
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

382 | P a g e

www.ijacsa.thesai.org

Actor Critic-based Multi Objective Reinforcement

Learning for Multi Access Edge Computing

Vishal Khot
1
, Vallisha M

2
, Sharan S Pai

3
, Chandra Shekar R K

4
, Kayarvizhy N

5

Department of Computer Science and Engineering, BMS College of Engineering, Bangalore, India
1, 2, 3, 5

Department of CSIS, BITS Pilani, Goa, India
4

Abstract—In recent times, large applications that need near

real-time processing are increasingly being used on devices with

limited resources. Multi access edge computing is a computing

paradigm that provides a solution to this problem by placing

servers as close to resource constrained devices as possible.

However, the edge device must consider multiple conflicting

objectives, viz., energy consumption, latency, task drop rate and

quality of experience. Many previous approaches optimize on

only one objective or a fixed linear combination of multiple

objectives. These approaches don’t ensure best performance for

applications that run on edge servers, as there is no guarantee

that the solution obtained by these approaches lies on the pareto-

front. In this work, Multi Objective Reinforcement Learning

with Actor-Critic model is proposed to optimize the drop rate,

latency and energy consumption parameters during offloading

decision. The model is compared with MORL-Tabular, MORL-

Deep Q Network and MORL-Double Deep Q Network models.

The proposed model outperforms all the other models in terms of

drop rate and latency.

Keywords—Edge computing; reinforcement learning; multi

objective optimization; neural networks; deep learning

I. INTRODUCTION

In the modern day, mobile devices handle more
computationally demanding activities, including data
processing, artificial intelligence, and virtual reality. Despite
advancements in mobile technology, these devices lack
sufficient computational capacity to complete all of their duties
locally with low latency and reasonable energy consumption.
Mobile apps for online gaming, signal or image processing
(such as facial recognition), augmented reality, and real-time
translation services are some examples of computational
domains whose use has grown drastically that places a
substantial computing demand on mobile devices (MDs) which
have a limited amount of resources.

Mobile edge computing (MEC), also known as fog
computing and multi-access edge computing, is a technology
that enables effective job processing. [1] It is a new computing
paradigm in which computing, network, storage, capabilities
are migrated to edge nodes, which is closer to end-users to
meet real-time needs of fast changing IT industries. The
demand for on-demand computation close to mobile devices is
only expected to grow. Additionally, as 5G networks become
more and more popular, the three main services - massive
machine communication, enhanced mobile broadband and
ultra-reliable low-latency communication pose network,
computing, storage, and application core capabilities. As a
result, their applications can be run on the edge server,

enabling faster network service response and satisfying the
real-time processing, intelligent application, security, and other
requirements. Despite edge computing’s enormous potential,
there are many obstacles. Mobile real-time apps are extremely
sensitive to latency and power usage. However, the prolonged
time of execution of these applications can result in excessive
energy consumption owing to the randomness and volatility of
mobile edge networks.

Single objective reinforcement learning algorithms perform
considerably well in environments where there is only one
objective to optimize, which is often not the case in real world
scenarios. The offloading requirement in the case of multi-
access edge computing needs to satisfy many conflicting
requirements like latency, energy, drop rate, QoS, and cost,
among others. Optimization of just one objective can provide
neither a guarantee of pareto optimality nor a control over the
order of preference of the multiple objectives to suit the
specific use-case, albeit at the cost of pareto optimality. Multi
objective reinforcement learning (MORL) approaches can be
leveraged to overcome the above shortcomings whilst
maintaining adaptability to work in dynamic environments.

The research contribution of this work is the application of
the actor critic method in multi objective reinforcement
learning algorithms for the task offloading problem as opposed
to previous literature that have used the actor critic method for
single objective reinforcement learning.

II. RELATED WORK

The decision to offload a task or not is a complex one, with
multiple factors about the problem itself and the solution to be
considered. Firstly, tasks can be considered to either be
dependent or independent of one another. Literatures choosing
to work on dependent tasks usually consider a directed acyclic
graph to represent task dependencies. Secondly, the decision to
offload or not can be made either centrally or by each mobile
device, in a decentralized fashion. We have considered the
papers that have used reinforcement learning to make the
decision to offload or not. The network architecture of mobile
devices and servers must be considered. The parameters for
making the decision to offload or not are the task size,
algorithmic complexity, the time by which the task needs to be
completed, task interdependencies, and bandwidth. Authors
choose a subset of these parameters for their system. The RL
system can either be based on table or on function
approximation. The reward for the RL agent can be based on
latency, energy, cost, drop rate, QoS considerations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

