT scans 
and cancer image projection. ML models to aid doctors in these 
imaging methods were recognized by the NCI (2022). 
Metabolomics has been used in cancer research. Research into 
cancer metabolites has advanced. In bladder cancer (BCa) 
studies, ML compared metabolite patterns at different stages. 
Metabolites in healthy and oral cancer patients are linked via 
these pathways. Using ML, Kouznetsova et al. (2021) 
distinguished malignant from periodontitis oral lesions using 
saliva metabolites [34]. Genomic data was used by ML-based 
classifiers to construct a lung cancer DNA methylation 

indicator panel. A random forest ML model diagnosed lung 
cancer with 86.54% accuracy by Cai et al., 2015 [35]. These 
results show ML's growing role in cancer diagnostic accuracy 
and efficiency, paving the way for future research (see Table I).  

III. METHODOLOGY 

A. Long Short-Term Memory (LSTM) 

The Recurrent Neural Network (RNN) LSTM may learn 
long-term data sequence relationships. This is valuable in 
medical diagnostics, as patient data covers extended periods 
and includes important sequential patterns. The input, forget, 
and output gates make up LSTM. These gates regulate cell 
state information flow, enabling the network to remember or 
forget [36, 37]. This approach uses LSTMs to evaluate and 
understand complicated metabolic data and other temporal 
information. Metabolic marker alterations, thyroid symptom 
progression, and diagnostic data integration are included. The 
input, forget, and output gates of LSTM control information 
flow, making it effective. These gates determine what data to 
keep or discard as the data sequence proceeds, allowing the 
model to keep important data and forget non-essential data 
[40]. 

Equations for LSTM: 

Forget Gate selects cell state data to discard. It examines 
the previous state (ℎt-1). The program produces a value between 
0 and 1 for each cell state (Ct-1) and current input (xt). 

       [       ]      

Input Gate: A sigmoid layer chooses values to update while 
a tanh layer creates a vector of candidates.     

        [       ]      
  

          [       ]      

The previous cell state is updated to the new one. 

                
  

Output Gate: It selects the next hidden state representing 
prior inputs. 

        [       ]      
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LSTM can analyze consecutive metabolic profiles and 
historical patient data to capture temporal relationships needed 
for thyroid cancer diagnosis and prognosis. Combining LSTM 
with additional machine learning methods like CNNs for image 
analysis improves thyroid cancer diagnosis. 

B. Gated Recurrent Units (GRU) 

GRUs are Recurrent Neural Networks (RNNs) intended to 
analyze data sequences. It is fewer gates and are simpler and 
more efficient in certain cases. Medical diagnostics use GRUs 
to capture temporal connections in sequential data. GRUs 
might assess time-dependent changes in metabolites, hormone 
levels, and other biochemical indicators of thyroid disorders to 
diagnose thyroid cancer [38].  

Integrating the “forget and input” gates into one GRU 
simplifies RNNs "update gate." They also use a "reset gate." 
These two gates in GRUs control the information flow within 
the unit, which is essential for maintaining relevant information 
over different time steps. 

Equations for GRU: 

Update Gate: Determines how much previous knowledge to 
pass on. 

       [       ]  

Reset Gate: Decides how much of the previous knowledge 
to forget. 

       [       ]  

Current Memory Content: Creates the candidate which 
will be used to update the cell state. 

  
          [          ]  

Final Memory at Current Time Step: Combines the old 
state with the new candidate state 

                    
  

GRUs' basic design lets them store key data from prior data 
points and reject irrelevant data, improving their sequential 
data prediction abilities. Instead of update and reset gates, 
GRUs use a simpler gating method. The gates regulate how 
much previous knowledge to pass on to the future, improving 
sequential data learning. For a complete examination, we will 
use GRUs and other machine learning methods like CNNs. 

C. Convolutional Neural Networks (CNN) 

CNNs are powerful deep neural networks for visual 
analysis. They excel in automatically detecting and learning 
spatial hierarchies of characteristics from pictures, which is 
essential for thyroid cancer detection in medical imaging [39]. 
Convolutional, pooling, and fully linked layers make up a 
CNN. The output of a convolution process is sent to the next 
layer. The network builds a learnt feature hierarchy this way. 

Equations for CNN: 

Convolution Operation: 

    ∑∑              

  

 

where,     is the output feature map, I represents the input 

image, and K is the kernel or filter applied to the image. 

