
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

303 | P a g e  

www.ijacsa.thesai.org 

Cross-Modal Video Retrieval Model Based on Video-

Text Dual Alignment 

Zhanbin Che, Huaili Guo* 

College of Computer, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China 

 

 
Abstract—Cross-modal video retrieval remains a major 

challenge in natural language processing due to the natural 

semantic divide between video and text. Most approaches use a 

single encoder to extract video and text features separately, and 

train video-text pairs by means of contrastive learning, but this 

global alignment of video and text is prone to neglecting more 

fine-grained features of both. In addition, some studies focus only 

on profiling the video description text, ignoring the correlation 

relationship with the video. Therefore, this paper proposes a 

video retrieval method based on video-text alignment, which 

realizes both global and fine-grained alignment between video 

and text. For global alignment, the video and text are aligned by 

a single encoder and after linear projection; for fine-grained 

alignment, the video encoder is trained to align the video and text 

by masking some semantic information in the text. By 

experimentally comparing with multiple existing methods on 

MSR-VTT and MSVD datasets, the model achieves R@1 (recall 

at 1) metrics of 51.5% and 52.4% on MSR-VTT and MSVD 

datasets, respectively, which indicates that the proposed model 

can improve the efficiency of cross-modal video retrieval. 

Keywords—Video-text alignment; cross-modal; contrastive 

learning; similarity measure; feature fusion 

I. INTRODUCTION  

With the proliferation of mobile devices and high-speed 
networks, network resources predominantly manifest in 
textual and video formats. Video's formidable capacity for 
conveying information confers upon it a distinct advantage, 
rendering it more popular among users. Video retrieval not 
only reduces costs but also fosters innovation, enhances the 
quality of life, and generates economic value in diverse fields 
such as education, military, and healthcare. Consequently, the 
demand for precision in video content retrieval is escalating, 
making the enhancement of video retrieval efficiency a 
formidable research pursuit. Within the realm of video 
comprehension, a natural semantic gap exists between the 
various modalities of video. Solely extracting semantic 
features from videos is susceptible to yielding sparse feature 
representations, consequently diminishing the accuracy of 
video retrieval. Consequently, numerous scholars have 
endeavored to represent video features through multiple 
modalities to augment the precision of video retrieval, 
yielding noteworthy results. Current models such as Frozen 
[1], CLIP4Clip [2], and Clipbert [3] use contrast learning to 
achieve semantic alignment and interaction of cross-modal 
features, where features from different modalities are 
extracted and then mapped into the same space, enabling 
global alignment of video with video description text. 

The semantic alignment strategy for unimodal encoders in 
comparative learning typically involves the integration of 
features from video description text and video features to 
calculate their similarity. However, this approach often 
overlooks the association between the local features of the two 
modalities, resulting in asymmetry in their representation and 
impacting the efficiency of cross-modal retrieval. In 
addressing these issues, some researchers employ lexical 
embedding [4] to achieve fine-grained retrieval by leveraging 
the relationship between different lexemes. Chen et al. [5] 
introduced a hierarchical graph inference model to generate 
text embeddings using an attention-based graph inference 
mechanism, capturing global-to-local feature associations. 
Notably, this model primarily focuses on text comprehension 
and neglects alignment with video content. To address this 
limitation, HANet [6] enhances the alignment between video 
and text by introducing a word-level attention mechanism. 
This mechanism calculates the importance of each word in the 
video representation and weights the text representation 
accordingly. However, the computational complexity of 
HANet is high due to the incorporation of a multi-level 
attention mechanism. 

Upon a thorough examination of relevant research, it 
becomes evident that video retrieval models should prioritize 
video sub-regions closely associated with a given video 
summary. This entails employing cross-modal reasoning 
between video summaries and video frames to identify the 
most semantically relevant segments in both, thereby 
achieving alignment between the video and the summary text. 
However, prevailing video retrieval models frequently rely on 
global features of videos, utilizing mean pooling or self-
attention methods. Unfortunately, these approaches fall short 
in effectively integrating the concept of cross-modal reasoning 
in practical applications. Consequently, the lack of fine-
grained semantic attention to both video and summary text 
within the global alignment model hinders the encoding of 
localized visual information in the video. This deficiency 
subsequently leads to a degradation in retrieval performance. 