383 | P a g e

www.ijacsa.thesai.org

Tang et al. [2] propose a cost optimized reinforcement
learning algorithm, where every mobile device makes an
independent decision to offload or not, while also being aware
of edge load dynamics. T Alfaikh et al. [3] propose using
SARSA for making the decision to offload or not to the closest
server or adjacent server or to compute it locally. J Wang et al.
[4] propose using meta RL for faster adaptability and use a
sequence2sequence network for making the decision to offload
or not. J Wang et al. [5] combine their approach with a specific
off-policy policy gradient algorithm with a clipped surrogate
objective. Liang Huang et al. [6] propose using deep q learning
while optimizing on energy with constraints on bandwidth.
Peizhi Yan et al. [7] propose using deep q learning with both
node and edge level offloading. Xiaowei Liu et al. [8] propose
using a parameterized, indexed-value function for value
estimation for achieving faster convergence.

Zhenjiang Zhang et al. have proposed a multi-agent load
balancing distribution deep reinforcement learning algorithm
[9]. It minimizes the latency, load factor and the algorithm
complexity as compared to a centralized algorithm. It uses a
genetic algorithm to identify the decision to offload or not
while still meeting the QoS requirements of all the tasks. Yu
Dai et al. propose a federated reinforcement learning algorithm
to address the issue of weak generalization of the model and
privacy leakage caused by sharing user sensitive information to
the central server [10]. Attention is used to aggregate the
parameter weights resulting in the reduction of the processing
time of the task. Yuanchao Xu et al. [11] explore decentralized
multi-agent reinforcement learning algorithms to solve the
problem of task offloading accounting for reward uncertainty.
They try different approaches like Multi-Agent Deep-
Deterministic Policy-Gradient (MADDPG), Robust MADDPG
and Decentralized Partially-Observable Markov Decision
Process (Dec-POMDP). Baris Yamansavascilar et al. [12]
propose a task orchestrator based on deep reinforcement
learning which learns to satisfy different task requirements
without any human interaction. The problem is modeled as a
Markov decision process and the Double Deep Q-Network
algorithm is used to minimize the task drop rate. Xiangjun
Zhang et al.[13] propose a task offloading algorithm for
Reconfigurable Intelligent Surface (RIS) empowered Mobile
Edge Computing networks. The problem is formulated as a
Markov Decision Process (MDP) where latency, energy
consumption and operating costs are minimized. DDPG is used
to jointly optimize the phase shift and amplitude of RIS, task
allocation strategy and offloading decision. Tu et al. [14]
design a predictive offloading algorithm that makes use of deep
RL and long short-term memory (LSTM) networks. The MEC
server's load is monitored and the next task is predicted using
the LSTM network. The amount of latency, energy used, and
work abandonment is decreased. Liang Huang et al [15]
propose an online, deep RL based algorithm to adapt task
offloading and resource allocation decisions to the time
varying wireless channel conditions. They aim to minimize the
latency. Mingjie Feng et al. [16] explore offloading of tasks
between MEC servers and cloud servers using DRL. They aim
to minimize average latency and achieve optimization in task
partitioning ratio and cloud selection.

Yi Ouyang et al. propose a task offloading algorithm for a
vehicle edge computing environment based on Dueling-DQN
[17]. The proposed approach considers the mobility of the
vehicles and the changing network conditions make a better
decision to offload or not. The results of the experiment
demonstrate the effectiveness and superiority of the proposed
algorithm with respect to existing approaches. Fuhong Song et
al. have proposed an approach which uses multi-objective
reinforcement learning for optimizing the UAV's trajectory and
offloading decisions in real-time [18]. The algorithm considers
multiple objectives, including minimizing energy consumption,
maximizing data processing efficiency while maintaining a
stable network connection. Xianfu Chen et al. propose a new
approach based on deep reinforcement learning which
optimizes performance of offloading algorithms in virtual edge
computing systems [19]. Unlike other approaches which use
traditional heuristics or machine learning algorithms, the
proposed approach uses a deep-neural network to learn the
optimal offloading policy in a data-driven manner. Junyao
Yang et al. [20] propose an inverse order based optimization
technique for resource allocation and task offloading in multi-
access edge computing systems. It makes the offloading
decision and resource allocation and optimizes them jointly
using an inverse order optimization strategy unlike other
approaches which consider them separately. Ting Wang et al.
[21] propose an approach based on deep reinforcement
learning (DRL) for improving the performance of task
offloading in the Internet of Vehicles (IoV) scenario. The
proposed approach uses a deep neural network to learn the
optimal offloading policy based on IoV's dynamic and
uncertain environment. Hongxia Zhang et al. [22] propose an
ultra-low latency multi-task offloading approach for making
task offloading decisions in mobile edge computing that
considers multiple tasks with different requirements, such as
computation, communication, and storage. The proposed
approach uses a multi-agent reinforcement learning algorithm
to make the decision to offload or not while satisfying the
different task requirements. X Zhang et al. [23] propose an
approach based on deep reinforcement learning for energy-
efficient task offloading in secondary mobile edge systems.
The proposed approach uses a deep-neural network to learn the
optimal offloading policy in accordance with the dynamic and
uncertain environment of the edge system. Mushu Li et al. [24]
propose creating a cooperative edge computing framework to
lower latency and increase dependability for vehicular
networks. In order to determine the best option that reduces the
cost of the service, a DDPG algorithm is used.