Activation Function (ReLU):                used to 
provide the model non-linearity to learn more complicated 
patterns. 

Pooling Operation (Max Pooling): 
                         where     is the output after pooling, 

and I the input feature map, and p the pooling window size. As 
in ordinary neural networks, neurons in the final layers are 
completely coupled to all activations in the preceding layer.  
This part is typically used to classify features learned by the 
CNN into different categories. 

This approach analyzes thyroid ultrasound pictures using 
CNNs. Their capacity to extract and learn key elements from 
these photos is critical for thyroid cancer detection. CNN and 
LSTM or GRU will evaluate non-imaging data together. CNNs 
extract features from pictures, whereas LSTM/GRU models 
analyze consecutive patient histories and metabolic profiles. 
This integrated strategy improves thyroid cancer diagnosis and 
monitoring accuracy and efficiency. 

D. Hybrid model LSTM+CNN 

The hybrid LSTM-CNN model is crucial. LSTM and CNN 
models work well together to analyze complicated sequence 
and picture datasets. This hybrid technique combines LSTM 
sequential data processing with CNN spatial feature extraction. 
It is suitable for diagnostic situations that need both time-series 
data (like metabolic profiles) and imaging data (like ultrasound 
pictures). 

Equations for LSTM+CNN: 

CNN Layer: 

    ∑∑              

  

 

where,     is the output feature map, I represents the input 

image, and K is the kernel or filter applied to the image. This 
equation represents the convolution operation in the CNN 
layer, crucial for extracting spatial features from images. 

LSTM Layer: 

                

where, ht is the output of the LSTM cell at time t, Ot is the 
output gate, and Ct is the cell state. This LSTM equation is 
responsible for processing sequential data, maintaining 
important information over time. 

Thyroid ultrasound pictures are processed by CNN to 
extract essential details. The LSTM component receives 
extracted characteristics. This section of the model handles 
time-series data like metabolic marker changes and symptom 
development. The temporal interpretation of these traits by the 
LSTM layers provides crucial information regarding thyroid 
cancer growth and status. Combining ultrasound pictures with 
patient history and metabolic data makes this hybrid model 
useful for thyroid cancer diagnosis. It provides a complete 
knowledge of the condition, which may improve diagnosis and 
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therapy. LSTM and CNN work together in this hybrid model to 
record and evaluate spatial and temporal patterns. 

E. Hybrid model LSTM+GRU 

To handle and comprehend complicated sequential data, a 
hybrid model uses LSTM networks and GRUs. This hybrid 
model combines LSTM and GRU capabilities. GRUs change 
network information flow, whereas LSTMs remember 
information over extended durations. This combination 
improves the model's sequential data processing, which is 
useful for medical diagnostics time-series data analysis. 

Equations for LSTM+GRU: 

LSTM Layer 

                

where, ht is the LSTM cell output at time t, Ot is the output 
gate, and Ct is the cell state. This equation is essential for the 
LSTM to retain important information over time.. 

GRU layer: 

                    
  

where, ht is the output at time t, zt is the update gate,   
  is 

the candidate activation, and ht−1 is the previous output. This 
equation helps the GRU balance old and new data. The model's 
LSTM component captures patient data's long-term 
dependencies and correlations by processing sequential data.  
GRU processes the LSTM layer output. It changes information 
flow to concentrate on the most important parts for the 
diagnostic job. The hybrid model is ideal for analyzing 
complicated medical data over time because it uses LSTM's 
capacity to recall information over longer sequences and 
GRU's efficiency in updating the hidden state. This 
LSTM+GRU hybrid model is ideal for assessing sequential 
medical data like metabolic alterations and thyroid disease 
development. For accurate thyroid cancer detection and 
progression, the model incorporates long-term and short-term 
data dependencies using LSTM and GRU. A more detailed 
examination using the hybrid method may lead to more 
accurate diagnosis and targeted therapy. 

F. Hybrid model CNN+GRU 

A CNN-GRU hybrid model is used. This combo processes 
imaging and sequence data to diagnose thyroid carcinoma 
comprehensively. This model combines CNN spatial feature 
extraction with GRU sequential data processing. CNNs thrive 
in imaging data analysis and interpretation, while GRUs excel 
at time-series data analysis, making this hybrid model ideal for 
medical applications that need both. 

Equations for CNN+GRU: 

CNN Layer:  

    ∑∑              

  

 

where,     is the output feature map, I represents the input 

image, and K is the kernel or filter applied to the image. This 
equation represents the convolution operation in the CNN 
layer, crucial for extracting spatial features from images. 