In this paper, we introduce a dual video-text alignment 
model that aims to narrow the semantic gap between video 
and text at a finer granularity, thus improving the efficiency of 
video retrieval. Initially, a conventional methodology is 
employed to map features from both the video and the 
summary text into a shared space. This facilitates the 
computation of contrast loss, thereby achieving global 
alignment between the video and the text. Subsequently, we 
concentrate on the actions or scenes involving entities in the 
video, aligning them with the nouns and verbs present in the 
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textual description. This dual-pronged approach not only 
establishes global alignment but also enables more refined 
local alignment. The result is a comprehensive interaction 
between video and text, enhancing retrieval performance. 

The rest of this paper is as follows, Section II review 
previous studies. Section III discusses the methodology. 
Section IV presents experimental setup. Section Ⅴ describes 
the results of the experiment and discusses. Finally, 
conclusion presents in Section Ⅵ. 

II. RELATED WORKS 

This section provides an overview of related work on 
video retrieval methods and the video-text alignment method 
used in this paper, where exploring a new video retrieval 
method is the target task of this paper, and the study of the 
video-text alignment method is the focus of this paper. 

A. Video Search Methods 

Video-text alignment methods are more commonly used in 
video retrieval tasks. In their earlier work, Kaufman et al. [7] 
focused on pre-training by designing cross-modal fusion 
mechanisms, utilizing large-scale multimodal data for pre-
training, and fine-tuning in downstream tasks. However, these 
approaches usually focus only on the global alignment of 
video and text, ignoring the interaction of local representations 
and affecting the retrieval efficiency. 

Currently, popular methods encode video and text into 
feature vectors that are projected into a common space for 
matching by means of a dual-encoder structure of a text 
encoder and a video encoder. These methods utilize dot 
product operations to compute the global similarity and thus 
achieve alignment between video and text. For example, Bain 
et al. [1] proposed an end-to-end model that utilizes the ideas 
of ViT [8] and Transformer [9] to achieve a common 
representation of video and text. Luo et al. [2] utilized the 
knowledge migration of CLIP [10] to match the feature 
vectors of the video and the text in the common space and 
retrieve them by using the similarity between the vectors. Li et 
al. [11] matched multiple encoders in a specific common 
space, avoiding the dominant role of a single encoder and 
failing to fully utilize the visual information within the video, 
relying too much on textual information. In addition, methods 
based on graph neural networks [12], which represent video 
and text as graph structures; utilize graph neural networks for 
information dissemination and fusion. However, these 
methods still have some problems: 

1) Global similarity may not adequately capture the 
complex relationships between video and text. Since video 
and text have different structures and semantics, relying only 
on global similarity may ignore the interaction of local 
representations. 

2) Inconsistency in the length of video and text may lead 
to information loss. In a dual-encoder architecture, the output 
of the text encoder is usually truncated to fit the input of the 
video encoder. This truncation may lead to loss of textual 
information during the encoding process, thus affecting 
retrieval. 

3) Imbalance of training data may lead to model 
overfitting. In video-text retrieval tasks, the training data is 

usually unbalanced, which may lead to overfitting of the 
model to local similarities during the training process, while 
ignoring the importance of global similarities. 

To address these problems, researchers have proposed 
some improvement strategies, such as introducing an attention 
mechanism and utilizing methods such as contrast learning to 
capture local and global representations between video and 
text, which can effectively improve the performance of video-
text retrieval tasks. 

B. Video-Text Alignment Methods 

Video-text alignment is commonly used in application 
domains such as video retrieval, video annotation, and video 
quizzing, and using features and objects in the video to match 
with the text is a common alignment method. Some work 
relies on the attention mechanism to extract information from 
videos [13], which is then used in downstream tasks such as 
video quizzing. Wang et al. [14] utilized multiple pre-trained 
experts to extract multimodal information and use it as an 
anchor point for alignment with text. Dong et al. [15] designed 
dual coding networks to perform multilevel coding of video 
spatial and temporal information with text. Luo et al. [2] based 
on the inspiration of a large-scale pre-trained graphic-text 
matching model CLIP [10], migrated the image-text alignment 
method to video-text alignment to realize video text retrieval. 
However, all these alignment methods are global alignment on 
the whole of video and video description text, ignoring the 
finer-grained semantic information alignment between the 
two. 

