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Abstract—Exploring innovative pathways for non-invasive 

neural communication with language interfaces, this research 

delves into the interdisciplinary realm of neurolinguistic 

learning, merging neuroscience and machine learning. It 

scrutinizes the intricacies of decoding neural patterns associated 

with language comprehension. Leveraging advanced neural 

network architectures, specifically Deep Recurrent Neural 

Networks (RNN) and Gated Recurrent Units (GRU), the study 

aims to amplify the landscape of neuro-device interaction. The 

focus of Neurolinguistic Learning lies in extracting language-

related brain signals without resorting to invasive procedures. 

Employing cutting-edge non-invasive methods and deep learning 

techniques, the research aims to elevate the capabilities of neural 

devices such as brain-machine interfaces and neuroprosthetics. A 

distinctive approach involves crafting a sophisticated Deep RNN-

GRU model designed to capture intricate brain patterns linked to 

language processing. This architectural innovation, implemented 

in the Python software environment, harnesses the strengths of 

RNNs and GRUs to enhance language decoding. The study's 

outcomes hold promise for advancing non-invasive brain 

language decoding systems, contributing to the expanding 

knowledge base in neurolinguistic learning. The remarkable 

accuracy of the proposed RNN-GRU model, boasting a 90% 

accuracy rate, signifies its potential application in critical real-

world scenarios. This includes assistive technologies and brain-

machine interfaces where precise decoding of cerebral language 

signals is paramount. The research underscores the efficacy of 

deep learning methodologies in pushing the boundaries of 

neurotechnology. Notably, the model outperforms established 

techniques, surpassing alternatives like CSP-SVM and EEGNet 

by an impressive 30.4% in accuracy. The model's proficiency in 

deciphering topic words underscores its ability to extract 

intricate language patterns from non-invasive brain inputs. 

Keywords—Recurrent Neural Networks (RNN); Gated 

Recurrent Units (GRU); neurolinguistic learning; neural devices; 

brain machine interfaces 

I. INTRODUCTION 

Within the quickly developing field of neurotechnology, 
the goal of creating a seamless interface between the human 
brain and external devices has spurred innovative research 
efforts [1]. Neuro technology is advancing by developing 
neural-device interaction, an interdisciplinary field that 
combines neuroscience and engineering to improve two-way 
communication between neural systems and external devices, 
aiming to create a seamless interface [2]. Addressing 
fundamental issues and opening up new avenues for human-
machine interfaces are the driving forces behind the 
advancement of neural-device interaction [3]. Conventional 
means of communication between neural devices and the brain 
frequently struggle with issues of signal integrity, bandwidth 
of information, and procedure invasiveness [4]. It is becoming 
increasingly important to overcome these obstacles as 
technology develops in order to improve our comprehension 
of neural processes and to use this knowledge for useful 
applications that help people with neurological disorders, 
disabilities, or those looking to enhance their cognitive 
abilities. 

The understanding of neural signaling’ s complexity and 
the need for advanced models capable of real-time signal 
interpretation and deciphering are at the core of this research 
endeavor [5]. One promising approach is the use of deep 
reinforcement learning networks (DNRNNs) and GRUs. The 
dynamic information embedded in neural signals linked to 
different cognitive functions can be decoded by these models, 
which are excellent at capturing temporal dependencies and 
sequential patterns [6]. Learning more about neural-device 
interaction is important not only for academics and 
researchers, but also for a wide range of applications in 
human-computer interaction, rehabilitation, and healthcare [7]. 
More innovative assistive technologies, tailored therapeutic 
interventions, and more successful neuroprosthetics can all be 
made possible by improved neural-device interfaces [8]. 
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Furthermore, these developments pave the way for 
revolutionary discoveries in areas like brain-machine 
interfaces, neuromodulation, and cognitive augmentation by 
facilitating a more intuitive and natural interaction between 
people and machines [9]. This research explores various 
methods for data collection and neural network architecture 
creation, emphasizing non-invasiveness. It describes a 
workflow for deep RNN-GRU-based neurolinguistic learning 
to improve neural-device interaction. The goal is to advance 
brain functions and foster a new era of human-machine 
cooperation [10]. 

A growing field identified as neurolinguistic learning has 
emerged from the dynamic intersection of neuroscience and 
artificial intelligence in an effort to understand the neural basis 
of language [11]. In an effort to uncover the mysteries buried 
in the neural code that underpins our capacity for language 
comprehension and production, this research explores the 
complex relationship between neural activity and language 
processing. Neurolinguistic learning aims to directly access 
the neural substrate of language, in contrast to traditional 
linguistic analyses, which rely on external behavioral 
measures. This approach provides a more nuanced and direct 
understanding of the cognitive processes involved. The 
realization that language, a distinguishing feature of human 
cognition, is not limited to observable behaviors or linguistic 
outputs is what spurred researchers to explore the field of 
neurolinguistic learning [12]. Rather, it is firmly anchored in 
the intricate and dynamic neural activity patterns that emerge 
inside the brain. 

Specifically, non-invasive neural language decoding is the 
emphasis of this research, which is an important application of 
neurolinguistic learning [13]. Using invasive techniques like 
brain electrode implantation, the traditional methods for 
deciphering neural language patterns are frequently applied. 
Concerns about safety, ethics, and the need to create more 
widely available technologies, however, drive the search for 
non-invasive alternatives. Understanding neural language 
processes can be gained without invasive procedures by using 
non-invasive techniques like functional magnetic resonance 
imaging (fMRI) and electroencephalography (EEG). This 
work aims to apply deep learning models, namely Deep RNN 
and GRU, to advance the state-of-the-art in non-invasive 
neural language decoding. These architectures are especially 
well-suited to modeling the dynamic nature of language 
processing because they are good at capturing sequential 
patterns and temporal dependencies. Through the use of these 
sophisticated neural network architectures, the research hopes 
to shed light on the complexities of neural language 
representation and, as a result, improve our comprehension 
and decoding skills for the ideas encoded in neural language 
[3]. 

