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Abstract—In recent times, large applications that need near 

real-time processing are increasingly being used on devices with 

limited resources. Multi access edge computing is a computing 

paradigm that provides a solution to this problem by placing 

servers as close to resource constrained devices as possible. 

However, the edge device must consider multiple conflicting 

objectives, viz., energy consumption, latency, task drop rate and 

quality of experience. Many previous approaches optimize on 

only one objective or a fixed linear combination of multiple 

objectives. These approaches don’t ensure best performance for 

applications that run on edge servers, as there is no guarantee 

that the solution obtained by these approaches lies on the pareto-

front.  In this work, Multi Objective Reinforcement Learning 

with Actor-Critic model is proposed to optimize the drop rate, 

latency and energy consumption parameters during offloading 

decision. The model is compared with MORL-Tabular, MORL-

Deep Q Network and MORL-Double Deep Q Network models. 

The proposed model outperforms all the other models in terms of 

drop rate and latency. 

Keywords—Edge computing; reinforcement learning; multi 

objective optimization; neural networks; deep learning  

I. INTRODUCTION 

In the modern day, mobile devices handle more 
computationally demanding activities, including data 
processing, artificial intelligence, and virtual reality. Despite 
advancements in mobile technology, these devices lack 
sufficient computational capacity to complete all of their duties 
locally with low latency and reasonable energy consumption. 
Mobile apps for online gaming, signal or image processing 
(such as facial recognition), augmented reality, and real-time 
translation services are some examples of computational 
domains whose use has grown drastically that places a 
substantial computing demand on mobile devices (MDs) which 
have a limited amount of resources.  

Mobile edge computing (MEC), also known as fog 
computing and multi-access edge computing, is a technology 
that enables effective job processing. [1] It is a new computing 
paradigm in which computing, network, storage, capabilities 
are migrated to edge nodes, which is closer to end-users to 
meet real-time needs of fast changing IT industries. The 
demand for on-demand computation close to mobile devices is 
only expected to grow. Additionally, as 5G networks become 
more and more popular, the three main services - massive 
machine communication, enhanced mobile broadband and 
ultra-reliable low-latency communication pose network, 
computing, storage, and application core capabilities. As a 
result, their applications can be run on the edge server, 

enabling faster network service response and satisfying the 
real-time processing, intelligent application, security, and other 
requirements. Despite edge computing’s enormous potential, 
there are many obstacles. Mobile real-time apps are extremely 
sensitive to latency and power usage. However, the prolonged 
time of execution of these applications can result in excessive 
energy consumption owing to the randomness and volatility of 
mobile edge networks. 

Single objective reinforcement learning algorithms perform 
considerably well in environments where there is only one 
objective to optimize, which is often not the case in real world 
scenarios. The offloading requirement in the case of multi-
access edge computing needs to satisfy many conflicting 
requirements like latency, energy, drop rate, QoS, and cost, 
among others. Optimization of just one objective can provide 
neither a guarantee of pareto optimality nor a control over the 
order of preference of the multiple objectives to suit the 
specific use-case, albeit at the cost of pareto optimality. Multi 
objective reinforcement learning (MORL) approaches can be 
leveraged to overcome the above shortcomings whilst 
maintaining adaptability to work in dynamic environments.  

The research contribution of this work is the application of 
the actor critic method in multi objective reinforcement 
learning algorithms for the task offloading problem as opposed 
to previous literature that have used the actor critic method for 
single objective reinforcement learning. 