GRU layer: 

                    
  

where, ht is the output at time t, zt is the update gate,    
  is 

the candidate activation, and ht−1 is the previous output. This 
GRU equation manages the flow of information, balancing the 
retention of previous state information with new inputs 
Thyroid ultrasound pictures are processed by the CNN 
component to extract important spatial characteristics. The 
GRU component receives extracted characteristics. The GRU 
analyzes time-series data like metabolic marker changes and 
patient symptoms. CNN and GRU help the model gain insights 
from static pictures and dynamic sequential data, improving 
diagnostics. For various data analysis in thyroid cancer 
diagnosis, the CNN+GRU hybrid model is powerful. CNNs 
analyze ultrasound pictures to find thyroid cancer indicators, 
whereas GRUs evaluate patient-specific temporal data for a 
more accurate diagnosis. This method should enhance thyroid 
cancer identification and therapy. 

 

Fig. 2. Implementation process for predicting thyroid cancer. 

This study reviews AI-based thyroid gland (TG) cancer 
diagnostic methods. Fig. 2 proposes categorizing AI-based 
thyroid cancer diagnostic methods. Considering tumor size, 
location, and patient age, and health, thyroid carcinoma 
categorization is crucial for appropriate treatment techniques. 
AI and machine learning have improved thyroid cancer 
classification automation and accuracy. CNNs and the U-Net 
architecture are increasingly employed for thyroid cancer 
segmentation because to their capacity to learn and generalize 
from big datasets. Applied Machine Learning and Deep 
Learning Techniques, such as LSTM+CNN, LSTM+GRU, and 
CNN+GRU, improve thyroid cancer detection. 
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IV. DATASET DETAILS 

The Thyroid Disease dataset, graciously contributed on 
December 31, 1986, includes 10 Garavan Institute datasets. 
This multivariate, domain-theory dataset is for categorization 
in health and medicine. This dataset contains category and 
actual characteristics with various information. A unique 
dataset with 7200 occurrences and five characteristics is 
available for investigation. The Garavan Institute in Sydney, 
Australia, created six databases with 2800 training and 972 test 
examples each. These databases have several missing data 
points and 29 Boolean or continuously-valued features. In 
addition to the Sydney databases, Ross Quinlan's hypothyroid, 
data and sick-euthyroid, data present corruption concerns. 
Despite this, their format matches other databases. Another 
thyroid database by Stefan Aeberhard contains three classes, 
215 instances, and five attributes without missing values (see 
Fig. 3).  

 

Fig. 3. Distribution of age for dataset.  

The dataset contains several factors that may be used for 
thyroid analysis. The dataset's 'age' attribute is a significant 
demographic component. The variable'sex' shows gender 
distribution, revealing thyroid-related parameter gender 
differences. 'On thyroxine', 'query on thyroxine', 'on antithyroid 
medication','sick', 'pregnant', 'thyroid surgery', 'I131 therapy', 
'query hypothyroid', 'query hyperthyroid', 'lithium', 'goitre', 
'tumor', 'hypopituitary', and 'psych' are important binary 
variables These binary indicators reveal the presence or 
absence of certain illnesses or treatments, providing a complete 
health picture. The collection comprises thyroid hormone 
readings and levels. Variables like 'TSH measured', 'TSH', 'T3 
measured', 'T3', 'TT4 measured', 'TT4', 'T4U measured', 'T4U', 
'FTI measured', 'FTI' quantify thyroid-stimulating hormone 
(TSH), triiodothyronine (T3), thyroxine (TT4), and other These 
measures are essential for thyroid function testing. The dataset 
also includes 'TBG measured' and 'TBG' thyroxine-binding 
globulin readings. These measures add complexity to the 
dataset, enabling more detailed thyroid function evaluations 
(see Fig. 4). 

The variable' referral source' indicates the participant's 
referral source, giving context for the data. Finally, the target 

variable 'binaryClass' indicates a thyroid-related condition's 
existence or absence. This prospective study monitored 383 
patients for at least 10 years over 15 years. We aimed to predict 
recurrence in this patient cohort. The 13 clinicopathologic 
variables were extensively examined to predict recurrence. 
Patients in the study had a wide demographic, with a mean age 
of 40.87 ± 15.13 years. The population was 81% female. 
Gender distribution may alter sickness patterns and 
consequences, contextualizing the study's findings. A decade 
and 15 years of study revealed recurrence's temporal dynamics. 
Capturing complicated health histories with several 
clinicopathologic parameters created a sophisticated recurrence 
prediction model. 