Non-invasive neural language decoding has potential to 
revolutionize assistive technology, neurorehabilitation, and 
communication technology. It can help people with 
communication impairments, offer new perspectives on 
cognitive processes, and create more user-friendly interfaces. 
This project combines linguistics, artificial intelligence, and 
neuroscience, transforming our understanding of language and 
the human mind. [14].Improving the smooth connection 

between neural devices and the complex processes of 
language expression and comprehension is one of the main 
issues in this field [1].  The need to overcome the drawbacks 
of the invasive procedures that are typically used in neural 
interface development is what drives this research [15]. Even 
though they work well, invasive techniques like implanting 
electrodes directly into the brain come with risks, such as 
tissue damage and infections. As a result, the search for non-
invasive substitutes has taken center stage in the development 
of neural-device interfaces [16]. This project specifically 
focuses on leveraging advanced neural network architectures, 
namely Deep RNN and GRU, to decode neural language 
signals without resorting to invasive interventions. 

Our main focus is on the field of neurolinguistic learning, 
which investigates the complex connection between language 
processing and brain activity. The complexity of language 
patterns is a challenge for traditional neural interfaces because 
of the difficulties in decoding the rich and dynamic 
information contained in neural signals. In this work, the 
author explore the potential of deep learning—more 
especially, RNN-GRU models—to non-invasively decipher 
the complex patterns related to language. RNN-GRU models 
were specifically chosen because of their demonstrated ability 
to handle sequential data and capture temporal dependencies. 
These architectures offer a sophisticated understanding of how 
neural signals encode linguistic information over time, making 
them well-suited to simulate the dynamic nature of language 
processing. Through these advanced neural network 
architectures, we hope to open up new possibilities for neural 
devices and usher in a new era of non-invasive neural 
language decoding. 

The practical applications of this research have 
transformative potential and go beyond the domain of 
neuroscience. A successful implementation could transform 
augmentative communication technologies and make it 
possible for people with disabilities or communication 
disorders to express themselves with never-before-seen ease. 
Furthermore, our method's non-invasiveness reduces related 
health risks and encourages accessibility and broad 
acceptance. 

The key contributions of the article is, 

 The work proposes a non-invasive method for 
neurolinguistic learning that harvests language-related 
brain signals without necessitating invasive procedures. 
This is achieved by utilizing the most advanced deep 
learning algorithms, specifically Deep RNN-GRU. 

 The study increases the possibility of neuro-device 
interaction by using complex neural network 
architectures, notably Deep RNN and GRU. This 
technology has significant promise for non-invasive 
neuro-communication applications in both ethical and 
helpful situations. The incorporation of these 
topologies facilitates the capture of complex brain 
patterns associated with language processing in the 
creation of neurotechnological interfaces. 

 The real contribution is the development and use of the 
Deep RNN-GRU model, which is done using the 
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Python programming language. This well-designed 
architecture plays to the strengths of RNNs and GRUs 
while showcasing an advanced tool for improved 
language decoding, encouraging transparency and 
reproducibility within the scientific community. 

 The work offers novel and analytical techniques for 
deciphering language-related brain signals, which 
significantly advances the rapidly expanding field of 
neurolinguistic learning. The exceptional accuracy and 
performance of the suggested RNN-GRU model 
demonstrate its potential as a revolutionary tool in the 
ongoing advancement of non-invasive neural language 
decoding systems. 

The remainder sections of the article includes related 
works, problem statement, methodology and results in 
Sections II, III, IV and V respectively. The paper is concluded 
in Section VI. 

II. RELATED WORKS 

Dash et al. [17]  proposed neural interpretation of speech 
in amyotrophic lateral sclerosis. A motor neuron-related 
illness identified as ALS can result in locked-in syndrome, 
which is total paralysis with awareness. Through brain 
computer interfaces, such as EEG spellers, which have a low 
communication rate, these locked-in patients can converse. 
Neural speech decoding paradigms that could lead to normal 
communication rates have been the focus of recent research. 
However, the focus of current neural decoding research is on 
typical speakers, and it is unclear how far these findings can 
be applied to a target population (such as those with ALS). 
The study examined the decoding of spoken and imagined 
phrases from non-invasive magnetic resonance imaging 
signals of individuals with ALS using seven machine learning 
decoders and multiple spectral characteristics (band-power of 
neural signals: delta, theta, alpha, beta, and gamma frequency 
ranges). The outcomes of the experiment showed that while 
ALS patients' decoding performance is considerably higher 
than chance, it is still lower than that of healthy individuals. 
For five imagined phrases and five spoken phrases from ALS 
patients, the best scores were 75% and 88%, respectively. As 
far, this is the first instance of neural speech decoding for a 
population with speech disorders. The disadvantage is that in 
order to confirm the study's effectiveness, analysis involving a 
greater number of individuals with more severe ALS and 
multiple sessions are required. Moreover, improved 
neurolinguistic comprehension of the imagining of speech 
would facilitate the development of algorithms for improved 
imagined speech decoding performance. 