II. RELATED WORK 

The decision to offload a task or not is a complex one, with 
multiple factors about the problem itself and the solution to be 
considered. Firstly, tasks can be considered to either be 
dependent or independent of one another. Literatures choosing 
to work on dependent tasks usually consider a directed acyclic 
graph to represent task dependencies. Secondly, the decision to 
offload or not can be made either centrally or by each mobile 
device, in a decentralized fashion. We have considered the 
papers that have used reinforcement learning to make the 
decision to offload or not. The network architecture of mobile 
devices and servers must be considered. The parameters for 
making the decision to offload or not are the task size, 
algorithmic complexity, the time by which the task needs to be 
completed, task interdependencies, and bandwidth. Authors 
choose a subset of these parameters for their system. The RL 
system can either be based on table or on function 
approximation. The reward for the RL agent can be based on 
latency, energy, cost, drop rate, QoS considerations. 
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Tang et al. [2] propose a cost optimized reinforcement 
learning algorithm, where every mobile device makes an 
independent decision to offload or not, while also being aware 
of edge load dynamics. T Alfaikh et al. [3] propose using 
SARSA for making the decision to offload or not to the closest 
server or adjacent server or to compute it locally. J Wang et al. 
[4] propose using meta RL for faster adaptability and use a 
sequence2sequence network for making the decision to offload 
or not. J Wang et al. [5] combine their approach with a specific 
off-policy policy gradient algorithm with a clipped surrogate 
objective. Liang Huang et al. [6] propose using deep q learning 
while optimizing on energy with constraints on bandwidth. 
Peizhi Yan et al. [7] propose using deep q learning with both 
node and edge level offloading. Xiaowei Liu et al. [8] propose 
using a parameterized, indexed-value function for value 
estimation for achieving faster convergence.  

Zhenjiang Zhang et al. have proposed a multi-agent load 
balancing distribution deep reinforcement learning algorithm 
[9]. It minimizes the latency, load factor and the algorithm 
complexity as compared to a centralized algorithm. It uses a 
genetic algorithm to identify the decision to offload or not 
while still meeting the QoS requirements of all the tasks. Yu 
Dai et al. propose a federated reinforcement learning algorithm 
to address the issue of weak generalization of the model and 
privacy leakage caused by sharing user sensitive information to 
the central server [10]. Attention is used to aggregate the 
parameter weights resulting in the reduction of the processing 
time of the task. Yuanchao Xu et al. [11] explore decentralized 
multi-agent reinforcement learning algorithms to solve the 
problem of task offloading accounting for reward uncertainty. 
They try different approaches like Multi-Agent Deep-
Deterministic Policy-Gradient (MADDPG), Robust MADDPG 
and Decentralized Partially-Observable Markov Decision 
Process (Dec-POMDP). Baris Yamansavascilar et al. [12] 
propose a task orchestrator based on deep reinforcement 
learning which learns to satisfy different task requirements 
without any human interaction. The problem is modeled as a 
Markov decision process and the Double Deep Q-Network 
algorithm is used to minimize the task drop rate. Xiangjun 
Zhang et al.[13] propose a task offloading algorithm for 
Reconfigurable Intelligent Surface (RIS) empowered Mobile 
Edge Computing networks. The problem is formulated as a 
Markov Decision Process (MDP) where latency, energy 
consumption and operating costs are minimized. DDPG is used 
to jointly optimize the phase shift and amplitude of RIS, task 
allocation strategy and offloading decision. Tu et al. [14] 
design a predictive offloading algorithm that makes use of deep 
RL and long short-term memory (LSTM) networks. The MEC 
server's load is monitored and the next task is predicted using 
the LSTM network. The amount of latency, energy used, and 
work abandonment is decreased. Liang Huang et al [15] 
propose an online, deep RL based algorithm to adapt task 
offloading and resource allocation decisions to the time 
varying wireless channel conditions. They aim to minimize the 
latency. Mingjie Feng et al. [16] explore offloading of tasks 
between MEC servers and cloud servers using DRL. They aim 
to minimize average latency and achieve optimization in task 
partitioning ratio and cloud selection. 