To solve the above problems, some works split text 
descriptions into semantic phrases, e.g., Yang et al. [16] 
construct a semantic tree representation of the text and use a 
temporal attention encoder to obtain a video representation. 
Wang et al. [17] manipulate a fine-grained comparison target 
by selecting video frames that are semantically equivalent to 
the text to better learn the representation of the video and the 
text. Chen et al. [5] extract the text from the sentence to 
extract verbs and nouns and project them into a shared space 
for fine-grained alignment. In addition, Li et al. [18] 
performed large-scale image-text comparison learning through 
the Twin Towers model, which aligns the visual information 
in images with the meaning of text masked words through 
Masked Language Model (MLM) and Image-Text Matching 
(ITM) to achieve image-text retrieval. 

Synthesizing the research on video retrieval algorithms, 
this paper proposes effective solutions to the problems of the 
current methods in Section A, and the main contributions 
include: 

1) A video-text dual alignment model is proposed to 
enhance the interaction of local representations by aligning the 
global and fine-grained features of video with those of text to 
capture the more complex semantic relationships between the 
two. 

2) Using the Transformer-based dual encoder structure, 
text information can be encoded more comprehensively, 
reducing the missing information caused by truncated text 
features. 
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3) Using the contrast learning method, video features are 
fitted to sentence features with global and fine-grained 
similarity to increase the balance of the training data and 
improve the video retrieval accuracy. 

III. METHODOLOGY 

The video-text dual alignment method employs dual 
encoders to train video and text features, proposing a dual 
alignment model for both global and fine-grained alignment to 
enhance cross-modal alignment between videos and summary 
text for improved video retrieval accuracy. 

In this section, Section A provides an overview of the 
model to illustrate its working principles and processes, 
Section B details how video and text features are extracted, 
Section C introduces the framework and working principles of 
the dual alignment network model, Section D outlines the 
model's training strategy. Finally, Sections E and F elaborate 
on the objective functions and pretraining datasets used in this 
approach. 

A. Overview of the Model 

As illustrated in Fig. 1, our model adopts a two-tower 
structure to capture semantic information from both video and 
text during the feature extraction phase, employing dedicated 
encoders for each modality. For a given set of videos, the 
TimeSformer [19] serves as the video feature encoder. The 

output features, denoted as 
i

x  and v
i
, plays crucial roles in the 

global and fine-grained alignment of video and text, 
respectively. In the case of video description text, two inputs 
are provided to the text encoder DistilBERT [20]: the sentence 
with deleted verbs and nouns, and the complete video text 

description. The extracted text features y
i
 and t

j
 are used for 

global alignment and fine-grained alignment, respectively. 

During the video-text alignment phase, one branch focuses 
on global alignment, projecting global video and text features 
into a common space. This branch is trained using a 
contrastive learning method to attain comprehensive semantic 
alignment of features on a global scale. The other branch is 
dedicated to fine-grained alignment, achieving detailed 
alignment between video and text by training a multimodal 
encoder to acquire vector representations of deleted nouns and 
verbs in the video modality. 

The model enhances its cross-modal alignment capability, 
specifically in video-text alignment, through the incorporation 
of a cross-modal attention mechanism. This mechanism 
projects both the video and text into an embedding space, 
where semantic similarity is maximized. Consequently, for a 
given text query, video retrieval is formulated as a cross-
modal similarity metric, aiming to identify videos that exhibit 
semantic alignment with the query. 

 
Fig. 1. Video-text dual alignment framework. 

B. Feature Extraction 

In this approach, both video and summary text undergo 
parsing using a video encoder and a text encoder. The distinct 
data modalities are then transformed into a unified numerical 
representation, yielding a sequence of feature representations 
for both. This facilitates alignment between the video and 
summary text on both a global and fine-grained level. 

1) Video representation: This paper employs a dual 
encoder architecture for the extraction of video and text 
features. Specifically, TimeSformer is utilized to extract video 
features for each video. During the extraction of video 
features, as illustrated in Fig. 1, the M  video frames of the 
clip are initially input into TimeSformer. Each video frame is 
then partitioned into P  patches, which are subsequently fed 

into a linear projection header, spreading them into a series of 
tokens for the video. Following this, learnable [ ]CLS tokens 

are affixed to the header of the sequence, enhancing our 
ability to learn sentence-level features for downstream tasks. 
Learnable positional embeddings are also introduced to the 

tokens. For each video frame feature 
M P D

i
v R   ，with D  

representing the feature dimension, TimeSformer applies the 
self-attention mechanism in both temporal and spatial 
dimensions, generating the final sequence of video frame 

embeddings { }i cls 1 2 pv = v ,v ,v ,...,v . 