Juan Chen et al. [25] propose a multi-agent DRL solution
to minimize total cost in terms of energy requirement of IOT
device and long term renting cloud costs. They have explored
centralized training and decentralized execution, hence, each
IOT device will be a decision making agent. Xing Chen et al.
[26] explore a federated DDPG solution for combined
optimization of energy consumption and reduction in latency.
The federated learning procedure ensures privacy of user data
because only parameters of locally trained models are sent to
central servers. Hao Meng et al. [27] constructs a DRL model
with a new reward function design for optimizing the battery
power of mobile devices. The reward function simulates the
tradeoff between latency and battery consumption. Kun Wang

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

384 | P a g e

www.ijacsa.thesai.org

et al. [28] formulated a Double DQN model to apply the task
offloading concept to the Internet of Vehicles. This proposed
algorithm solves real-time changes in the network due to user
movement. Fuhong Song et al. propose a MORL algorithm to
make the decisions with respect to task offloading when
subject to multiple dependent tasks to optimize on three
objectives, energy consumption, latency and user costs,
simultaneously and using independent rewards for each [29].
They use tournament selection schemes to maintain previously
learnt policies. Yu Chen et al. [30] investigated multi-user edge
video analytics task offloading problems. The authors design
two algorithms, one based on Game Theory and another based
on the Actor-Critic method. The proposed A2C is observed to
be more flexible, users can adjust accuracy decisions and
achieve the converged reward.

III. MEC ARCHITECTURE

The considered architecture shown in Fig. 1 is similar to [2]
where there is a set of resource constrained mobile devices M =
{1, 2, 3, …. , m} and a single edge server in the MEC
environment. We measure time using discrete timesteps where
each timestep is equal to 100 milliseconds. All mobile devices
are polled at the start of each timestep to check if any tasks
have been generated. The following section explains the device
and server models.

Fig. 1. MEC architecture

A. Device Model

The test environment consists of multiple mobile devices
which generate non-divisible tasks with no interdependency
which can either be computed locally on the device or on an
edge server. Tasks can only be generated at the start of each
timestep. The decision d as to whether a task has to be
computed locally on the resource constrained mobile device or
offloaded to an edge server is taken by a reinforcement
learning (RL) agent. If the task has to be computed locally, it is
first pushed into the local process queue of the device. The
process queue follows a first-in first-out (FIFO) principle and
once the task is computed, its result is returned. If the task is
supposed to be offloaded, it is pushed into the upload queue of
the device and subsequently uploaded to the edge server.
Similar to the process queue, the upload queue follows a FIFO
principle. It is assumed that once a task is computed or
uploaded, the computation or upload process of the next task in
the respective queue will be started only in the next timestep.

1) Task model: It is assumed that new tasks are only

generated at the start of each timestep. Tasks are generated in

all mobile devices with a probability of 0.3. For each task the

parameters considered are, the task size (in bits), task timeout

(in timesteps), algorithmic complexity and start time of the

task. The task start time is the timestep at which the task was

generated. In case a task is computed locally, the total

execution time is equal to the sum of the duration of time

spent in the process queue of the device and the actual

computation time. Otherwise, if it is offloaded, the total

execution is equal to the sum of the duration of time spent in

the upload queue of the device, the time necessary to upload

the task to the edge server, the duration of time spent in the

process queue of the edge server and the time necessary to

execute the task on the edge server. Each task has an

associated timeout and if the task is not executed within the

timeout, it is considered to be dropped.

