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Abstract—In the last two decades, the Brain-Computer 

Interface system with EEG signals has assisted people in various 

ways. In particular, to patients with paralysis, epilepsy, and 

Alzheimer's disease, not only to the patient but also to physically, 

visually challenged people and Hard-of-Hearing people. One of 

the non-invasive methods that can read human brain activities is 

Electroencephalogram (EEG). The EEG has been used in many 

applications, especially in medicine. The applications of the EEG 

are not limited to the medical domain; it keeps extending to 

many areas. This review includes the various application of EEG; 

and more in imagined speech. The main objective of this survey 

is to know about imagined speech, and perhaps to some extent, 

will be useful future direction in decoding imagined speech. 

Imagined speech classifications have used different models; the 

models are discussed, the significance of choosing the number of 

electrodes, and the main challenges in EEG. 
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I. INTRODUCTION  

Speaking, hearing, seeing, and moving are all necessary to 
humans. However, few people are having issues with that, 
either by birth or due to illness. They could not lead an 
everyday life. However, technology and science can provide 
some alternatives for them. Artificial Intelligence (AI) and 
Brain-computer Interface (BCI) [1] are considerable gifts to 
them to lead a better life. The Brain-Computer interface system 
introduced during the year 1973 by Jacques Vidal. It converts 
the human brain signals into instructions for the computer [2]. 

In the last two decades, Brain-Computer Interface had a 
vital role in the field of the medical domain. In particular, for 
those who have paralyzed, have a seizure problem, have a 
brain disorder, have speech problems, have hard of hearing, 
and so on., it has given confidence to them in assisting in many 
ways. Specifically, they are not necessary to depend on others. 
A fully paralyzed person has motor issues, eyeballs that will 
not move, and articulation problems. They cannot 
communicate in any other technique except brain wave with 
the BCI system [3] because, cognitively, they are normal. 
Invasive and non-invasive methods are available to read brain 
signals. Many researchers have used these methods, but for the 
practical approach, non-invasive is more suitable rather than 
invasive. Complete details were in the other sections of this 
systematic review. Imagined speech, covert speech, inner 
speech, and intended speech are new paradigms for 
researchers. No phonetic sounds, but tongue and jaw 
movements will be present are refers as silent speech. 
Imagined speech is akin to silent speech, but tongue and jaw 

movements will not be present; a person should be in verbal 
thinking [4].  

As per Proix et al., non-invasive methods have not given 
convincing results and have limited success due to brain 
signals taken on the scalp by either EEG or MEG technique 
during the imagined speech; brain signals are weak and vary 
with overt speech [5]. Instead of non-invasive, Proix et al. used 
invasive techniques. Many researchers have applied Machine 
learning or Deep learning algorithm to decode imagined speech 
using non-invasive. 

The deep learning method required massive data to train the 
model for good accuracy [6]. This systematic review includes 
details of the few machines learning algorithm and the deep 
learning algorithm applied in decoding EEG signals by the 
researchers. Reddy et al. proposed Hamilton-Jacobi-Bellman 
(HJB) equation to get an optimal update rule for training Feed 
Forward Neural Network (FFNN); in this, the author achieved 
faster convergence and better performance [7].   

In any BCI application, the brain signal controls the system. 
BCI system is composed of four different phases. Signal 
Acquisition, Feature extraction, classification, and device 
output [8]. Reading electrical activity of the brain is called 
signal acquisition. Different modalities are available to acquire 
the signals in the brain; EEG is one of the modalities. The 
details have given in the following section. Feature extraction 
is a method of analyzing the signal as per the application. 
Assign a label to the extracted feature in the classification 
result; this will enable specific control commands like cursor 
control, robotic arm movement, and user feedback. Thus, it 
closes the loop [8, 9]. Before performing all these, people must 
know about the human brain.  

II. BRAIN ANATOMY 

The human brain has divided into two different portions: 
the cerebellum, a smaller portion, and the cerebral/cortex, a 
large portion of the brain. The brain's cortex area has divided 
into four different lobes: frontal lobe, parietal lobe, temporal 
lobe, and occipital lobe, respectively. Each lobe has its 
function. The frontal lobe is associated with cognitive function, 
speech, and short-term memory.  

The responsibility of the parietal lobe is to have senses like 
smell, taste, and touch. The temporal lobe is associated with 
the hearing and memory process. The occipital lobe recognizes 
color and visual processes. Broca's and Wernicke's are 
associated with speech and language [10]. 
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A. Brain Signals  

The brain generates the electrical activity of the brain 
signals. During the electrical activity, electrochemical signals 
pass through the entire brain region with oscillation; they are 
called brain signals [11]. Delta (δ), Theta (θ), Alpha (α), Beta 
(β), and Gamma (γ) are the five different brain signals 
generated in the human brain [12]. Details of brain signal’s 
frequency and its associated characteristics are provided in 
Table I. 