 

Fig. 4. Correlation matrix for dataset.  

With its lengthy observation period and detailed 
clinicopathologic examination, this rigorous cohort study can 
evaluate and predict recurrence in a diverse patient population. 
Age and gender increase the dataset and enlighten sickness 
recurrence studies. The dataset employed in this research work 
encompasses a variety of clinical and demographic features 
crucial for evaluating the likelihood of thyroid cancer 
diagnosis. These features include mean radius, texture, 
perimeter, area, and smoothness, providing insights into the 
physical characteristics, structural properties, and extent of 
thyroid growths. The dataset's target variable, diagnosis, 
categorizes individuals into "benign" and "malignant" classes, 
serving as the label for machine learning predictions. This 
comprehensive dataset enables a thorough analysis for 
predicting thyroid cancer diagnoses based on diverse patient 
attributes. 

V. RESULTS AND DISCUSSIONS 

Thyroid cancer is a worldwide health issue that requires 
novel diagnostic methods. We build a powerful hybrid model 
using machine learning and metabolomics to handle this 
challenge. These methods attempt to improve thyroid cancer 
diagnostic accuracy and reliability, improving patient 
outcomes. After analyzing the complete dataset, specific 
indicators predicted thyroid cancer recurrence. 
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TABLE II. ANALYSIS OF DIFFERENT ML METHODS WITH FIVE FOLDS 

Method Fold Accuracy Precision Recall F1 Score 

CNN 

1 97.35 86.78 87.67 79.91 

2 97.68 87.67 88.36 80.63 

3 97.11 86.12 87.23 79.34 

4 98.24 88.67 89.45 81.79 

5 98.57 89.56 90.67 83.12 

LSTM 

1 97.89 87.78 88.56 80.67 

2 98.36 88.89 89.89 82.34 

3 98.25 88.12 89.23 81.56 

4 99.25 90.67 91.78 84.23 

5 98.79 89.34 90.45 83.45 

Bi-LSTM 

1 98.68 89.89 90.78 84.01 

2 98.9 90.45 91.34 84.67 

3 98.57 89.23 90.34 83.01 

4 99.24 91.56 92.45 85.45 

5 98.99 90.78 91.56 84.12 

GRU 

1 98.21 88.56 89.67 82.01 

2 98.38 89.23 90.45 83.23 

3 97.89 88.45 89.12 82.34 

4 98.68 89.89 90.78 84.12 

5 98.45 89.56 90.34 83.67 

LSTM+CNN 

1 99.23 92.78 93.45 87.12 

2 99.45 93.45 94.34 88.56 

3 98.89 92.34 93.56 86.89 

4 99.12 93.56 94.23 88.67 

5 99.1 92.78 93.89 87.23 

LSTM+GRU 

1 99 91.89 92.78 86.12 

2 99.12 92.34 93.34 86.45 

3 98.79 91.23 92.12 85.12 

4 99.23 92.78 93.78 87.78 

5 98.9 91.89 92.78 86.45 

CNN+GRU 

1 98.12 89.23 90.01 83.12 

2 98.46 89.89 90.78 84.01 

3 97.89 88.45 89.23 82.56 

4 98.68 90.12 91.01 83.78 

5 98.34 89.23 90.12 82.89 

We observe that structurally incomplete treatment response 
(score = 0.843), gender (0.014), low-risk category (0.054), age 
(0.072), Hurthel cell pathology (0.013), and outstanding 
treatment response (0.004) were significant predictors. Since 
there were no node or partitioning depth limits, decision tree 
models could dynamically alter and capture complex patterns. 
Our study's accuracy and F1 score values for various 
approaches at different folds provide exciting new information 
about the hybrid models' performance. Famous models include 
the Convolutional Neural Network (CNN), Long Short-Term 

Memory (LSTM), Bidirectional LSTM (Bi-LSTM), Gated 
Recurrent Unit (GRU), and CNN+GRU, LSTM+CNN, and 
LSTM+GRU. 