2) Offloading decision: The Agent A makes the decision

to offload or not d, depending on the state which contains the

task timeout, task size, the time required to upload the task,

time required to execute the task on the server and the local

execution time of the task. d is a binary variable d {0, 1}

where d is 1 if the task is to be offloaded or 0 if it is to be

processed locally. As seen in Fig. 1, if d is 1 it is pushed into

the upload queue of the device, else it is pushed into the local

process queue of the device.

B. Edge Server Model

A single edge server is considered in our MEC
environment. Tasks which are uploaded to the edge server are
pushed into the process queue of the server only at the start of a
time step. Before a task is pushed into the process queue of the
server, we check if the task is going to be dropped, i.e, it is
checked if the task has no possibility of getting executed within
its timeout and if so, the task is considered to be dropped and
the task will not be pushed into the process queue of the server.
The tasks in the queue are computed in a First-In First-Out
order. Instead of having one process queue for each mobile
device, we maintain a single process queue for all devices. This
has the same effect as having a process queue for each device
and a First-In First-Out scheduler to pick tasks from all the
queues.

C. Reinforcement Learning Environment

We consider a single edge server connected to multiple
resource constrained mobile devices via a wireless network.

1) State space: State space is essentially the input to the

RL agent to make the task offloading decision. It is a vector of

task size, algorithmic complexity and the time before which

the task must be processed.

2) Action space: Action space is the set of values that can

be returned by the agent. The agent makes a binary decision (0

or 1) i.e. to offload or not.

IV. MULTI OBJECTIVE REINFORCEMENT LEARNING

Multi objective reinforcement learning is a type of
reinforcement learning that aims to optimize multiple
potentially conflicting objectives simultaneously to achieve
ideal performance in real world scenarios. The architecture
explained in the previous section is used to compare four
multi-objective reinforcement learning algorithms in a
simulated environment containing ten resource constrained
mobile devices connected to a single edge server.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

385 | P a g e

www.ijacsa.thesai.org

A. Actor Critic Method

The actor-critic method is a popular temporal difference
(TD) learning approach that consists of two main components,
the actor and the critic. The actor suggests actions that can be
taken based on a particular state and the critic evaluates the
actions taken after being suggested by the actor. Four neural
networks are considered namely, actor, critic, actor-target and
critic-target. The actor network outputs the expected Q value
for each action and the action which has the highest expected Q
value is chosen as the next action to be taken. The critic
network is used to evaluate how good the action suggested by
the actor network is. In addition to the state, the critic network
also takes the action taken and the reward obtained as the input.
Then, the loss is computed for both the actor and the critic
networks and update them.

The actor-target and critic-target networks are used to
stabilize the training of the actor and critic networks. At the
end of each timestep the network parameters are partially
copied from the main networks to the target networks via soft
updates. Experience replay is used every 25 timesteps to
effectively train the model. This algorithm outperforms all the
previous algorithms with respect to drop rate and latency.

Algorithm 1: Actor-Critic method for task offloading

Params: Learning rate 𝛼 ∈ [0, 1), small epsilon ε, 0 < ε < 1,
convergence parameter γ close to 1
Initialize networks Qa , Qa`, Qc and Qc`
foreach timestep with task do
 select action a from the set of possible actions A
 using policy derived from Qa`(ε-greedy);
 if a is offload:

 add task to upload_queue at mobile device
 elseif a is local_computation:

 add task to process_queue of the respective mobile device
 observe reward R, next state s`;
 store the experience (s, a, R, s`) in replay-buffer
 Q*(s, a) = R + γ max Qc`(s, a)
 compute mean squared error between Qc(s, a) and Q*(s, a), update
critic network

 update actor network using loss←

 𝚺i Qc (si , max Qa(si, a))

 update target networks
 θa` ← τ θa + (1 - τ) θa`
 θc` ← τ θc + (1 - τ) θc`

 s ← s`
 use experience replay to train the actor and critic networks every
25 timesteps
end foreach

B. Objectives

The multi objective reinforcement learning model aims to
optimize three objectives namely, the task drop rate, latency
and the energy consumed by the device.

Task drop rate: The task drop rate is the number of tasks
dropped until the current timestep divided by the total number
of tasks that were generated until the current timestep.