TABLE I. CHARACTERISTICS OF THE BRAIN WAVE 

Frequency Band 
Frequency in 

Hz 
Brain states 

Originating 

place 

Delta (δ) 0.5 - 4 Sleep Frontal lobe 

Theta(θ) 4 -8 Deeply relaxed Temporal lobe 

Alpha(α) 8 - 12 
Very relaxed, eyes 
are closed 

Frontal lobe & 
Occipital lobe 

Beta(β) 12 - 35 

Active, high 

awareness, and 
eyes open 

Frontal lobe & 

central 

Gamma(γ) Above 35 Full concentration 

Frontal, 

Temporal, and 

Parietal Lobes 

B. Brain Signals Acquisition  

There are two methods in the signal acquisition, namely 
Invasive and non-invasive methods. The first method required 
surgery to implant the electrodes in the brain's cortical area. 
The second one does not require implanting. Moreover, for 
research and practical purpose, it uses the non-invasive 
method. Its ease of use, cost-effectiveness, better accuracy, and 
reliability with the advancement of technology is why it prefers 
the non-invasive method [13]. Invasive type of electrode 
requires surgery to implant. Electroencephalography (ECoG) 
should place on the brain surface under the skull. ECoG 
provides electrical potential measured directly on the brain 
surface at a high spatial and temporal resolution without 
filtering the signals through the skull or scalp [14].   
Intracortical electrodes are inserted in the cerebral cortex to 
record electrical signals. Any invasive electrodes have high 
spatial and temporal resolutions with the drawback of neuronal 
damage [15, 16]. Electroencephalography (EEG) Hans Berger 
recorded his first EEG in 1924. It is a non-invasive type [17]. 
Traditionally EEG is considered low spatial resolution but 
good at a temporal resolution [18]. A few researchers proved 
that the EEG is good at spatial resolution using surface 
Laplacian computation [19] and Tripolar Concentric Ring 
Electrodes [20] and combining EEG and fMRI to encode 
visual stimuli [21]. Magnetoencephalography (MEG) measures 
brain activity by the magnetic field generated by the electrical 
activity of the neurons. It provides high spatial and temporal 
resolution than the EEG [22, 23]. 

Functional Magnetic Imaging (fMRI) Clinical laboratories 
use Functional Magnetic Resonance Imaging (fMRI). When a 
particular brain area is active, that area will have more blood 
flow. fMRI finds the activity of the brain during changes in 
blood flow. The fMRI is good at spatial resolution and poor at 
a temporal resolution [24, 25]. Functional Near-infrared 
Spectroscopy (fNIRS) is a non-invasive brain signal 
acquisition device. Which is used widely in clinical 

applications like Parkinson's, Alzheimer's diseases, and 
childhood disorders could be diagnosed, and also it could be 
used in the Brain-computer interface. It emits less radiation, is 
user-friendly, has less cost, and is portable [26]. 

Among all non-invasive methods, EEG is the better option 
for researchers. Because of these reasons, easy to use, cost-
effective, portable, and good at temporal resolution. In general, 
spatial resolution is low. However, it could enhance with 
Surface Laplacian computation [19] and Tripolar Concentric 
Ring electrodes [20] and more use of practical applications. 1 
to 256 channels are available. 

C. International Standard 10-20 EEG System 

EEG signals are non-linear and highly non-static. The 
numbers 10 and 20 are the distance between adjacent 
electrodes. 10% and 20% of the total distance of the skull from 
the front to the back or left to right [26, 27]. Reference points 
of the measurements are Nasion (which is between nose and 
forehead), Inion (which is the lower point of the skull), vertex 
(which is the center point on the top of the skull), and pre-
auricular points anterior to the ear. Moreover, F, T, O, and P 
denote the Frontal Lobe, Temporal Lobe, Occipital Lobe, and 
Parietal Lobe of the brain area. Sub-indexes indicate even or 
odd numbers for the right and left hemispheres [28]. 