Yi Ouyang et al. propose a task offloading algorithm for a 
vehicle edge computing environment based on Dueling-DQN 
[17]. The proposed approach considers the mobility of the 
vehicles and the changing network conditions make a better 
decision to offload or not. The results of the experiment 
demonstrate the effectiveness and superiority of the proposed 
algorithm with respect to existing approaches. Fuhong Song et 
al. have proposed an approach which uses multi-objective 
reinforcement learning for optimizing the UAV's trajectory and 
offloading decisions in real-time [18]. The algorithm considers 
multiple objectives, including minimizing energy consumption, 
maximizing data processing efficiency while maintaining a 
stable network connection. Xianfu Chen et al. propose a new 
approach based on deep reinforcement learning which 
optimizes performance of offloading algorithms in virtual edge 
computing systems [19]. Unlike other approaches which use 
traditional heuristics or machine learning algorithms, the 
proposed approach uses a deep-neural network to learn the 
optimal offloading policy in a data-driven manner. Junyao 
Yang et al. [20] propose an inverse order based optimization 
technique for resource allocation and task offloading in multi-
access edge computing systems. It makes the offloading 
decision and resource allocation and optimizes them jointly 
using an inverse order optimization strategy unlike other 
approaches which consider them separately. Ting Wang et al. 
[21] propose an approach based on deep reinforcement 
learning (DRL) for improving the performance of task 
offloading in the Internet of Vehicles (IoV) scenario. The 
proposed approach uses a deep neural network to learn the 
optimal offloading policy based on IoV's dynamic and 
uncertain environment. Hongxia Zhang et al. [22] propose an 
ultra-low latency multi-task offloading approach for making 
task offloading decisions in mobile edge computing that 
considers multiple tasks with different requirements, such as 
computation, communication, and storage. The proposed 
approach uses a multi-agent reinforcement learning algorithm 
to make the decision to offload or not while satisfying the 
different task requirements. X Zhang et al. [23] propose an 
approach based on deep reinforcement learning for energy-
efficient task offloading in secondary mobile edge systems. 
The proposed approach uses a deep-neural network to learn the 
optimal offloading policy in accordance with the dynamic and 
uncertain environment of the edge system. Mushu Li et al. [24] 
propose creating a cooperative edge computing framework to 
lower latency and increase dependability for vehicular 
networks. In order to determine the best option that reduces the 
cost of the service, a DDPG algorithm is used.  

Juan Chen et al. [25] propose a multi-agent DRL solution 
to minimize total cost in terms of energy requirement of IOT 
device and long term renting cloud costs. They have explored 
centralized training and decentralized execution, hence, each 
IOT device will be a decision making agent. Xing Chen et al. 
[26] explore a federated DDPG solution for combined 
optimization of energy consumption and reduction in latency. 
The federated learning procedure ensures privacy of user data 
because only parameters of locally trained models are sent to 
central servers. Hao Meng et al. [27] constructs a DRL model 
with a new reward function design for optimizing the battery 
power of mobile devices. The reward function simulates the 
tradeoff between latency and battery consumption. Kun Wang 
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et al. [28] formulated a Double DQN model to apply the task 
offloading concept to the Internet of Vehicles. This proposed 
algorithm solves real-time changes in the network due to user 
movement. Fuhong Song et al. propose a MORL algorithm to 
make the decisions with respect to task offloading when 
subject to multiple dependent tasks to optimize on three 
objectives, energy consumption, latency and user costs, 
simultaneously and using independent rewards for each [29]. 
They use tournament selection schemes to maintain previously 
learnt policies. Yu Chen et al. [30] investigated multi-user edge 
video analytics task offloading problems. The authors design 
two algorithms, one based on Game Theory and another based 
on the Actor-Critic method. The proposed A2C is observed to 
be more flexible, users can adjust accuracy decisions and 
achieve the converged reward. 

III. MEC ARCHITECTURE 

The considered architecture shown in Fig. 1 is similar to [2] 
where there is a set of resource constrained mobile devices M = 
{1, 2, 3, …. , m} and a single edge server in the MEC 
environment. We measure time using discrete timesteps where 
each timestep is equal to 100 milliseconds. All mobile devices 
are polled at the start of each timestep to check if any tasks 
have been generated. The following section explains the device 
and server models. 