Latency: Latency is the duration of time between task
generation and task completion.

latency = d * (upload_latency + process_latency_server) +
(1 - d) * (process_latency_device)

where,

d is the decision to offload or not which takes a binary
value (0 or 1)

upload_latency is the total timesteps required to upload the
task

process_latency_server is the total timesteps which the
server takes to execute the task taking into account the server
load (time spent by the task in the process queue of the server)

process_latency_device is the total timesteps taken by the
mobile device to execute the task considering the time spent by
the task in the process queue of the device.

Energy: It is the energy utilized by the mobile device from
the moment the task is generated on it, to the moment the task
is completely processed. Naturally, offloaded tasks use a lot
less energy than the tasks that are processed locally.

energy = d * (latency * idle_energy_rate) + (1 - d) *
(latency * active_energy_rate)

where,

idle_energy_rate is the energy utilized by the device in its
idle state

active_energy_rate is the energy utilized by the device
during execution

Single objective optimization usually comes at the expense
of other objectives which might make the solution not feasible
for a lot of real-world applications where we often need to
jointly optimize multiple objectives. Multi objective
reinforcement algorithms are handy in such scenarios.

C. Reward Engineering

The reinforcement learning agent is given some reward as a
result of every action it takes. It gets a positive reward if it
takes an action that contributes towards optimization of the
objective, otherwise it is punished with a negative reward.

When it comes to multi-objective reinforcement learning
where the model optimizes the task drop rate, energy and
latency, three rewards need to be considered.

1) A reward of +1 is given to the agent if the task gets

executed successfully within its timeout, else it is given a

reward of -1. A task is considered to be dropped if it cannot be

executed within the timeout specified for that particular task.

2) With regard to energy, we consider a threshold of 0.5

mJ if the task is offloaded and 160 mJ if the task is computed

locally. This difference is due to the fact that when a task is

offloaded, the mobile device consumes energy only to offload

the task and not execute it. The agent gets a reward of +1 if

the energy consumed for the given task is below the threshold,

otherwise it gets -1 as the reward.

3) Similarly, if the latency for the given task is below

2000 ms, the agent gets a reward of +1, else -1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

386 | P a g e

www.ijacsa.thesai.org

The establishment of these thresholds was the outcome of

experimentation. It was observed that the average amount of

energy consumed per task and the average latency over a

period of time for the given task parameters were 0.5 mJ / 160

mJ and 2000 ms respectively in our simulation environment.

The three rewards are combined using a set of weights that

add up to 1 to obtain a single total reward that is utilized to

train the multi-objective reinforcement learning agent. The

weights can be changed accordingly if a particular objective is

required to have a higher priority than other objectives.

V. EXPERIMENTS

The experiment was run with different models with tasks
generated at the mobile devices with a probability of 0.3 at
each timestep. The model under training makes the decision as
to either offload the task or to process it locally. The task is
appended to the respective mobile devices’ upload queue if it is
to be offloaded. If the task is to be computed locally, the task is
appended to the local computation queue of the mobile device.
The experiment is run with ten mobile devices and one edge
server for 10,000 tasks. The latency, energy and drop rate is
monitored and recorded during the experiment.

VI. EXPERIMENTAL RESULTS

The MEC environment is simulated with ten resource
constrained mobile devices and one edge server. We
implemented and compared four multi objective optimization
algorithms in the same environment with uniform random
policy, which is a standard benchmark for any RL model. All
the multi objective reinforcement learning models aim to
optimize the task drop rate, energy and latency.

We compare the performance of the MORL Actor-Critic
model with three other MORL models.

1) MORL-Tabular: We apply the Tabular Q learning

algorithm to make the task offloading decision in our MEC

system. We consider the four parameters task size, algorithmic

complexity, timeout in timesteps and store the action-value

pair in a table. In each iteration, the Q-learning model refers to

the previous action-value pairs from the table and based on the

bellman equation for each update the new action-value pair.

Tabular Q Learning can be used for solving problems where

the number of states is not large as the storage is limited. Once

the problem size increases, we cannot scale Tabular Q

Learning, especially in environments where the state space has

continuous values.

2) MORL-DQN: We implemented the Deep Q Learning

algorithm where, instead of a table we make use of a neural

network to map a particular state to an action value, i.e the

neural network takes the current state as the input and we get

the expected Q value as the output. The action which has the

highest Q value stands as the most optimal choice for the

present state. We consider the task size, task timeout, time

taken to upload the task, time taken to compute the task on the

server and time taken to complete the task on the mobile

device to make the decision as to whether the particular task at

hand should be offloaded to the MEC server.