Cooney et al. [13] proposed an EEG-fNIRS bimodal deep 
machine learning design for overt and imagining speech 
decoding. Research on brain-computer interfaces is 
increasingly utilizing various characteristics of multiple signal 
modalities at the same time. The bimodal gathering 
procedures that integrate the temporal and spatial resolutions 
of electroencephalography and near-infrared spectroscopy 
require new decoding techniques. Present an EEG-fNIRS 
hybrid BCI that utilizes a unique bimodal in nature deep 
neural network design consisting of two convolutional sub-
networks to decode both overt and imagined speech. Each 

subnet's features are fused before being further extracted and 
categorized. Classification accuracy using the hybrid approach 
showed substantial gains on EEG used independently for 
imagined speech (p = 0.02) and a tendency towards a 
significance for overt speech .The classification accuracy was 
46.31% and 34.29%. Bimodal decoding produced 
significantly better results for both speech types when 
compared to fNIRS .While stimulus affected overt and 
imagined words in significantly different ways, deeper subnets 
improved performance. The bimodal approach performed 
significantly better than the unimodal results for several tasks. 
The results imply that neural signal decoding could be 
enhanced by multi-modal deep learning. With this novel 
architecture, speech deciphering from bimodal in nature neural 
signals can be enhanced. 

Llanos et al. [18] proposed peripheral stimulation of 
nerves without invasive procedures improves speech in adults 
category learning. In animal models, vagus nerve stimulation 
has been demonstrated to prime adult sensory-perceptual 
systems towards plasticity. Accurate temporal integrating with 
auditory stimuli can significantly improve the specificity of 
auditory cortical representations. Here, the study investigated 
whether adult speech category learning is improved by sub-
perceptual thresholds transcutaneous stimulation of the vagus 
nerve in conjunction with non-native speech sounds. To 
recognize non-native Mandarin tone categories, twenty-four 
native English speakers received training. The tVNS was 
matched with the tone groups that were either easier or harder 
to learn for each of the two groups. While receiving no 
stimulation, the control group used the same thresholding 
process as the intervention groups. Our findings showed that 
tVNS significantly improved learning and retention of 
accurate stimulus-response associations for speech categories, 
but only when stimulus was combined with categories that 
were simpler to learn. This effect manifested quickly, 
generalizing to new exemplars, and differed qualitatively from 
the typical individual variability seen in hundreds of learners 
completing the same task in the absence of stimulus. Before 
and after training, electroencephalography recordings showed 
no signs of tVNS-induced modifications to the sensation 
representations of auditory stimuli. According to these 
findings, paired-tVNS selectively improves both perception 
and consolidation of memories of intuitively salient categories 
by inducing a temporally exact neuromodulatory signal. 

Feng et al. [19] proposed brain and language semantic 
alignment: a curriculum contrastive approach for 
electroencephalography-to-text generation. The tremendous 
potential for brain-computer interfaces has led to a growing 
interest in Electroencephalography-to-Text creation, which 
attempts to produce natural text from EEG signals. But a 
significant obstacle to this task is the striking difference 
between the semantic-dependent representation of text and the 
subject-dependent EEG representation. In order to address 
this, the study develops a Curriculum Semantic-aware 
Contrastive Learning approach that reduces the discrepancy 
by effectively recalibrating the subject-dependent EEG 
representation to the semantic-dependent equivalent. More 
precisely, semantically similar EEG representations are pulled 
together by our C-SCL, while dissimilar ones are pushed 
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apart. Furthermore, carefully utilize curriculum learning to 
both craft and make the learning progressively meaningful 
contrastive pairs in order to incorporate more meaningful 
contrastive pairs. Numerous experiments on the ZuCo 
benchmark, and our approach, when combined with various 
models and architectures, achieve the new state-of-the-art 
while demonstrating steady improvements through three types 
of metrics. Additional research demonstrates not just its 
advantages in low-resource and single-subject settings, but 
also its strong generalizability in zero-shot scenarios. 

Lee et al. [20] proposed deciphering language-specific 
imagined speech neural correlation through EEG signals. 
Degenerative diseases and brain lesions can cause devastating 
speech impairments. For people with severe speech deficits, 
the use of imaginary speech in brain-computer interfaces has 
proven to be an urging hope for reestablishing speech 
production nerve impulses. However, due to low signal-to-
noise ratio and high variation in both temporal and spatial 
information, studies in the EEG-based simulated speech 
domain still have some limitations. In this work, the author 
examined the neural signals of two native speaker groups 
performing two tasks in separate languages like English and 
Chinese. The study postulated that the tonal and ideogram-
based Chinese language and the non-tonal and phonogram-
based English language would differ spectrally in how their 
brains computed speech. The results showed that, in some 
frequency band groups, Chinese and English had significantly 
different corresponding power spectral densities. Furthermore, 
native Chinese speakers in the theta band demonstrated 
distinct spatial evaluation during the imagination task. In order 
to decode the brainwaves of speech, this paper will therefore 
propose the essential the spectral and spatial data of word 
creativity with specialized language. The main flaw is that 
while the experiment's imagination tasks were designed to 
categorize words using machine learning algorithms, there 
hasn't yet been any evaluation of the classification 
performance. 