2) Text representation: For each of the N  text 

descriptions associated with each video, this approach 
employs the DistilBERT model for feature extraction. 
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DistilBERT, being a lightweight BERT [21] model, is more 
suitable for deployment and operation under resource 
constraints due to its smaller size compared to the BERT 
model. DistilBERT produces a text embedding sequence, 

denoted as N D

j
t R  , by tagging text description embeddings 

[ ]CLS  and positional tags, resulting in text features 

represented by { }
j cls 1 2 N

t t ,t ,t ,...,t . 

C. Model Framework 

This paper centers on the examination of video-text 
alignment methods, emphasizing the double alignment of 
feature representations for both video and descriptive text at 
both global and fine-grained levels. This approach aims to 
enhance the overall understanding of the video and descriptive 
text, thereby improving the retrieval accuracy of the model. 

1) Global alignment: In the context of global comparative 
learning, for a given video-text pair, subsequent to extracting 
features using two distinct encoders, the video embedding 
sequences and text embedding sequences are initially 
projected into a shared space through linear projection. 
Subsequently, all frames of each video undergo aggregation 

using mean pooling to obtain the average frame 
i

v , 1 D

i
v R  . 

For each text, this paper extracts the representation by taking 

the first [ ]CLS token, denoted as 
j

t , 1 D

j
t R  . Finally, the 

method computes the similarity between them using the cosine 

similarity function denoted by 
i j

s(v ,t ) . During training, the 

objective is to maximize the correct pairing of video-text pair 
comparisons while minimizing the remaining comparison 
targets that cannot be paired. The cosine similarity function is 
defined as shown in Eq. (1). 

T

i j

i j

i j

v • t
s(v ,t )

v t
    (1) 

2) Fine-grained alignment: In the domain of video-text 
alignment, when given a video and its corresponding text 
description, this approach involves the removal of nouns from 
the text, utilizing the incomplete sentence with omitted nouns 
as the text to be aligned. The sentence then undergoes 
processing through a text encoder to obtain an intermediate 

text sequence representation { }
n_t

n . Simultaneously, the video 

is processed through a video encoder to acquire the 

intermediate video sequence representation { }
v

c . 

Subsequently, the linear transformation of the noun text 

sequence { }
n_t

n  is treated as the query (Q) , and the linear 

transformation of the video sequence { }
v

c  serves as keys and 

values (K,V) . Through cross-modal attention using the 

Transformer, these are interacted to obtain vector 
representations of nouns that can be aligned in the video 
modal space. The nouns, removed from the text, are also 
processed through the text encoder to obtain a text space 
vector representation of the nouns, which are used to form 
positive and negative samples in the comparison target. 

The video sequence representation and the noun sequence 
representation are projected through two separate linear layers 

into a common embedding space, and their similarity is 
computed using a cosine similarity function. The formulation 
of the cross-modal attention mechanism is depicted in Eq. (2): 

( ) max( )
k

QK
Attention Q,K,V Soft V

d


T

 (2) 

where, Q  denotes the text sequence originating from the 

deletion of the noun in the sentence, K  and V  denote the 

sequences originating from the video representation, and 
k

d  

denotes the dimension of K . 

Similarly, the same operation is executed when removing a 
verb from a text as when omitting a noun. The sequence 

representation { }
v _t

v  of the sentence lacking the verb is 

derived, linearly transformed as a query (Q)  in cross-modal 

attention, and interacted with the linear transformation of the 

video sequence representation { }
v

c  to obtain the vector 

representation of the verb in the video modal space that can be 
aligned. 

Fig. 2. Fine-grained alignment process. 

The removed verbs also undergo processing through a text 
encoder to obtain a text space vector representation of the 
verb. The similarity is computed after passing these two 
representations through separate linear layers. 

The fine-grained alignment process is depicted in Fig. 2, 
where this model linearly transforms the two modal features 
extracted from the video and the text, each with the noun or 
verb removed. The linearly transformed Q , K , and V  are 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

307 | P a g e  

www.ijacsa.thesai.org 

employed as inputs to the multimodal encoder, which captures 
cross-modal attentions between the video and the text through 
the multi-head attention module. 