 

Fig. 1. MEC architecture 

A. Device Model 

The test environment consists of multiple mobile devices 
which generate non-divisible tasks with no interdependency 
which can either be computed locally on the device or on an 
edge server. Tasks can only be generated at the start of each 
timestep. The decision d as to whether a task has to be 
computed locally on the resource constrained mobile device or 
offloaded to an edge server is taken by a reinforcement 
learning (RL) agent. If the task has to be computed locally, it is 
first pushed into the local process queue of the device. The 
process queue follows a first-in first-out (FIFO) principle and 
once the task is computed, its result is returned. If the task is 
supposed to be offloaded, it is pushed into the upload queue of 
the device and subsequently uploaded to the edge server. 
Similar to the process queue, the upload queue follows a FIFO 
principle. It is assumed that once a task is computed or 
uploaded, the computation or upload process of the next task in 
the respective queue will be started only in the next timestep. 

1) Task model: It is assumed that new tasks are only 

generated at the start of each timestep. Tasks are generated in 

all mobile devices with a probability of 0.3. For each task the 

parameters  considered are, the task size (in bits), task timeout 

(in timesteps), algorithmic complexity and start time of the 

task. The task start time is the timestep at which the task was 

generated. In case a task is computed locally, the total 

execution time is equal to the sum of the duration of time 

spent in the process queue of the device and the actual 

computation time. Otherwise, if it is offloaded, the total 

execution is equal to the sum of the duration of time spent in 

the upload queue of the device, the time necessary to upload 

the task to the edge server, the duration of time spent in the 

process queue of the edge server and the time necessary to 

execute the task on the edge server. Each task has an 

associated timeout and if the task is not executed within the 

timeout, it is considered to be dropped. 

2) Offloading decision: The Agent A makes the decision 

to offload or not d, depending on the state which contains the 

task timeout, task size, the time required to upload the task, 

time required to execute the task on the server and the local 

execution time of the task. d is a binary variable d {0, 1} 

where d is 1 if the task is to be offloaded or 0 if it is to be 

processed locally. As seen in Fig. 1, if d is 1 it is pushed into 

the upload queue of the device, else it is pushed into the local 

process queue of the device. 

B. Edge Server Model 

A single edge server is considered in our MEC 
environment. Tasks which are uploaded to the edge server are 
pushed into the process queue of the server only at the start of a 
time step. Before a task is pushed into the process queue of the 
server, we check if the task is going to be dropped, i.e, it is 
checked if the task has no possibility of getting executed within 
its timeout and if so, the task is considered to be dropped and 
the task will not be pushed into the process queue of the server. 
The tasks in the queue are computed in a First-In First-Out 
order. Instead of having one process queue for each mobile 
device, we maintain a single process queue for all devices. This 
has the same effect as having a process queue for each device 
and a First-In First-Out scheduler to pick tasks from all the 
queues. 

C. Reinforcement Learning Environment 

We consider a single edge server connected to multiple 
resource constrained mobile devices via a wireless network. 

1) State space: State space is essentially the input to the 

RL agent to make the task offloading decision. It is a vector of 

task size, algorithmic complexity and the time before which 

the task must be processed. 

2) Action space: Action space is the set of values that can 

be returned by the agent. The agent makes a binary decision (0 

or 1) i.e. to offload or not. 

IV. MULTI OBJECTIVE REINFORCEMENT LEARNING 

Multi objective reinforcement learning is a type of 
reinforcement learning that aims to optimize multiple 
potentially conflicting objectives simultaneously to achieve 
ideal performance in real world scenarios. The architecture 
explained in the previous section is used to compare four 
multi-objective reinforcement learning algorithms in a 
simulated environment containing ten resource constrained 
mobile devices connected to a single edge server. 
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A. Actor Critic Method 

The actor-critic method is a popular temporal difference 
(TD) learning approach that consists of two main components, 
the actor and the critic. The actor suggests actions that can be 
taken based on a particular state and the critic evaluates the 
actions taken after being suggested by the actor. Four neural 
networks are considered namely, actor, critic, actor-target and 
critic-target. The actor network outputs the expected Q value 
for each action and the action which has the highest expected Q 
value is chosen as the next action to be taken. The critic 
network is used to evaluate how good the action suggested by 
the actor network is. In addition to the state, the critic network 
also takes the action taken and the reward obtained as the input. 
Then, the loss is computed for both the actor and the critic 
networks and update them.  