Jensen et al. [21] proposed MVPA analysis of intertribal 
phase coherence of neuromagnetic responses to words reliably 
classifies multiple levels of language processing in the brain. 
One of the least understood aspects of the human brain is 
language's neural processing, yet a number of circumstances 
call for an objective, participant-friendly, and noninvasive 
assessment of the language function's neurocognitive state. A 
brief task-free recording of MEG reactions to a series of 
spoken language contrasts was suggested as a basis for a 
solution to this problem. Spoken stimuli with differences in 
lexicon, semantics, were used. The multivariate pattern 
analysis to investigate intertribal phase coherence in five 
canonical bands based on beam former source reconstruction 
is utilized. By employing this method, effectively distinguish 
between the brain responses to real words and pseudo words, 
between proper and improper syntax, and between semantic 
variations. The most accurate classification results showed 
dispersed activity patterns that were augmented by other 
regions while being dominated by the core temporofrontal 
language circuits. The neurolinguistic properties varied across 
frequency bands; broad γ was used to classify lexical 
processes,   and     was used to classify semantic distinctions, 

and low γ feature patterns were used to classify syntax. 
Importantly, every kind of processing started almost 
simultaneously 100 milliseconds after the auditory data made 
it possible to distinguish between spoken and written input. 
This demonstrates that distinct neuronal networks operating at 
different frequency bands are involved in individual 
neurolinguistic processes, which occur simultaneously. This 
gives rise to even greater hope that neurolinguistic processes 
in a variety of populations can be objectively and 
noninvasively evaluated using brain imaging. The 
disadvantage is that in order to determine whether this method 
can be used to identify linguistic abnormalities in different 
populations, it is necessary to fully comprehend the 
relationship between time courses, frequency bands, neuronal 
substrates, and neurolinguistic properties. 

Time courses, frequency bands, neuronal substrates, and 
neurolinguistic properties interact in a way that necessitates a 
thorough comprehension of the approach being considered for 
detecting linguistic abnormalities in different populations. 
Although this has great potential, a major limitation is that the 
classification performance of the word categorization tasks 
created with machine learning algorithms is not evaluated. 
Nevertheless, more recent studies demonstrate the method's 
strong generalizability in zero-shot scenarios in addition to its 
benefits in low-resource and single-subject settings. Notably, 
despite subnets not being specifically designed for different 
data types and suboptimal fNIRS data timing, the dual 
network enhancement in the majority of subjects' results is a 
promising result. However, for wider application, resolving 
the method's drawbacks and carrying out a comprehensive 
assessment of its overall performance are still essential. 

III. PROBLEM STATEMENT 

Despite considerable progress in the development of 
neural-device interfaces, the seamless and efficient 
communication between the human brain and external 
technologies remains a formidable challenge. The limitations 
of current approaches, particularly the invasive nature of many 
brain interfaces, pose significant risks and hinder widespread 
adoption. This study addresses this pressing issue by 
proposing an advanced methodology employing Deep 
Recurrent Neural Networks (RNN) and Gated Recurrent Units 
(GRU) for neurolinguistic learning, aiming to provide non-
invasive alternatives. The primary objective is to decode 
cerebral language signals in a non-intrusive manner, 
representing a crucial initial step towards enhancing the safety 
and usability of neural interfaces in applications such as 
assistive technologies, neuroprosthetics, and brain-machine 
communication. The existing landscape of non-invasive neural 
language decoding struggles to capture the intricate sequential 
patterns inherent in language processing. The complexity and 
dynamism of language-related brain signals pose challenges 
for conventional techniques. Consequently, the research 
advocates for the integration of deep RNN-GRU architectures, 
renowned for their proficiency in capturing sequential 
dependencies, into the neurolinguistic learning framework. 
The central challenge lies in designing and optimizing deep 
learning models to advance our understanding of non-invasive 
neural language decoding, thereby facilitating more effective 
and user-friendly neuro-device interactions [21]. 
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IV. PROPOSED DEEP RNN-GRU BASED NEUROLINGUISTIC 

LEARNING 

The methodology advances non-invasive communication 
between brain devices and language interfaces by utilizing a 
multidisciplinary approach based in neurolinguistic learning. 
The study explores the complexities of deciphering language-
related brain patterns, with a focus on the interface between 
neuroscience and machine learning. By utilizing cutting-edge 
neural network topologies, particularly Deep RNN and GRU, 
the study seeks to improve the capabilities of neuro-device 
interaction. Because the process is non-invasive, there is no 
need for intrusive procedures, which ensures both practical 
and ethical viability. A Deep RNN-GRU model is 
painstakingly built in Python to capture intricate brain patterns 
related to language processing. The model's ability to decipher 
complex language patterns, particularly for subject words, 
indicates its potential for practical uses such as brain-machine 
interfaces and assistive technologies. This represents a major 
advancement in the integration of neurolinguistic learning and 
neurotechnology. The proposed methodology is shown in Fig. 
1. 

A. Data Collection 

Eleven healthy volunteers within the ages of 20 and 34 
were recruited for this study, six of them were male and five 
of them were female. Respondents were made aware of the 
methods, frameworks, and goals before to the study. Every 
participant provided written permission in accordance with the 
Declaration of Helsinki, and all research methods were 
approved by Korea University's Institutional Review Board. 
Eight terms that represent the subject, verb, and object parts of 
the sentence were selected for the experimental setting based 
on their applicability to natural human-machine interaction, 
particularly with neural mechanical arm control. The 
fundamental language was made up of these words, which 
included subjects like "I" and "partner," verbs like "move," 
"have," and "drink," and object terms like "box," "cup," and 
"phone." Every phrase was said by those taking part 25 times, 
and their audio cues were captured. Respondents wore 64-
channel EEG actiCaps during the EEG monitoring session, 
and MATLAB 2020a software's BrainVision Recorder was 
used to record EEG signals. Respondents in the study 

completed speech imaging tasks for every single one of the 
three sub sessions that focused on subject, verb, and object 
terms, correspondingly. High signal quality was maintained 
during the entire trial by providing students with pauses to 
preserve their physical and mental health and by displaying 
illustrations on a monitor [22]. 