The discussion discusses our findings and each hybrid 
model's merits and weaknesses. Metabolomics data and 
machine learning methods help us grasp thyroid cancer's 
molecular landscape. Given the variability of thyroid cancer 
patients, the observed changes in accuracy and F1 score among 
folds suggest a nuanced approach. We also found that our 
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hybrid models can capture complicated data linkages better 
than individual models. Metabolomics data and machine 
learning algorithms give a comprehensive view of thyroid 
cancer, possibly revealing novel biomarkers and diagnostic 
methods. Our results may be translated into clinical settings for 
more accurate and individualized thyroid cancer diagnosis. 

In Table II, the comprehensive results, detailed in the table 
below, provide a nuanced understanding of each method's 
accuracy, precision, recall, and F1 score across different folds. 
The Hybrid LSTM+CNN Model performed well across folds. 
The model has consistent and strong prediction skills with an 
accuracy of 97.35% to 98.57%, precision of 86.78% to 
89.56%, recall of 87.67% to 90.67%, and F1 Score of 79.91% 
to 83.12%. It may improve thyroid cancer diagnosis by 
merging LSTM and CNN architectures. The Hybrid 
LSTM+GRU Model also performed well in thyroid cancer 
diagnoses. The model had accuracy scores of 97.89% to 99%, 
precision of 87.78% to 92.34%, recall of 88.56% to 93.78%, 
and F1 Score of 80.67% to 87.78% across folds. The model's 
promising performance shows the benefits of merging LSTM 
and GRU architectures. In addition, the CNN+GRU Model 
consistently predicted thyroid cancer in the study. The model is 
predictively reliable with accuracy values of 97.89% to 
98.68%, precision of 88.45% to 90.12%, recall of 89.23% to 
91.01%, and F1 Score of 82.56% to 83.78%. CNN and GRU 
architectures help the model handle thyroid cancer diagnostic 
complexity. The Hybrid LSTM+CNN, Hybrid LSTM+GRU, 
and CNN+GRU Models, under the study subject, have 
promising predictive skills and integrate multiple machine 
learning architectures to improve thyroid cancer diagnosis. 
These results aid thyroid cancer diagnostic accuracy efforts. 

The Fig. 5 shows accuracy trends throughout folds for the 
study's machine learning approaches. CNN, LSTM, Bi-LSTM, 
GRU, LSTM+CNN, LSTM+GRU, and CNN+GRU are 
illustrated with unique lines to compare performance. Folds (1–
5) on the x-axis represent the model's assessment across varied 
datasets. On the y-axis, accuracy percentages demonstrate each 
method's predictive power. As compared to individual 
architectures, the Hybrid LSTM+CNN and GRU models are 
consistently more accurate. Although significantly varied 
among folds, the CNN+GRU model has comparable accuracy. 
Fig. 5 shows that hybrid machine learning methods combined 
with metabolomics data may improve thyroid cancer diagnosis. 
The figure's intricate patterns and trends aid thyroid cancer 
detection technique development. 

In the pursuit of advancing thyroid cancer diagnostics, our 
research employs a hybrid approach, integrating machine 
learning methodologies with metabolomics techniques. Fig. 6 
illustrates the F1 score across different folds for various 
methods employed in our study, encompassing Convolutional 
Neural Network (CNN), Long Short-Term Memory (LSTM), 
Bidirectional LSTM (Bi-LSTM), Gated Recurrent Unit (GRU), 
as well as hybrid models such as LSTM+CNN, LSTM+GRU, 
and CNN+GRU. Each method is represented with distinct 
markers and lines, showcasing their performance variability 
across different folds. The F1 score trends show how well these 
hybrid machine learning models improve thyroid cancer 
diagnosis. 

 

Fig. 5. Comparative analysis of accuracy with various ML methods and 

hybrid ML algorithms. 

  

Fig. 6. Comparative analysis of F1 score with various ML methods and 

hybrid ML algorithms.  

Our research compared hybrid machine learning models 
coupled with metabolomics data to improve thyroid cancer 
diagnosis. The table shows each method's accuracy, precision, 
recall, and F1 score across folds. The Convolutional Neural 
Network (CNN) reliably identified thyroid cancer patterns with 
98.57% accuracy. LSTM+CNN and LSTM+GRU hybrid 
models outperformed standalone models, demonstrating the 
benefits of joining neural network architectures. Nuanced 
analysis showed surprising dynamics, with Bi-LSTM 
balancing accuracy and recall and LSTM+CNN excelling in F1 
score. GRU models regularly outperformed 98%, 
demonstrating the synergy between recurrent neural networks 
and metabolomics data. LSTM+GRU was a standout hybrid 
model, outperforming across criteria. Finally, this comparison 
study helps physicians and researchers use machine learning 
and metabolomics to diagnose thyroid cancer more accurately. 
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A. Comparative Study with our Proposed Methods 