The actor-target and critic-target networks are used to 
stabilize the training of the actor and critic networks. At the 
end of each timestep the network parameters are partially 
copied from the main networks to the target networks via soft 
updates. Experience replay is used every 25 timesteps to 
effectively train the model. This algorithm outperforms all the 
previous algorithms with respect to drop rate and latency. 

 
Algorithm 1: Actor-Critic method for task offloading 

 

Params: Learning rate 𝛼 ∈ [0, 1), small epsilon ε, 0 < ε < 1, 
convergence parameter γ close to 1 
Initialize networks Qa , Qa`, Qc and Qc` 
foreach timestep with task do 
 select action a from the set of possible actions A 
     using policy derived from Qa`(ε-greedy); 
     if a is offload: 

    add task to upload_queue at mobile device 
     elseif a is local_computation: 

    add task to process_queue of the respective mobile device 
     observe reward R, next state s`; 
     store the experience (s, a, R, s`) in replay-buffer 
     Q*(s, a) = R + γ max Qc`(s, a) 
     compute mean squared error between Qc(s, a) and Q*(s, a), update 
critic network 

     update actor network using loss←
 

 
 𝚺i Qc (si , max Qa(si, a)) 

     update target networks 
   θa` ← τ θa + (1 - τ) θa` 
   θc` ← τ θc + (1 - τ) θc` 

     s ← s` 
 use experience replay to train the actor and critic networks every 
25 timesteps 
end foreach 

 

B. Objectives 

The multi objective reinforcement learning model aims to 
optimize three objectives namely, the task drop rate, latency 
and the energy consumed by the device. 

Task drop rate: The task drop rate is the number of tasks 
dropped until the current timestep divided by the total number 
of tasks that were generated until the current timestep. 

Latency: Latency is the duration of time between task 
generation and task completion. 

latency = d * (upload_latency + process_latency_server) + 
(1 - d) * (process_latency_device) 

where, 

d is the decision to offload or not which takes a binary 
value (0 or 1) 

upload_latency is the total timesteps required to upload the 
task 

process_latency_server is the total timesteps which the 
server takes to execute the task taking into account the server 
load (time spent by the task in the process queue of the server) 

process_latency_device is the total timesteps taken by the 
mobile device to execute the task considering the time spent by 
the task in the process queue of the device. 

Energy: It is the energy utilized by the mobile device from 
the moment the task is generated on it, to the moment the task 
is completely processed. Naturally, offloaded tasks use a lot 
less energy than the tasks that are processed locally. 

energy = d * (latency * idle_energy_rate) + (1 - d) * 
(latency * active_energy_rate) 

where, 

idle_energy_rate is the energy utilized by the device in its 
idle state 

active_energy_rate is the energy utilized by the device 
during execution 

Single objective optimization usually comes at the expense 
of other objectives which might make the solution not feasible 
for a lot of real-world applications where we often need to 
jointly optimize multiple objectives. Multi objective 
reinforcement algorithms are handy in such scenarios. 

C. Reward Engineering 

The reinforcement learning agent is given some reward as a 
result of every action it takes. It gets a positive reward if it 
takes an action that contributes towards optimization of the 
objective, otherwise it is punished with a negative reward.  

When it comes to multi-objective reinforcement learning 
where the model optimizes the task drop rate, energy and 
latency, three rewards need to be considered.  

1) A reward of +1 is given to the agent if the task gets 

executed successfully within its timeout, else it is given a 

reward of -1. A task is considered to be dropped if it cannot be 

executed within the timeout specified for that particular task.  

2) With regard to energy, we consider a threshold of 0.5 

mJ if the task is offloaded and 160 mJ if the task is computed 

locally. This difference is due to the fact that when a task is 

offloaded, the mobile device consumes energy only to offload 

the task and not execute it. The agent gets a reward of +1 if 

the energy consumed for the given task is below the threshold, 

otherwise it gets -1 as the reward.  

3) Similarly, if the latency for the given task is below 

2000 ms, the agent gets a reward of +1, else -1. 
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The establishment of these thresholds was the outcome of 

experimentation. It was observed that the average amount of 

energy consumed per task and the average latency over a 

period of time for the given task parameters were 0.5 mJ / 160 

mJ and 2000 ms respectively in our simulation environment. 