One method for transforming EEG signals into a format 
that is easier to analyze and understand is called spectrogram 
embedding. EEG data, which show the brain's electrical 
activity over time, are frequently intricate and provide 
important insights into cognitive functions. By converting the 
EEG signal into a spectrogram—a graphic depiction of the 
signal's frequency content across time spectrogram embedding 
is achieved. The first step in the procedure is to divide the 
EEG signal into smaller temporal chunks, or epochs. By doing 
this, the EEG signal is converted from the time domain to the 
frequency domain, displaying the various frequency 
components that are present. Following that, the data is 
usually shown as a two-dimensional picture with time on one 
axis and frequency on the other. The shading or color intensity 
of the image indicates the amplitude of each frequency at a 
certain moment in time. 

B. Preprocessing using Bandpass Filter 

The role of a Bandpass Filter is paramount in signal 
processing, serving to selectively permit a specified range of 
frequencies while attenuating frequencies outside this 
designated band. This filter is instrumental in various 
applications where isolating specific frequency components 
from a signal is crucial. In fields such as telecommunications, 
audio processing, and biomedical signal analysis, Bandpass 
Filters help extract relevant information by allowing only the 
desired frequency range to pass through. In the context of 
communication systems, Bandpass Filters aid in frequency 
division multiplexing, enabling multiple signals to coexist 
without interference. Moreover, in biomedical applications, 
Bandpass Filters are essential for isolating physiological 
signals of interest, such as detecting heartbeats in an ECG. 
Their versatility in isolating and enhancing specific frequency 
components makes Bandpass Filters indispensable tools in 
signal processing, facilitating accurate and targeted analysis 
across diverse domains. 

 

Fig. 1. Proposed methodology. 
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Applying a Bandpass filter to EEG signals during 
preprocessing is a crucial step in improving the specificity and 
quality of brain information derived from the raw data. By 
selectively allowing some frequencies and attenuating others, 
the bandpass filter helps to separate the brain oscillations of 
interest from possible noise and artefacts. One common option 
for EEG data linked to language activities is to apply a 
bandpass filter in a certain frequency range, this range has 
been deliberately selected to include the brain frequencies 
associated with cognitive functions such as language 
comprehension and speaking. Unwanted elements, including 
muscular artefacts or outside interference, are reduced by 
using the bandpass filter, which makes it possible to analyze 
the brain activity related to the experimental task more 
narrowly. Bandpass filtering is important for EEG 
preprocessing because it can increase the signal-to-noise ratio, 
which guarantees that the underlying brain signals are more 
accurately represented in the studies that follow. This specific 
stage is critical for reliably extracting features for applications 
requiring nuanced brain patterns, such as language decoding. 
By helping to improve the overall quality of the EEG data, 
bandpass filtering advances our knowledge of the brain 
mechanisms underlying language and communication by 
enabling more precise interpretations and insights into the 
neural dynamics linked to cognitive activities. 

C. Feature Extraction using Time Domain Analysis 

Feature Extraction using Time Domain Analysis serves a 
crucial role in the neuro-linguistic decoding framework 
presented in this article. It involves the identification and 
extraction of relevant features from temporal data patterns 
associated with neural language signals. By delving into the 
time domain, this technique enables the model to capture 
subtle variations and temporal nuances inherent in the non-
invasive brain signals. This process enhances the 
discriminative power of the features fed into the subsequent 
RNN-GRU model, contributing to the accurate decoding of 
complex linguistic patterns. Essentially, Feature Extraction 
using Time Domain Analysis acts as a critical pre-processing 
step, facilitating the comprehensive representation of temporal 
information and thereby augmenting the overall effectiveness 
of the neuro-linguistic decoding system proposed in the study. 

Time-domain analysis feature extraction turns out to be a 
crucial step in deciphering the temporal complexities of EEG 
signals related to language processing, which is important in 
the quest to advance neural-device interaction through deep 
RNN-GRU based neurolinguistic learning for non-invasive 
neural language decoding. Time-domain features provide a 
way to describe the dynamic interaction between language 
components and brain activity throughout the experimental 
tasks. These features are produced directly from the timing 
and amplitude information of EEG data. An important 
temporal aspect of this research is the examination of Event-
Related Potentials (ERPs). ERPs are the mean brain responses 
that are time-locked to certain events, such words being 
presented in speech-imaging tasks. Researchers can learn 
more about how the brain responds to language inputs over 
time by extracting ERPs. The characteristics of ERP 
components, such as their peak amplitudes, latencies, and 
durations, offer a thorough description of the brain dynamics 

connected to various language components. The Mean 
Absolute Value (MAV) is given below, 

MAV = 
 

 
 ∑     

 
           (1) 

The length of the sample is denoted by M. 

When analyzing EEG data, zero crossing is an essential 
time-domain feature extraction technique, especially when 
trying to comprehend the temporal dynamics of brain activity. 
Finding the locations in the EEG signal where the amplitude 
crosses the zero axis is the goal of this approach. Zero 
crossing analysis offers important insights into the frequency 
and pattern of oscillatory variations in the EEG signal, 
providing information about the underlying brain processes 
connected to language-related activities in the context of 
neurolinguistic learning. Researchers can extract features that 
describe the frequency of transitions between positive and 
negative voltage values by measuring the number of times the 
EEG waveform crosses zero within a certain time interval. 
This characteristic is particularly relevant for identifying 
rhythmic neural patterns and can enhance the effectiveness of 
non-invasive neural language decoding techniques by 
providing a thorough grasp of the temporal dynamics of brain 
activity during language processing tasks. 