Following this, a contrast learning approach is utilized to 
maximize the similarity of correctly paired nouns or verbs and 
minimize the vice versa scenario. The training model is adept 
at extracting semantic information, such as scenes or actions, 
from the video content that aligns with the nouns or verbs in 
the text. This enables a higher degree of fine-grained 
alignment between the video and the text, consequently 
enhancing the efficiency of video retrieval. 

D. Training Strategy 

In the contrast learning model presented in this paper, it 
projects input samples into a low-dimensional vector space. 
The model undergoes initial training, ensuring that similar 
samples in the vector space are mapped to proximate 
locations, while dissimilar samples are mapped to distant 

locations. Specifically, for an input sample 
i

x  and a positive 

sample
i

y , the model is trained by maximizing their similarity. 

Simultaneously, within the same batch, unpaired samples are 
considered as negative samples. The objective is for the model 
not only to match positive samples but also to distinguish 
them from negative samples. 

Throughout the training process, for the given video-text 
pairs, this paper employs comparison learning utilizing the 
loss function based on cosine similarity scores, as 
demonstrated in Eq. (3): 

1

N

i i

Nnce

i=1
i ji

exp( s(x , y ) / )
L log

exp((x , y ) / )






 


  (3) 

where, 
i i

s( x , y )  denotes the similarity score between input 

samples 
i

x  and samples 
i

y , and N  represents the batch size. 

The temperature coefficient   is a hyperparameter that must 

be set to control how effectively the model discriminates 
between negative samples. The essence of this loss function 

lies in the fact that for each sample 
i

x , this paper normalizes 

its similarity score with the positive sample 
i

y  by dividing it 

by the sum of the similarity scores between 
i

x  and all the 

samples. This process yields a probability distribution, and the 
logarithm of this distribution is incorporated into the loss 
function, which is then averaged across all sample results. The 
objective of this loss function is to maximize the similarity of 
positive samples while minimizing the similarity with 
negative samples, aiming to learn a comprehensive feature 
representation. 

In the global alignment comparison learning of video and 
text, the objective is to maximize the similarity of correctly 
paired video-text pairs and minimize the similarity of those 
that cannot be paired. Subsequently, the video and text 

representations 
i

v  and 
j

t  outlined, the contrast loss is 

computed as expressed in Eq. (4): 

1

1
1

N

i i

N

i
i jj

exp( s( , ) / )
L log

exp(( , ) / )






 


v t

v t
  (4) 

In the context of finer-grained alignment, comparative 
learning is still employed to maximize the similarity between 
correctly paired nouns (pairs of nouns) and, conversely, 
minimize the similarity between nouns that cannot be 
correctly paired. The model aims to maximize the similarity 

between 
n

x  and 
n

y  while minimizing the similarity between 

n
x  and 

n
y . Here, 

n
x  represents the representation of nouns 

captured from the video space, 
n

y  represents the 

representation of correctly extracted nouns from the text, and 

k
y  represents the representation of the sequence of other 

nouns extracted from the same batch of text. 

This approach trains the multimodal encoder by relying on 
the video sequence representations to identify correctly paired 
nouns, compelling the video encoder to precisely capture the 
spatial content. The representation of the loss function is 
shown in Eq. (5): 

2

1
1

i iN

n n

N
i j

i
n kj

exp( s(x , y ) / )
L log

exp((x , y ) / )






 


  (5) 

where, 
i

n
x  and 

i

n
y  denote the 𝑖 th paired sample (positive 

sample), 
j

k
y  denotes the negative sample of the 𝑖 th sample, 

and N  denotes the batch size. 

Similarly, comparative learning for paired verbs focuses 
on maximizing the similarity between the verb representation 

v
x  in the video space and the verb representation 

v
y  in the 

text space. Simultaneously, it aims to minimize the similarity 

between 
v

x  and other verb representations 
v

y  in the text 

space. The loss function is expressed in Eq. (6): 

3

1
1

i iN

v v

N
i j

i
v pi

exp( s(x , y ) / )
L log

exp( s(x , y ) / )






 


 (6) 

where, 
i

v
x  and 

i

v
y  denote the 𝑖 th paired sample and i

p
y  

denotes the 𝑗th negative sample of the 𝑖th sample. 

E. Objective function 

This model finds the optimal model parameters by 

minimizing the sum of the three losses in Section Ⅲ. D. The 

objective function is as in Eq. (7). 