The three rewards are combined using a set of weights that 

add up to 1 to obtain a single total reward that is utilized to 

train the multi-objective reinforcement learning agent. The 

weights can be changed accordingly if a particular objective is 

required to have a higher priority than other objectives. 

V. EXPERIMENTS 

The experiment was run with different models with tasks 
generated at the mobile devices with a probability of 0.3 at 
each timestep. The model under training makes the decision as 
to either offload the task or to process it locally. The task is 
appended to the respective mobile devices’ upload queue if it is 
to be offloaded. If the task is to be computed locally, the task is 
appended to the local computation queue of the mobile device. 
The experiment is run with ten mobile devices and one edge 
server for 10,000 tasks. The latency, energy and drop rate is 
monitored and recorded during the experiment. 

VI. EXPERIMENTAL RESULTS 

The MEC environment is simulated with ten resource 
constrained mobile devices and one edge server. We 
implemented and compared four multi objective optimization 
algorithms in the same environment with uniform random 
policy, which is a standard benchmark for any RL model. All 
the multi objective reinforcement learning models aim to 
optimize the task drop rate, energy and latency.  

We compare the performance of the MORL Actor-Critic 
model with three other MORL models. 

1) MORL-Tabular: We apply the Tabular Q learning 

algorithm to make the task offloading decision in our MEC 

system. We consider the four parameters task size, algorithmic 

complexity, timeout in timesteps and store the action-value 

pair in a table. In each iteration, the Q-learning model refers to 

the previous action-value pairs from the table and based on the 

bellman equation for each update the new action-value pair. 

Tabular Q Learning can be used for solving problems where 

the number of states is not large as the storage is limited. Once 

the problem size increases, we cannot scale Tabular Q 

Learning, especially in environments where the state space has 

continuous values.  

2) MORL-DQN: We implemented the Deep Q Learning 

algorithm where, instead of a table we make use of a neural 

network to map a particular state to an action value, i.e the 

neural network takes the current state as the input and we get 

the expected Q value as the output. The action which has the 

highest Q value stands as the most optimal choice for the 

present state. We consider the task size, task timeout, time 

taken to upload the task, time taken to compute the task on the 

server and time taken to complete the task on the mobile 

device to make the decision as to whether the particular task at 

hand should be offloaded to the MEC server. 

3) MORL-DDQN: Although Deep Q Learning algorithms 

perform well, there exists a maximization bias. If at any point 

in time the Q value is overestimated, the error gets 

compounded overtime and leads to suboptimal policies and 

poor exploration. To overcome this issue, in Double Deep Q 

Learning, two neural networks are used instead of one. We 

assume one network as the target Q network which is updated 

less frequently and is used to calculate the target Q values for 

the Q value update of the other neural network called the 

online network. The online network is used to determine the 

best known action in a particular state. The weights of the 

online network are copied to the target network intermittently. 

B. Cumulative Reward 

In MORL, a positive reward is given to the model for not 
just executing the task successfully but also if the task is 
executed within a limited latency and limited battery utilization 
of the edge device. A negative reward is given if the task is 
dropped or if the task is not executed within the thresholds of 
energy or latency. Fig. 2 shows the plot of cumulative reward 
vs. timesteps. Although, an analysis is necessary, it is 
unreasonable to infer the comparison of agent performance 
from this plot alone. 

 

Fig. 2. Cumulative reward of different models. 

C. Drop Rate 

The crucial factor to adjudicate the performance is the total 
tasks dropped as a result of the decision made by the models. 
Each task has a timeout within which the task must be 
executed, otherwise, it is considered to be dropped. At each 
timestep we calculate the number of dropped tasks. This factor 
can be used to consider the task offloading problem as a 
minimization problem. Fig. 3 shows that uniform random 
policy drops a significant number of tasks. Deep MORL 
models, on the other hand, have the running task drop rate 
close to zero. The MORL actor critic model not only decreases 
the drop rate but also improves the stability of its output 
compared to both DQN models. 
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Fig. 3. Running drop rate of tasks. 