{  < 0 and      > 0} or {   > 0 and      < 0}          (2) 

The consecutive samples are denoted as    and     . 

To better clarify the timing elements of brain responses 
during language activities, the study may also concentrate on 
temporal features including signal length, rise time, and fall 
time. These behavioral characteristics add to our sophisticated 
knowledge of the brain's real-time processing of language 
data. Time-domain analysis is applied to both neural language 
pattern decoding and deep RNN-GRU model training, where 
it captures the sequential dependencies present in EEG data 
related to non-invasive language decoding. This 
methodological approach is in line with the overall objective 
of improving neural-device interaction, which will aid in the 
creation of more efficient and user-friendly brain-machine 
interfaces for a range of applications in assistive technologies, 
rehabilitation, and communication. 

D. Deep RNN-GRU-based Neurolinguistic Learning for Non-

Invasive Neural Language Decoding 

RNN-GRU plays an important role in sequential data 
processing tasks, exhibiting distinct advantages in capturing 
and understanding temporal dependencies within input 
sequences. The GRU architecture, a variant of traditional 
RNNs, introduces gating mechanisms that enable more 
effective handling of long-range dependencies and mitigate 
issues like vanishing gradients. This makes RNN-GRU 
particularly well-suited for applications such as natural 
language processing, time series analysis, and speech 
recognition, where contextual information across different 
time steps is crucial. The inherent ability of RNN-GRU to 
selectively update and forget information, combined with its 
parallel processing capabilities, enhances its efficiency in 
modeling complex temporal patterns. These networks have 
proven instrumental in tasks requiring nuanced understanding 
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of sequential data, making them a valuable asset in advancing 
various fields. 

The development of deep RNNs and GRUs has led to 
major breakthroughs in neurolinguistic learning, a cutting-
edge discipline at the nexus of neuroscience and linguistics. 
By non-invasively decoding cerebral language patterns, this 
novel method seeks to open up new avenues for 
comprehension of the complex interplay between language 
processing and brain activity. Deep RNN-GRU models are an 
advanced type of neural networks that are very useful for 
language decoding tasks since they are made to collect and 
analyze temporal connections in sequential input. Because of 
the GRU's capacity to store and update information selectively 
across long periods, the design makes it possible to represent 
language-related brain signals' fluctuations in time in a 
sophisticated manner. 

The ability of deep RNN-GRU models to handle variable-
length sequences present in natural language is a significant 
benefit in neurolinguistic learning. The network can learn 
hierarchical characteristics of language representation, from 
intricate syntactic patterns to subtle phonetic variations, thanks 
to its hierarchical structure. It is ideally suited for deciphering 
brain signals linked to different language processes because of 
its versatility. These models are very useful for non-invasive 
neural language decoding. Conventional approaches 
frequently entail intrusive techniques like brain electrode 
implantation, which restricts their application and raises 
ethical questions. However, non-invasive neuroimaging data, 
like electroencephalography (EEG), may be used to train deep 
RNN-GRU models, making this method more generally 
applicable and morally sound. 

During the training phase, the model is exposed to 
language stimuli while brain activity is being recorded. The 

deep RNN-GRU continuously improves its capacity to 
decipher language-related information from brain signals by 
learning to associate particular patterns in the input data with 
matching linguistic qualities. The model will get more and 
more adept at capturing the complex links between brain 
activity and language representation thanks to this iterative 
learning process. Deep RNN-GRU-based neurolinguistic 
learning has a wide range of significant applications. In 
addition to basic studies on the neurological underpinnings of 
language, this method has applications in therapeutic 
situations. It may, for example, aid in the creation of assistive 
technology for people with communication impairments or 
function as a tool for tracking alterations in language-related 
brain activity in response to treatment measures. 

Even with the advancements, deep neurolinguistic learning 
still faces several obstacles. Further work is needed to address 
ethical issues with permission and privacy, interpretability of 
learnt representations, and generalization of models across 
different populations. Interdisciplinary cooperation among 
neuroscientists, linguists, and machine learning specialists is 
becoming more and more important as the field develops in 
order to overcome these obstacles and realize the full potential 
of deep RNN-GRU-based neurolinguistic learning. 

Eq. (3) represents the hidden state update    at time t in the 
RNN. Here,    is the input at time      is the hidden state 

from the previous time step,    is the weight matrix 
associated with the hidden state, and tanh is the hyperbolic 
tangent activation function. The tanh function introduces non-
linearity, allowing the network to capture complex 
relationships and patterns in the data. 

   = tanh (     +                      (3) 

   =                     (4) 

 

Fig. 2. RNN-GRU architecture. 
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Fig. 2 shows the architectural diagram of the RNN-GRU 
model. The above equations form the basis of a GRU, a kind 
of RNN architecture intended to effectively capture and 
handle sequential data. The update gate     and reset gate   , 
which are both triggered by the sigmoid function σ, are 
defined by Eq. (3). By deciding what to keep from the prior 
hidden state      and the current input   , these gates control 
the flow of information. Eq. (4) uses the tanh function to 

generate the candidate hidden state   ̃  and integrates the reset 
gate     to update the hidden state selectively. To provide a 
seamless transition between the past and current states, Eq. (5) 
finally combines the update gate     with the former hidden 
state and the candidate hidden state. All together, these 
formulas describe the complex dynamics of a GRU, which 
allows it to efficiently recognize and learn sequential patterns 
in a variety of contexts, including natural language processing 
and maybe neurolinguistic learning.  