Researchers are using three kinds of evoked potential to 
measure the electrical activity of the brain. Three kinds of 
evoked potentials are used to measure the human brain's 
neuron activity during a stimulus and response. They are: 

Auditory Evoked Potential [29], Visual Evoked Potential 
[30], and Somatosensory Evoked Potential [31], respectively. 
In his 2017 study, Spüler wrote that Visual Evoked Potential 
(VEP) has significant communication speed in non-invasive 
EEG. To read an electrical signal from the brain gel-based 
electrode or dry electrode could be used. The application of 
gel-based electrodes takes more time to capture the signal. In 
order to create a more user-friendly BCI system, we can use 
dry EEG electrodes with a VEP-based system. However, it 
gives high variability between the subjects. Introduces 
averaging and dynamic stopping methods to mitigate the 
performance variability and deal with the lower signal-to-noise 
ratio of dry electrodes [32]. O  

III. PREVIOUS WORKS IN EEG 

Though the invasive method is sound in SNR and spatial 
resolution and apt to the BCI application, the risk factor is 
possible after the surgery [33]. Therefore, researchers are 
choosing the non-invasive method. The medical domain uses 
EEG for early identification of Alzheimer's, Parkinson, 
Paralyzing, and Epilepsy, and monitoring Anesthesia drug 
levels during surgery. Few researchers are also showing more 
interest in the non-medical domain, like decoding covert 
speech; this will be useful to impaired people, even brain-id for 
authentication purposes, Emotion detections, and in-home 
appliances. 

The EEG signals have been used in many applications 
related to brain wave analysis, like the presence of epilepsy, to 
classify the covert word, brain-computer interface to activate 
external devices, and Emotion detection.  
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A. EEG Applications in Diagnosing Brain Disorders 

1) Epilepsy: Conventionally neurologists go for a direct 

visual method to predict the epileptic abnormality. However, it 

takes more time to predict, may produce a variable result, and 

abnormality has limitations. Nowadays, to predict the above 

abnormality, a Computer-Aided Diagnosis is used [34]. In 

their work no separate steps for feature extraction and feature 

selection because they used the deep CNN model; this is one 

of the models in the deep learning technique [35]. The model 

will help predict Seizure disease. However, the data set was 

not enough for excellent performance, and the data should 

increase or apply data augmentation method [36] to achieve 

optimal performance of the result. 

In another research, the author compared various Ensemble 
methods like bagging, boosting, Ada boosting, Multi boosting, 
random subspace, and rotation forest to discriminate the non-
epileptogenic region of the brain with the epileptogenic 
location of the brain. They concluded that the rotation forest 
classifier had high performance [37]. 

2) Parkinson's disease: Many Parkinson's patients have a 

problem with locomotion. They will get stuck in forwarding 

movement while walking due to the Freezing of Gait (FOG) 

issue. One study revealed that it is possible to predict the FOG 

of Parkinson's disease (PD) before happening through EEG 

visual or auditory cues. The author investigated the specific 

EEG feature to implement real-time FOG prediction [38]. 

They used three layers-back propagation neural network 

model. They achieved 85.86% of sensitivity and a specificity 

of 80.25%. 

B. EEG Applications in Emotions Detection 

Emotions are the real feelings of humans, and the human 
brain controls them. Every human can have positive and 
negative emotions [39]. Positive emotions are love, happiness, 
surprise, joy, etc., as negative emotions are guilt, sadness, and 
annoyance. In various situations, they generate these emotions. 
If the emotions are within a limit, no problem for humans, or it 
may affect their health. Early identification of these 
problematic emotions makes it possible to reduce the many 
problems. Initially, the researchers detected these emotions 
using facial expressions, Text, or gestures [40]. They 
developed a model to recognize their facial expression or their 
gestures. However, nowadays, researchers are interested in 
using the human brain with the help of EEG. Much research 
has been available to classify emotions in the last decade. One 
study concluded that the neurons in the left hemisphere are 
active during positive emotions, and those in the right 
hemisphere are active during negative emotions [41].  

C. EEG Application in BCI  

One of the main aims of the BCI is to assist the paralyzed 
person in communicating with the outside world by controlling 
assistive devices through their brain signals without moving 
their legs or hands so that the dysfunctional motor system can 
bypass them. Some neuronal disorders cause patients to suffer 
significantly from impaired communication, including 
amyotrophic lateral sclerosis (ALS). As per the study by 

Chaudhary and his team in 2001, paralyzed patients could 
communicate with the aid of multiple brain-computer 
interfaces (BCI), including those that use 
electroencephalography [42]. 

P300 speller is one of the most popular BCI applications. 
There is a possibility to increase the performance of the P300 
in practical usage. The author has examined the correlation 
between the P300 speller's versions with Rapid Serial Visual 
Presentation (RSVP) task features in this paper. In this study, 
the author identified the features of the correlation between the 
ERP (Event Relation Potential) and its behavior in offline 
binary classification accuracy. Using these features, the author 
proposed a simple multi-feature predictor. Their study revealed 
that a multi-feature predictor model could achieve higher 
predictability than the single-feature predictor model [43].  