1 2 3
L L L L      (7) 

F. Pre-training dataset 

The video datasets employed for training this model are 
MSR-VTT [22] and MSVD [23], both comprising 
approximately 10K video data. To enhance the model's 
generalization, pre-training is conducted on the combined 
dataset of CC-3M [24] and WebVid-2M [1], resulting in 
approximately 5.5M video-text pairs after the merger. 
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IV. EXPERIMENTAL SETUP 

In this study, our experiments aim to investigate whether 
the dual video-text alignment model enhances video retrieval 
accuracy. Specifically, the model is anticipated to achieve 
improved accuracy by incorporating a more nuanced 
understanding of both the video and description text, in 
contrast to the prevalent utilization of global features. 
Ablation experiments are then conducted to discern whether 
the enhanced retrieval accuracy is attributed to the finer-
grained comprehension of the video and description text. 

In this section, we initially present the general information 
and implementation details of the dataset used in the 
experiment. The model's performance is evaluated by 
reporting R@K and MdR, and the efficacy of our method is 
established through comparisons with other video retrieval 
approaches. We also detail the process and results of the 
ablation experiments. Additionally, this paper utilizes Grad-
CAM [25] for generating class activation maps showcasing 
model cross-modal attention, and concludes with a case study 
illustrating the retrieval results of the model. 

A. Datasets and Evaluation Metrics 

1) Datasets: To benchmark against advanced baseline 
models and assess the performance of our proposed model, we 
conducted experiments on two widely used public datasets. 
The details of the dataset sources and divisions are outlined 
below: 

MSR-VTT is curated with 257 popular queries from a 
commercial video search engine, encompassing a diverse 
array of categories and video content. It comprises 10k video 
clips and 200k descriptions. In previous work [26], the 
training set consists of 9k clip-text pairs, with the remaining 
1k pairs designated for evaluation. This model follows the 
same division for training and evaluation. 

MSVD is selected from YouTube, where each video 
description is independent and not influenced by the 
vocabulary or word order choices in previous descriptions. 
The dataset comprises 1,970 videos, ranging in length from 1 
to 62 seconds. Each video is associated with approximately 40 
descriptions. The training, validation, and test sets consist of 
1200, 100, and 670 videos, respectively. This model 
undergoes training and evaluation using this standardized 
partition. 

2) Evaluation metrics: To assess the performance of the 
model proposed in this paper, we employ standard evaluation 
metrics for video retrieval tasks: K recall (R@K, with K 
values of 1, 5, and 10, higher being preferable) and median 
rank (MdR, lower being preferable). R@K calculates the 
percentage of test samples with correct results within the top-
K retrieval points relative to the query samples. Calculated as 
in Eq. (8): 

@
TP

R K
TP FN




  (8) 

where, TP  (True Positives) denotes the number of 
relevant videos that were correctly retrieved in the first K  
retrieval results and FN  (False Negatives) denotes the 

number of relevant videos that were not retrieved in the first 
K  results. 

MdR measures the median position of the correct option in 
the sequence, assessing the model's capability to rank relevant 
videos effectively in the retrieval task. 

B. Experimental Details 

To facilitate training, the video size is initially adjusted to 
serve as the original input. Frames are sampled from a video 
during training, where the size of each patch is set to 16×16. 
Consequently, each video frame corresponds to one patch with 
sequence dimensions. The temporal and spatial attention 
blocks in the TimeSformer are initialized using ViT [8] 
weights pretrained on ImageNet-21k. The text encoder 
employs the Transformer architecture with eight attention 
heads, and the dimension of the common feature space is set 
to 256. During the training phase, this model utilizes the 
AdamW [28] optimizer with a learning rate set to 3×10-5 and 
10 training epochs. Multi-interval learning rate tuning is 
applied: [4, 8], and weights are decayed to 0.1 times their 
original values. 

Building upon previous research, pre-training using image-
text pairs proves effective in enhancing the model's 
representation of the video space. The images in CC-3M were 
replicated and transformed into static videos. Additionally, we 
opted for the WebVid-2M video dataset, featuring 2.5M 
videos, for joint pre-training alongside CC-3M. This was 
accomplished using the AdamW optimizer, where the learning 
rate was set to 1×10-4, the number of epochs was 20, and 
multi-interval learning rate tuning was applied [12, 16]. The 
weights were attenuated by a factor of 0.1 times their original 
values. 