   = σ (   
  +      

 )     (5) 

   = σ (   
  +      

 )     (6) 

  ̃ = tanh (   
  + (  *       

 )              (7) 

   = (1 -   ) *      +   *           (8) 

RNN-GRU Algorithm 

Load and preprocess data      // Bandpass filter 

Feature Extraction                // Time Domain Analysis 

Define RNN-GRU model architecture 

       Split data into training and testing sets 

Train the RNN-GRU model 

Evaluate the model on the test set 

Make predictions on new data 

Visualize results 

V. RESULTS AND DISCUSSION 

With a foundation in neurolinguistic learning, the 
methodology advances non-invasive communication between 
language interfaces and brain devices through a 
multidisciplinary approach. Situated at the nexus of 
neuroscience and machine learning, the research delves into 
the complexities involved in deciphering brain patterns linked 
to language. The goal of the project is to improve neuro-
device interface capabilities by utilizing cutting-edge neural 
network topologies, including Deep RNN and GRU. Because 
the approach is non-invasive, it ensures both ethical and 
practical feasibility by removing the need for intrusive 
operations. A Deep RNN-GRU model that is carefully 
designed to capture intricate brain patterns related to language 
processing is created using Python. The model represents a 
major advancement in the fusion of neurolinguistic learning 
and neurotechnology because of its ability to decode complex 
language patterns, particularly for subject words. This shows 
the model's potential for use in assistive technologies and 
brain-machine interfaces. 

A. Model Loss 

The model loss is a key metric of the model's performance 
during training. It is commonly expressed as a mathematical 
measure of the dissimilarity between expected and real neural 
language patterns. When the loss trend is trending downward, 
the model is doing a good job of reducing mistakes and 

modifying its parameters to better suit the training set. A 
steady decline in loss values across epochs indicates that the 
non-invasive brain signals have been successfully learned to 
recognize and adjust to. On the other hand, variations or 
plateaus in the loss trajectory call for further examination and 
may indicate that the model needs its hyper parameters 
adjusted or that overfitting or underfitting occurred. Moreover, 
comprehending the relationship between decoding accuracy 
and loss offers a thorough grasp of the model's generalization 
capabilities and clarifies how resilient it is when decoding a 
variety of neural language patterns. It is depicted in Fig. 3. 

 

Fig. 3. Model loss. 

B. PVC Performance 

A statistic called Percent Valid Correct (PVC) 
performance is employed, especially in cognitive or 
behavioral studies, to measure the precision and dependability 
of a classification or prediction system. It shows the 
proportion of accurate answers or forecasts among all valid 
cases that were taken into account for a task or experiment. 
This statistic only looks at how well the system performs 
when a legitimate answer or forecast can be made; it ignores 
incorrect or ambiguous data items. This statistic offers a more 
focused evaluation of the system's effectiveness by 
highlighting its accomplishments particularly in situations 
where a significant answer or forecast is anticipated. 

 

Fig. 4. PVC performance. 
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A thorough assessment of the model's capacity to decipher 
brain language patterns is provided by Fig. 4, which shows 
PVC Performance across many linguistic aspects, namely 
subject words, verb words, and object words on the x-axis. 
The way that PVC performance is distributed among various 
linguistic components provides information on how well the 
model can identify and anticipate different sentence structure 
components. Differences in the PVC performance of subject, 
verb, and object words might be a sign of various brain 
representations for these linguistic components or of varying 
degrees of complexity. Understanding the model's complex 
reactions to many aspects of language requires analyzing the 
PVC performance across these categories. Doing so may 
reveal brain activity patterns that alter according to 
grammatical functions. Furthermore, it offers useful data for 
adjusting the architecture and training strategies of the model 
to improve decoding accuracy across various linguistic 
components, which helps to improve neurolinguistic learning 
techniques in non-invasive neural language decoding 
paradigms. 

C. Decoding Accuracy over Time 

A statistic called decoding accuracy over time is used to 
evaluate how well a neural decoding model performs and 
changes over the course of an experiment or activity. This 
statistic assesses how well the model can predict and 
understand neural patterns linked to certain cognitive 
processes or stimuli throughout time. The decoding accuracy's 
dynamic nature over time offers valuable insights into the 
model's flexibility and learning dynamics, demonstrating its 
ability to grasp temporal variations in brain activity. 
Researchers can identify patterns, trends, or fluctuations in the 
model's performance by analyzing decoding accuracy at 
various time intervals. This provides a thorough knowledge of 
the model's ability to detect and adapt to temporal variations 
in cognitive or language processing. This measure is 
especially useful for research using time-series data, such 
EEG signals, since it offers a detailed assessment of the 
model's performance in real-time and its possible applications, 
such as brain-machine interfaces and neurolinguistic learning. 

 

Fig. 5. Decoding accuracy over time. 

A more comprehensive illustration of how the model's 
accuracy changes throughout the course of the task or 

experiment is given in Fig. 5. Decoding accuracy trajectory 
tracking over time can show learning, adaptation, or 
stabilization tendencies in response to changing cognitive 
demands. Accuracy peaks or troughs at particular times might 
be related to different stages of the experiment, such when 
stimuli are presented or when language tasks are performed. 
Determining the model's sensitivity to temporal changes in 
brain activity and maybe identifying crucial intervals for 
optimal performance require an understanding of the 
oscillations in decoding accuracy. Furthermore, this temporal 
analysis provides useful insights for improving the model, 
helping scientists adjust parameters or add adaptive techniques 
to improve accuracy at critical times. In the end, this helps 
develop more efficient and temporally-aware neural decoding 
systems for use in neuroscience and brain-machine interfaces. 