3) MORL-DDQN: Although Deep Q Learning algorithms

perform well, there exists a maximization bias. If at any point

in time the Q value is overestimated, the error gets

compounded overtime and leads to suboptimal policies and

poor exploration. To overcome this issue, in Double Deep Q

Learning, two neural networks are used instead of one. We

assume one network as the target Q network which is updated

less frequently and is used to calculate the target Q values for

the Q value update of the other neural network called the

online network. The online network is used to determine the

best known action in a particular state. The weights of the

online network are copied to the target network intermittently.

B. Cumulative Reward

In MORL, a positive reward is given to the model for not
just executing the task successfully but also if the task is
executed within a limited latency and limited battery utilization
of the edge device. A negative reward is given if the task is
dropped or if the task is not executed within the thresholds of
energy or latency. Fig. 2 shows the plot of cumulative reward
vs. timesteps. Although, an analysis is necessary, it is
unreasonable to infer the comparison of agent performance
from this plot alone.

Fig. 2. Cumulative reward of different models.

C. Drop Rate

The crucial factor to adjudicate the performance is the total
tasks dropped as a result of the decision made by the models.
Each task has a timeout within which the task must be
executed, otherwise, it is considered to be dropped. At each
timestep we calculate the number of dropped tasks. This factor
can be used to consider the task offloading problem as a
minimization problem. Fig. 3 shows that uniform random
policy drops a significant number of tasks. Deep MORL
models, on the other hand, have the running task drop rate
close to zero. The MORL actor critic model not only decreases
the drop rate but also improves the stability of its output
compared to both DQN models.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

387 | P a g e

www.ijacsa.thesai.org

Fig. 3. Running drop rate of tasks.

D. Latency

The second most important factor to adjudicate the
performance of our models is how quickly we are able to
execute all the tasks. The agent gets a positive reward if a task
is executed within the latency threshold or else it gets a
negative reward. From Fig. 4, it can be seen that the MORL-
DQN model performs considerably well compared to the
tabular MORL model and uniform random policy. The MORL
actor critic model estimates and optimizes the latency
significantly compared to the other approaches.

Fig. 4. Running latency of execution of tasks.

E. Energy

Another important factor to consider is the battery
consumption to process the tasks at the edge device. This factor
allows the model to take into consideration that we intend to
minimize the battery utilization of the edge device. Hence the
decision made by MORL is not just influenced by latency or
drop rate but also by battery consumption. We have set a
threshold for each device and if a task is going to get executed
locally, we want those tasks to be executed within this
threshold. In such cases, we provide the agent with a positive
reward and if any task’s execution crosses the threshold, we
provide the agent with a negative reward.

From Fig. 5, it is observed that the Deep MORL model
does considerably well compared to all the other models. The
tabular MORL model performs quite well but doesn’t provide
the same stability that the deep MORL model gives. It is true
that MORL actor-critic leads to a greater amount of energy
consumption on average than other approaches, but it is due to
the fact that more tasks are executed on the mobile device as
compared to other algorithms to achieve better drop rate and
latency. It shows a greater degree of stability compared and
better overall performance on all objectives.

Fig. 5. Running energy consumed by the edge device.

F. Comparison

Table I provides a comparison of the results obtained when
all algorithms were applied to 3000 episodes using 10 edge
devices connected to a single MEC server. All edge devices
generated a total of 9073 tasks.

G. Benefits of Multi-objective Optimization over Single-

objective Optimization

Single objective approaches seem to outperform the multi
objective ones on the objective which they have been trained to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

388 | P a g e

www.ijacsa.thesai.org

optimize. However, a closer look into the performance of all
objectives will reveal the obvious superiority of multi-objective
reinforcement learning approaches. To better understand the
aforementioned claim, we compare a SORL model [31] which
optimizes energy consumption and the MORL actor-critic
model.

TABLE I. RESULT EVALUATION TABLE

 Objectives Decisions

Model

Net

Drop

Rate

Mean

Latency (in

timesteps)

Mean Energy

consumerd

(in mJ)

Offload Local

MORL-

Tabular
0.0406 22.963 147.5110 5891 3182

MORL-

DQN
0.0083 20.690 136.1579 6304 2769

MORL-

DDQN
0.0081 19.853 140.6437 5187 3886

MORL-

Actor

Critic

0.0034 19.62 179.6439 4861 4212

Uniform
Random

Policy

0.0590 23.521 248.1667 4515 4558

Fig. 6. Comparison of objectives’ performance using single-objective and

multi-objective optimization techniques.