V. RESULTS AND DISCUSSION 

To assess the impact of the video-text dual alignment 
model proposed in this paper on video retrieval accuracy, 
Tables I and II in this section present experimental results 
comparing this method with others on the MSR-VTT and 
MSVD datasets, with optimal results highlighted in bold. 
Through a comparison of evaluation metrics such as R@K and 
MdR, our method exhibits improvements in video retrieval 
task metrics over comparative models like X-CLIP and DCR. 

A. Experimental Results 

As depicted in Tables I and II, for the MSR-VTT and 
MSVD datasets, our method achieves a 1.3 percentage point 
increase in R@1 compared to previous state-of-the-art 
approaches. Notably, on the MSVD dataset, the improvement 
in R@1 is 2 percentage points. Simultaneously, there is a 
reduction in the MdR value in this task. This demonstrates that 
the incorporation of finer-grained alignment positively 
influences retrieval performance, underscoring the 
effectiveness of the proposed method. 

The proposed method employs fine-grained alignment of 
words in text descriptions with actions or scenes in the video, 
leading to a more accurate alignment between video and text 
and improved modeling compared to the X-CLIP model, 
which outperformed other comparison models. While the 
ALPRO model introduces the concept of PEM for learning 
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fine-grained region-entity alignment, the fine-grained 
alignment in our method is notably more pronounced for the 
retrieval task. Moreover, the Clover model also incorporates 
the idea of modal alignment to enhance cross-modal feature 
alignment and fusion. In contrast, our approach utilizes the 
simpler dual alignment to achieve superior performance while 
successfully meeting the objective of improving retrieval 
accuracy outlined in this paper. 

TABLE I. COMPARISON RESULTS WITH MAINSTREAM METHODS ON 

MSR-VTT DATASET 

Methods R@1/% R@5/% R@10/% MdR 

Frozen[1] 31.0 59.5 70.5 3.0 

ALPRO[27] 33.9 60.7 73.2 3.0 

Clover[29] 40.5 69.8 79.4 2.0 

MELTR[33] 41.3 73.5 82.5 - 

CLIP4Clip[30] 44.5 71.4 81.6 2.0 

X-Pool[31] 46.9 72.8 82.2 2.0 

X-CLIP[32] 49.3 75.8 84.8 2.0 

TEFAL[36] 49.9 76.2 84.4 2.0 

DCR[34] 50.2 76.6 84.7 1.0 

Ours 51.5 78.6 86.3 2.0 

TABLE II. COMPARISON RESULTS WITH MAINSTREAM METHODS ON 

MSVD DATASET 

Methods R@1/% R@5/% R@10/% MdR 

SupportSet[35] 28.4 60.0 72.9 4.0 

Frozen[1] 33.7 64.7 76.3 3.0 

CLIP4Clip[30] 46.2 76.1 84.6 2.0 

DiffusionRet[37] 46.6 75.9 84.1 2.0 

DMAE[38] 46.9 76.8 85.6 2.0 

X-Pool[31] 47.2 77.4 86.0 2.0 

DCR[34] 50.0 81.5 89.5 2.0 

X-CLIP[32] 50.4 80.6 - - 

Ours 52.4 83.3 90.5 1.0 

B. Ablation Study 

To assess the efficacy of the dual alignment module and 
evaluate the impact of various comparison modules on 
retrieval outcomes, ablation experiments were conducted on 
two datasets, MSR-VTT and MSVD. Results from the 
ablation experiments are presented in Tables III and IV, while 
Fig. 3 provides a visual depiction for a more intuitive 
understanding of the effects of different alignment modules. 

Initially, when solely engaged in the global video-text 

alignment task 
1

L , the efficiency of video retrieval across all 

combinations remains relatively low. This suggests a 
noticeable semantic gap between the global features of video 
and text modalities. Subsequently, with the inclusion of fine-

grained noun alignment or verb alignment tasks (
1 2

L L  or 

1 3
L L ), the R@1 values on the MSR-VTT dataset improved 

by 2.8 and 4.2 percentage points, respectively. This indicates 
that the combination of global alignment and fine-grained 
alignment contributes to performance enhancement, albeit not 
significantly. 