A recent study shows that a new system dimension controls 
the categories of people with speech problems and with 
ordinary people to assist them in everyday life by humming 
[44]. This article revealed the feasibility of EEG in BCI with 
vocal Imagery and vocal Intention. Four types of tasks were 
instructed to the subjects to perform, non-task specific (NTS), 
motor task (MT), vocal Imagery task (Vim), and vocal 
Intention task (VInt). The author concluded that the Vim task 
was highly classifiable in the EEG paradigm with BCI systems.  

In their 2019 study, Kim et al. believe that the application 
of Brain-Computer Interface has been reaching out to non-
medical applications too. That controls home appliances like a 
TV, digital door-lock, and electric light [45]. In another 
research, the author developed an assistive BCI system, which 
is helpful to differently-abled people. It will generate 
synthesized speech while the eye is blinking. During EEG 
recording, when the subjects notice the desired option on the 
display, they will wink their eyes; the system generates the 
synthesized speech per the options display. This system will be 
helpful to a patient who has a locomotive disorder like "locked-
in syndrome"; this patient can communicate with their 
caretaker. This model could be used only for patients who have 
neurology disorders. Here the author suggested that instead of 
eyeblink EEG signals better to identify imagined movements 
through EEG signals [46]. 

D. EEG in Authentication 

In information security, authentication is essential for in-
person identification. Many techniques exist, like hand 
signature, password, fingerprint, iris, face, and voice 
recognition. However, all these have vulnerabilities. There is 
an alternative technique for every authentication technique, like 
forgery in the hand signature; the password can hack, film for 
fingerprint, contact lenses for the iris, face masks, and a voice 
vocoder [47]. Brain signature is the best solution because it is 
unique and cannot steal or hack. In one study, the author used 
only Alpha and Beta waves captured through EEG while 
subjects read 4-digit numbers when they saw numbers. A linear 
Discriminant algorithm (LDA) have used in the classifier. The 
training model has taken Common Spatial Analysis (CSA) 
values. Before authenticating, the trained model should have 
all the user's details. Finally trained model is used to 
authenticate the user [48]. In the later study, the author found 
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that the delta wave has more specific information in user 
identification among all the five brain waves [47].   

This research used biometric authentication to identify the 
individual using the brain signal system. The author captures 
EEG signals while performing three mental tasks with the 
participants. The author adapted a novel protocol and algorithm 
using NN and used mu and beta waves with a single trial 
analysis to test the novel algorithm. The Levenberg Marquardt 
back propagation algorithm trained NN. This research shows 
that the reading task is more suitable for biometric verification 
[49].   

E. EEG in Imagined Speech 

In the world, approximately nine billion people have 
problems speaking and hearing either by birth or accidentally 
last their speaking and hearing capability. It is tough for them 
to speak with ordinary people. With the same community, they 
can communicate with their sign language. (Communication 
between visually challenged and ordinary people is acceptable 
since they can speak well). Many researchers have developed 
an assistive tool that helps hard-of-hearing people 
communicate with ordinary people by converting sign 
language images into audible speech.  

Recently researchers are showing interest in decoding the 
intended speech using brain waves invasively or non-
invasively. In the last year, a few scientists have proven that 
imaged speech can interpret by implanting electrodes 
invasively using AI in the medical domain. 

Imagined speech or covert speech, or inner speech, is a new 
paradigm used in the Brain-Computer interface to assist 
impaired people in communicating with the outside world for 
those who cannot produce the speech either partially or entirely 
or due to any health issues. Imagined or covert speech means 
thinking of a word without having articulation sound or tongue 
movement. An Imagined word could capture in EEG. 

Since the last decade, researchers have been involved in 
imagined speech using EEG brain signals. Decoding silent 
speech will be helpful in many aspects like locked-in syndrome 
people, cognitive biometrics, and entertainment [50]. All the 
researchers used a complete band frequency with the different 
channels and subjects. However, Valuable information may not 
be present in the EEG signal during the analysis period 
<100ms. Better decoding accuracy in the classification, 
especially in the phase pattern in Theta and Delta waves [21]. 

This systematic review contains the classification 
performance result of the model. The researchers used the 
subjects to imagine the different vowels, consonants, words, 
both the vowel and words, and directions in symbols or words 
and objects. They used different classification algorithms. Most 
researchers applied benchmark algorithms like SVM, Random 
Forest, and LDA. 