Fig. 6 shows that the SORL model performs exceptionally
well in terms of the objective that it optimizes, i.e, energy
consumed. It offloads most of the tasks to the edge server to
cut down on the energy consumption. However, this comes at a
cost of drop rate and latency. The drop rate and latency
achieved by the SORL model is unacceptable in real world
applications, whereas the MORL actor-critic model optimizes
all three objectives reasonably well which makes it more
practical.

We conclude with the observation that the agent trained
using the MORL actor critic method exhibited the best overall
performance.

VII. CONCLUSION

Multi-access Edge Computing (MEC) tries to improve user
experience and reduce energy consumption. It is a popular and
emerging paradigm that takes the cloud closer to resource
constrained mobile devices. A general scenario depicting the
interaction between a few mobile devices and a MEC Server is
simulated in which four multi-objective reinforcement learning
algorithms are compared. From the results observed, we can
conclude that multi-objective reinforcement learning based
actor critic model outperforms other models in terms of both
latency as well as task drop rate.

REFERENCES

[1] N. Hassan, K. -L. A. Yau and C. Wu, "Edge Computing in 5G: A
Review," in IEEE Access, vol. 7, pp. 127276-127289, 2019, doi:
10.1109/ACCESS.2019.2938534.

[2] M. Tang and V. W. S. Wong, "Deep Reinforcement Learning for Task
Offloading in Mobile Edge Computing Systems," in IEEE Transactions
on Mobile Computing, vol. 21, no. 6, pp. 1985-1997, 1 June 2022, doi:
10.1109/TMC.2020.3036871.

[3] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio and G. Fortino,
"Task Offloading and Resource Allocation for Mobile Edge Computing
by Deep Reinforcement Learning Based on SARSA," in IEEE Access,
vol. 8, pp. 54074-54084, 2020, doi: 10.1109/ACCESS.2020.2981434.

[4] J. Wang, J. Hu, G. Min, A. Y. Zomaya and N. Georgalas, "Fast Adaptive
Task Offloading in Edge Computing Based on Meta Reinforcement
Learning," in IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 1, pp. 242-253, 1 Jan. 2021, doi:
10.1109/TPDS.2020.3014896.

[5] J. Wang, J. Hu, G. Min, W. Zhan, A. Y. Zomaya and N. Georgalas,
"Dependent Task Offloading for Edge Computing based on Deep
Reinforcement Learning," in IEEE Transactions on Computers, vol. 71,
no. 10, pp. 2449-2461, 1 Oct. 2022, doi: 10.1109/TC.2021.3131040.

[6] Huang, L., Feng, X., Qian, L., Wu, Y. (2018). Deep Reinforcement
Learning-Based Task Offloading and Resource Allocation for Mobile
Edge Computing. In: Meng, L., Zhang, Y. (eds) Machine Learning and
Intelligent Communications. MLICOM 2018. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol 251. Springer, Cham.
https://doi.org/10.1007/978-3-030-00557-3_4

[7] P. Yan and S. Choudhury, "Optimizing Mobile Edge Computing Multi-
Level Task Offloading via Deep Reinforcement Learning," ICC 2020 -
2020 IEEE International Conference on Communications (ICC), Dublin,
Ireland, 2020, pp. 1-7, doi: 10.1109/ICC40277.2020.9149024.

[8] X. Liu, S. Jiang, and Y. Wu, “A Novel Deep Reinforcement Learning
Approach for Task Offloading in MEC Systems,” Applied Sciences, vol.
12, no. 21, p. 11260, Nov. 2022, doi: 10.3390/app122111260.

[9] Zhang, Z., Li, C., Peng, S. et al. A new task offloading algorithm in edge
computing. J Wireless Com Network 2021, 17 (2021).
https://doi.org/10.1186/s13638-021-01895-6

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 2, 2024

389 | P a g e

www.ijacsa.thesai.org

[10] Dai, Yu, et al. "Offloading in Mobile Edge Computing Based on
Federated Reinforcement Learning." Wireless Communications and
Mobile Computing 2022 (2022): 1-10.

[11] Xu, Yuanchao, Amal Feriani, and Ekram Hossain. "Decentralized multi-
agent reinforcement learning for task offloading under uncertainty."
arXiv preprint arXiv:2107.08114 (2021).