TABLE III. ABLATION EXPERIMENT ON MSR-VTT UNIT：% 

Method R@1 R@5 R@10 

L1 40.6 67.4 80.5 

L1+L2 43.4 72.5 84.9 

L1+L3 44.8 73.1 83.4 

L1+L2+L3 51.5 78.6 86.3 

TABLE IV. ABLATION EXPERIMENT ON MSVD UNIT：% 

Method R@1 R@5 R@10 

L1 43.6 69.2 83.6 

L1+L2 46.5 74.8 85.3 

L1+L3 45.2 73.5 84.9 

L1+L2+L3 52.4 83.3 90.5 

Ultimately, when integrating all three alignment tasks 

1 2 3
L L L  , the model achieves optimal results on both 

datasets, as depicted in Fig. 3. The R@K values consistently 
rank highest when utilizing the three alignment strategies, 
reaching 51.5% and 52.4% at R@1 for the respective datasets. 
This underscores the effectiveness of combining three 
alignment strategies in improving retrieval efficiency. 
Attention Visualization 

In the section on fine-grained video-text alignment, this 
model achieves a comprehensive understanding of the video 
content. Utilizing Grad-CAM, we generate class activation 
maps on the MSR-VTT dataset to visually represent the cross-
modal attention between the video description and the video. 
This visualization aids in pinpointing corresponding regions in 
the video for the nouns or verbs mentioned in the text, 
showcasing the model's proficiency in fine-grained video-text 
alignment. 

In this study, we employ Grad-CAM to visualize the third 
layer of the multimodal encoder. To enhance the presentation's 
clarity, we extract three frames from the video to illustrate the 
cross-modal attention between the verbs in the text and the 
video actions. We compare these results with the visualization 
outcomes of the X-CLIP model. In Fig. 3(a), depicting a scene 
where a girl sings on stage, our model's visualization captures 
the continuous focus on the girl's hand and face area, 
indicating alignment with the word "sing" in the text. 
Conversely, the X-CLIP model deviates from the girl's hand 
and face actions, favoring objects behind the girl. In Fig. 3(b), 
our model's visualization emphasizes the girl's hand 
movements corresponding to the word "digging" in the text, 
while the X-CLIP model seems more focused on objects 
beside the girl than her movements. This suggests that our 
model exhibits fine-grained cross-modal alignment 
capabilities compared to other models, emphasizing the 
importance of such alignment for improving retrieval results. 
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C. Video Retrieval Case 

To demonstrate the retrieval effectiveness of the model, 
we visualize three examples of text retrieval on the test set of 
the MSR-VTT dataset, as shown in Fig. 4. In example (a), 
when searching for "two teams playing football," the model 
successfully retrieves scenes of people playing football, 
meeting the retrieval criteria. However, only one result is 
highlighted with a green box, as the model assumes one query 

corresponds to the optimal result. In Fig. 4(b), searching for 
"kids are singing by a table" yields the correct result in the 
first position. While other retrieval results are similar to the 
optimal one, they do not align with the scene described in the 
query. This highlights the model's ability to achieve fine-
grained alignment between actions and scenes in the retrieval 
queries and video content, consequently enhancing retrieval 
efficiency.

         

        

         
              (a) “a girl singing on the stage”                                                     (b) “a girl digging in the sand” 

Fig. 3. Grad-CAM visualizes multimodal encoder cross-modal. 

      

      

      
(a) Query: two teams playing football                                                          (b) Query: kids are singing by a table 

Fig. 4. Text-video retrieval results example. 

VI. CONCLUSION 

This paper introduces an efficient video retrieval model 
through video-text alignment. The model uses TimeSformer 
and DistilBERT to extract unimodal feature representations 
from video and text, and performs global video-text alignment 
by linear projection and contrast learning. Subsequently, the 
local video information is compared and learned from the 
textual content by masking part of the textual information in 
order to achieve fine-grained video-text alignment. By 
enhancing the cross-modal training process and combining 
global and fine-grained alignment tasks, the model strengthens 
semantic associations between modal information, leading to 
improved alignment and enhanced video retrieval recall. 
Experiments on MSR-VTT and MSVD datasets validate the 
model's superiority and method effectiveness. 

However, this method also has the non-negligible 
limitation that it takes a lot of time to perform video-text 
alignment, and it is also important to find a more efficient 
alignment. 

In future work, we aim to delve deeper into exploring and 
integrating various modalities in videos, such as audio and 

subtitles, to further narrow the semantic gap between video 
and text and enhance the accuracy of video retrieval. 
Additionally, for the task of video retrieval, there is potential 
to train models tailored for retrieving videos in specific 
domains, making the models more specialized and efficient. 
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