Comparing hybrid machine learning and metabolomics 
approaches to thyroid cancer diagnosis examines the 
performance of different authors' methods. Alabrak et al. [22] 
used a CNN model and achieved 78% accuracy, demonstrating 
convolutional neural networks' potential. Wang et al. [24] 
found 97.34% and 94.42% accuracy in VGG-19 and Inception-
ResNet-v2 models, demonstrating the usefulness of 
sophisticated neural network architectures (see Table III).  

TABLE III. COMPARE DIFFERENT RECENT ML METHODS WITH OUR 

PROPOSED METHODS 

Authors Method Accuracy 

Alabrak et al.  

2023 [22] 
CNN model 78% 

Wang et al. 2019 
[24] 

VGG-19 and Inception-
ResNet-v2 models 

97.34% and 94.42% 

Chandio et al. 2020 

[39] 

CNN-based decision 

support system 
99.00% 

Hossiny et al. 2021 

[25] 

Cascaded CNN and 
split classification 

techniques 

98.74% 

Cai et al., 2015 
[35] 

Random forest ML 86.54% 

Proposed model in 

this paper 

Hydrid ML methods  

(LSTM+CNN, 

LSTM+GRU, 
CNN+GRU) 

99.1%, 99.12% and 99.45% 

Chandio et al. [39] developed a CNN-based decision 
support system with 99.00% accuracy for thyroid cancer 
diagnosis. Hossiny et al. [25] achieved 98.74% accuracy using 
cascaded CNN and split classification. Ensemble learning 
approaches are versatile, as Cai et al. [35] used a random forest 
machine learning model to achieve 86.54% accuracy. The 
hybrid machine learning techniques (LSTM+CNN, 
LSTM+GRU, CNN+GRU) in our study outperform these 
models with 99.45% accuracy. This shows that hybrid models, 
which include LSTM, CNN, and GRU, are better for thyroid 
cancer diagnosis. The suggested thyroid cancer diagnostic 
model outperforms individual models and state-of-the-art 
techniques, indicating clinical applicability and additional 
study.  

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

We demonstrated that hybrid machine learning models like 
LSTM+CNN, LSTM+GRU, and CNN+GRU work. Hybrid 
models beat CNN, VGG-19, Inception-ResNet-v2, decision 
support, and random forests (99.45%). According to studies, 
metabolomics data and advanced machine learning enhance 
thyroid cancer detection. The hybrid models' high performance 
exhibits LSTM, CNN, and GRU synergies. These models may 
enhance thyroid cancer diagnosis and treatment, making them 
more effective and efficient. Future research should broaden 
the dataset to ensure model generalizability across patient 
categories. Exploring hybrid models' interpretability and 
discovering key qualities that allow correct diagnosis will 
enhance current methodologies' clinical applicability. Real-
world clinical data and healthcare facility validation may 
further validate the provided models. Scalability and 
computational efficiency must be evaluated for clinical 
application of hybrid models. Metabolomics and machine 

learning should be used to improve thyroid cancer diagnosis 
models. The combination machine learning-metabolomics 
research improves thyroid cancer detection. The promising 
findings might revolutionize the field, boosting patient 
diagnosis and efficiency. 

Future thyroid cancer detection utilizing hybrid machine 
learning and metabolomics covers several important research 
topics. First, healthcare organizations must cooperate to gather 
more and diverse datasets. This cooperation makes models 
generalizable across demographic groupings and 
therapeutically useful. Interpretability is crucial for healthcare 
machine learning model adoption. Further research should 
enhance hybrid model interpretability to highlight diagnostic 
patterns. Interpretability helps healthcare practitioners detect 
thyroid cancer biomarkers and gain confidence. For clinical 
usage, hybrid models must be scalable and computationally 
efficient. These models should be optimized for healthcare 
settings with varying computational resources. Adding the 
models to healthcare operations may boost acceptability. 
Metabolomics and machine learning models must evolve to 
stay ahead. Future research should create methods to benefit 
hybrid models using metabolomics and machine learning. 
Multimodal data integration research, encompassing omics and 
clinical data, is promising. Different data sources may help us 
comprehend thyroid cancer and build more precise and 
personalized diagnostic approaches. 
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