[12] Yamansavascilar, Baris, et al. "Deepedge: A deep reinforcement
learning based task orchestrator for edge computing." IEEE Transactions
on Network Science and Engineering 10.1 (2022): 538-552.

[13] Zhang, Xiangjun, et al. "An efficient computation offloading and
resource allocation algorithm in RIS empowered MEC." Computer
Communications 197 (2023): 113-123.

[14] Tu, Youpeng, et al. "Task offloading based on LSTM prediction and
deep reinforcement learning for efficient edge computing in IoT." Future
Internet 14.2 (2022): 30.

[15] Huang, Liang, Suzhi Bi, and Ying-Jun Angela Zhang. "Deep
reinforcement learning for online computation offloading in wireless
powered mobile-edge computing networks." IEEE Transactions on
Mobile Computing 19.11 (2019): 2581-2593.

[16] Feng, Mingjie, et al. "Task assignment in mobile edge computing
networks: a deep reinforcement learning approach." Sensors and
Systems for Space Applications XIV. Vol. 11755. SPIE, 2021.

[17] Ouyang, Yi. "Task offloading algorithm of vehicle edge computing
environment based on Dueling-DQN." Journal of Physics: Conference
Series. Vol. 1873. No. 1. IOP Publishing, 2021.

[18] Song, Fuhong, et al. "Evolutionary multi-objective reinforcement
learning based trajectory control and task offloading in UAV-assisted
mobile edge computing." IEEE Transactions on Mobile Computing
(2022).

[19] Chen, Xianfu, et al. "Optimized computation offloading performance in
virtual edge computing systems via deep reinforcement learning." IEEE
Internet of Things Journal 6.3 (2018): 4005-4018.

[20] Yang, Junyao, Yan Wang, and Zijian Li. "Inverse order based
optimization method for task offloading and resource allocation in
mobile edge computing." Applied Soft Computing 116 (2022): 108361.

[21] Wang, Ting, Xiong Luo, and Wenbing Zhao. "Improving the
performance of tasks offloading for internet of vehicles via deep

reinforcement learning methods." IET communications 16.10 (2022):
1230-1240.

[22] Zhang, Hongxia, et al. "Ultra-low latency multi-task offloading in
mobile edge computing." IEEE Access 9 (2021): 32569-32581.

[23] Zhang, Xiaojie, Amitangshu Pal, and Saptarshi Debroy. "Deep
reinforcement learning based energy-efficient task offloading for
secondary mobile edge systems." 2020 IEEE 45th LCN Symposium on
Emerging Topics in Networking (LCN Symposium). IEEE, 2020.

[24] Li, Mushu, et al. "Deep reinforcement learning for collaborative edge
computing in vehicular networks." IEEE Transactions on Cognitive
Communications and Networking 6.4 (2020): 1122-1135.

[25] Chen, Juan, et al. "Task offloading in hybrid-decision-based multi-cloud
computing network: a cooperative multi-agent deep reinforcement
learning." Journal of Cloud Computing 11.1 (2022): 1-17.

[26] Chen, Xing, and Guizhong Liu. "Federated deep reinforcement learning-
based task offloading and resource allocation for smart cities in a mobile
edge network." Sensors 22.13 (2022): 4738.

[27] Meng, Hao, Daichong Chao, and Qianying Guo. "Deep reinforcement
learning based task offloading algorithm for mobile-edge computing
systems." Proceedings of the 2019 4th International Conference on
Mathematics and Artificial Intelligence. 2019.

[28] Wang, Kun, et al. "Task offloading strategy based on reinforcement
learning computing in edge computing architecture of internet of
vehicles." IEEE Access 8 (2020): 173779-173789.

[29] Song, Fuhong, et al. "Offloading dependent tasks in multi-access edge
computing: A multi-objective reinforcement learning approach." Future
Generation Computer Systems 128 (2022): 333-348.

[30] Chen, Yu, et al. "Multi-user edge-assisted video analytics task
offloading game based on deep reinforcement learning." 2020 IEEE 26th
International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2020.

[31] V. M, V. Khot, S. S. Pai, V. R. Rao and K. N, "Deep Reinforcement
Learning for Task Offloading in a Multi-Access Edge Computing
Environment," 2023 International Conference on Network, Multimedia
and Information Technology (NMITCON), Bengaluru, India, 2023, pp.
1-6, doi: 10.1109/NMITCON58196.2023.10275998.