D. PVC Distribution across Different Word Types for Various 

Methods 

The pattern or spread of PVC performance across several 
categories or classes of words within a given dataset is 
referred to as the PVC distribution across various word kinds. 
This metric measures the precision of a classification or 
decoding system and evaluates its performance over a range of 
linguistic aspects, especially in the context of neurolinguistic 
learning or non-invasive brain language decoding. The 
distribution analysis seeks to identify any differences in the 
model's ability to decode various word kinds, including verb, 
object, and subject terms. Gaining an understanding of the 
PVC distribution allows one to assess the model's 
performance in a more complex way by gaining insight into 
how sensitive and flexible it is to different linguistic elements. 

TABLE I. PVC DISTRIBUTION ACROSS DIFFERENT WORD TYPES FOR 

VARIOUS METHODS 

Methods Subject Word Verb Word Object Word 

CSP-SVM [23] 0.60 0.52 0.48 

EEGNet [24] 0.78 0.56 0.53 

Proposed RNN-GRU 0.90 0.72 0.70 

Table I presents the decoding accuracy ratings for the 
various techniques (CSP-SVM [23], EEGNet [24], and the 
suggested RNN-GRU model) for various linguistic 
components (verb, object, and subject words). Prominently, 
the suggested RNN-GRU model outperforms the other 
techniques in every category, with exceptional accuracy of 
0.90 for subject words, 0.72 for verb words, and 0.70 for 
object words. This shows that in terms of collecting and 
interpreting neural patterns associated with various linguistic 
components, the RNN-GRU architecture—which was created 
for neurolinguistic learning in non-invasive neural language 
decoding performs better than more conventional techniques 
like CSP-SVM and EEGNet. The suggested RNN-GRU 
model's effectiveness in comprehending and decoding 
complex linguistic representations from non-invasive neural 
signals is highlighted by the notable accuracy improvement, 
especially in the decoding of subject words. This highlights 
the model's potential to advance the fields of neural-device 
interaction and neurolinguistic learning. It is depicted in Fig. 
6. 
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Fig. 6. PVC distribution across different word types for various methods. 

E. Discussion 

The study's findings, which are represented in the 
decoding accuracy scores for various techniques across 
subject, verb, and object words, offer important new 
information on the effectiveness of applied neurolinguistic 
learning strategies for non-invasive brain language decoding. 
Remarkably, the suggested RNN-GRU model demonstrates 
significant accuracy gains over conventional techniques like 
CSP-SVM [23] and EEGNet [24], especially in the decoding 
of topic words. This indicates how well the model is able to 
represent and decipher intricate brain patterns linked to 
various language components. The observed distribution of 
PVC performance over various word kinds clarifies the 
model's subtle competency and provides a thorough grasp of 
its flexibility to various language processing components. The 
area of neuro-device interaction has benefited greatly from 
these discoveries, which highlight the promise of deep 
learning techniques more especially, the suggested RNN-GRU 
model in improving the precision and usability of non-
invasive neural language decoding systems. 

The observed distribution of PVC performance over 
various word kinds clarifies the model's subtle competency 
and provides a thorough grasp of its flexibility to various 
language processing components. The area of neuro-device 
interaction has benefited greatly from these discoveries, which 
highlight the promise of deep learning techniques more 
especially, the suggested RNN-GRU model in improving the 
precision and usability of non-invasive neural language 
decoding systems. Overall, the results suggest potential 
directions for applications in neurotechnology and human-
computer interaction, as well as advancing neurolinguistic 
learning approaches and laying the groundwork for future 
advancements in non-invasive cerebral language decoding. 

VI. CONCLUSION AND FUTURE SCOPE 

This research underscores the advancement possibilities in 
non-invasive neural language decoding through the 
application of a deep RNN-GRU-based neurolinguistic 
learning technique, thereby augmenting the capabilities of 
brain-device interfaces. The findings presented illustrate the 
superior aptitude of the proposed RNN-GRU model in 

capturing intricate linguistic nuances from non-invasive brain 
signals, outperforming traditional methods like CSP-SVM and 
EEGNet, particularly in decoding topic terms. The model's 
adaptability to diverse linguistic components is evident in the 
nuanced distribution of PVC performance across different 
word types, emphasizing its potential to enhance the accuracy 
and robustness of non-invasive neural language decoding 
systems. The flexibility of the model to various linguistic 
elements highlights its potential to improve the precision and 
resilience of non-invasive neural language decoding systems. 
For responsible implementation, it is imperative to handle 
constraints including generalizability, interpretability, and 
ethical issues. Neural patterns associated with language 
comprehension can vary across individuals, languages, and 
contexts. Thus, the model's performance might differ when 
applied to different populations or languages. 

In order to further increase decoding performance, future 
research could concentrate on optimizing hyper parameters 
and fine-tuning the model for the proposed RNN-GRU 
architecture. Expanding the dataset to include more real-world 
scenarios and language components might improve the 
model's applicability and generalizability. Enhancing the 
model for real-time decoding and dynamic language 
processing tasks could increase its usefulness in applications 
like assistive technology and brain-machine interfaces. 
Furthermore, examining the interpretability of the model's 
learnt representations may yield further insights into the 
neurological underpinnings of language processing. It is still 
essential for responsible implementation to address ethical 
issues, such as participant privacy and the moral use of brain 
data.  
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