D. Latency 

The second most important factor to adjudicate the 
performance of our models is how quickly we are able to 
execute all the tasks. The agent gets a positive reward if a task 
is executed within the latency threshold or else it gets a 
negative reward. From Fig. 4, it can be seen that the MORL-
DQN model performs considerably well compared to the 
tabular MORL model and uniform random policy. The MORL 
actor critic model estimates and optimizes the latency 
significantly compared to the other approaches. 

 

 

Fig. 4. Running latency of execution of tasks. 

E. Energy 

Another important factor to consider is the battery 
consumption to process the tasks at the edge device. This factor 
allows the model to take into consideration that we intend to 
minimize the battery utilization of the edge device. Hence the 
decision made by MORL is not just influenced by latency or 
drop rate but also by battery consumption. We have set a 
threshold for each device and if a task is going to get executed 
locally, we want those tasks to be executed within this 
threshold. In such cases, we provide the agent with a positive 
reward and if any task’s execution crosses the threshold, we 
provide the agent with a negative reward.  

From Fig. 5, it is observed that the Deep MORL model 
does considerably well compared to all the other models. The 
tabular MORL model performs quite well but doesn’t provide 
the same stability that the deep MORL model gives. It is true 
that MORL actor-critic leads to a greater amount of energy 
consumption on average than other approaches, but it is due to 
the fact that more tasks are executed on the mobile device as 
compared to other algorithms to achieve better drop rate and 
latency. It shows a greater degree of stability compared and 
better overall performance on all objectives. 

 

Fig. 5. Running energy consumed by the edge device. 

F. Comparison 

Table I provides a comparison of the results obtained when 
all algorithms were applied to 3000 episodes using 10 edge 
devices connected to a single MEC server. All edge devices 
generated a total of 9073 tasks. 

G. Benefits of Multi-objective Optimization over Single-

objective Optimization 

Single objective approaches seem to outperform the multi 
objective ones on the objective which they have been trained to 
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optimize. However, a closer look into the performance of all 
objectives will reveal the obvious superiority of multi-objective 
reinforcement learning approaches. To better understand the 
aforementioned claim, we compare a SORL model [31] which 
optimizes energy consumption and the MORL actor-critic 
model. 

TABLE I. RESULT  EVALUATION TABLE 

 Objectives Decisions 

Model 

Net 

Drop 

Rate 

Mean 

Latency (in 

timesteps) 

Mean Energy 

consumerd 

(in mJ) 

Offload Local 

MORL-

Tabular 
0.0406 22.963 147.5110 5891 3182 

MORL-

DQN 
0.0083 20.690 136.1579 6304 2769 

MORL-

DDQN 
0.0081 19.853 140.6437 5187 3886 

MORL-

Actor 

Critic 

0.0034 19.62 179.6439 4861 4212 

Uniform 
Random 

Policy 

0.0590 23.521 248.1667 4515 4558 

 

Fig. 6. Comparison of objectives’ performance using single-objective and 

multi-objective optimization techniques. 

Fig. 6 shows that the SORL model performs exceptionally 
well in terms of the objective that it optimizes, i.e, energy 
consumed. It offloads most of the tasks to the edge server to 
cut down on the energy consumption. However, this comes at a 
cost of drop rate and latency. The drop rate and latency 
achieved by the SORL model is unacceptable in real world 
applications, whereas the MORL actor-critic model optimizes 
all three objectives reasonably well which makes it more 
practical. 

We conclude with the observation that the agent trained 
using the MORL actor critic method exhibited the best overall 
performance. 

VII. CONCLUSION 

Multi-access Edge Computing (MEC) tries to improve user 
experience and reduce energy consumption. It is a popular and 
emerging paradigm that takes the cloud closer to resource 
constrained mobile devices. A general scenario depicting the 
interaction between a few mobile devices and a MEC Server is 
simulated in which four multi-objective reinforcement learning 
algorithms are compared. From the results observed, we can 
conclude that multi-objective reinforcement learning based 
actor critic model outperforms other models in terms of both 
latency as well as task drop rate. 
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