Methodologies used in imagined speech classification: 
Support Vector Machine (SVM) has been used in EEG 
classification for the diagnosis of neurological disorders [51]. 
This model was used effectively in many applications for 
disease prediction analysis, particularly in the medical domain. 
The linear SVM is an efficient technique for high-dimensional 

data application. Nowadays, researchers have used EEG brain 
signals to decode imagined speech. Support Vector Machine 
(SVM) is used in imagined speech analysis using EEG signals. 
The following article has evidence of the application of SVM 
to classify vowels and consonants [21, 52, 53]. To classify the 
Imagined word [50]. In one more repeated study, SVM as a 
benchmark algorithm is used to classify the vowels [54]. 

Extreme Learning Machine (ELM) is another effective 
classifier. Many real-time applications use the ELM technique. 
It is for binary as well as multi-class classification. It has a high 
learning speed, so researchers have used this model in robotic 
applications [55]. Since its fast-learning capability and no 
iteration, the reason is that a single hidden layer connects the 
output layer; it is used in EEG applications to classify the 
imagined vowels and words [53, 56]. The performance of ELM 
in sparse high-dimensional applications which are currently 
under investigation [57]. 

In Decision Tree (DT), only training data is sufficient 
because once the decision tree is present with the help of 
training data, it can support new samples. While classification, 
new data was inserted without disturbing the entire tree. 
Moreover, it is very flexible to include the sample [58].  

The importance of channel selections and reducing 
electrodes are in the next section. For these, the decision tree 
algorithm is suitable because EEG signals may contaminate 
with noises or contain irrelevant information, which will 
reduce the classification's performance. One study revealed 
that a decision tree could improve performance. 

Furthermore, the authors proved that the decision tree is 
better than the following algorithms: Mutual information, 
SVM, CSP coefficient, and Fisher's criterion, respectively [59]. 
It is easy to interpret the brain signal by a decision tree. 
However, if the data set is large, then it is challenging. For 
smaller data decision tree is more suitable for decoding silent 
speech [50, 60].  

Random Forest (RF) is another classifier. Recent study 
proved that sufficient electrodes could reduce the time and 
effort in analysis during EEG signal classification by the time 
Random Forest model [61]. The random forest model is an 
improved version of the decision tree, widely used in EEG 
signals classification. The Random Forest model is used as a 
benchmark classifier to classify vowels and words [54] and in 
the imagined word classification[50]. 

Linear discriminant analysis (LDA) is a familiar feature 
reduction technique to project the features in higher dimension 
space into lower dimension space. Moreover, as a classifier, it 
is used. It creates a new axis from the features, reducing the 
variance and increasing the two variables' class distance. The 
main drawback of LDA in feature reduction is required all the 
features as the input signal. The new feature is calculated based 
on all the observations. This situation will not occur in real-
time BCI applications [62]. 

K-Nearest Neighbor (KNN) is a multi-class classifier. It 
does not take training duration; the reason is that the data itself 
is a model. Implementation is straightforward when compared 
with another classification algorithm. The reason is that it just 
calculates the distance between the different features using 
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either Euclidian or Manhattan. Moreover, it has only one 
hyper-parameter k and several clusters. However, it has a few 
drawbacks also.  

For small datasets, it works well, but not in large datasets 
and high dimensional data sets. It also takes more cost to 
calculate the distance. Noise and missing data can affect this 
model. In the imagined word classification, Naïve Bayesian 
and MLP models are used [50, 63].  

Classifying the EEG signal with a few layers in CNN is 
impossible. For better classification accuracy Deep Neural 
Network could be the best for the EEG imagined data [64]. 
CNN[54, 64, 65] RNN and  DBN[66], DNN[67]. The DBN 
was introduced in 2006 and, in the next year, was analyzed by 
Bengio [68]. The table shows the pros and cons of the various 
classifier. 

1) Subject focused on imagine vowel and consonant: 

Table II depicts various studies involved in classifying 

imagined speech with vowel and consonant using different 

model. One study shows the discrimination between the vowel 

sound of /a/, /u/, and rest as control states for the imagined. The 

vowel /a/ and /u/ was the following muscles involved while 

uttering these vowels. They are digastric and Orbicularis Oris 

muscles [52]. They used a linear classifier and SVM to give the 

excellent performance result in the table. 

TABLE II. IMAGINE VOWELS AND CONSONANTS 

Reference 
Vowels/ 

Consonant 
Classifier Performance 

[21] 
/a/, /e/, /i/, 

/o/, /t/ 
SVM 

δ, θ has better classification 

accuracy in the phase pattern 

[52] /a/, /u/, rest 
Linear, 

SVM 
87.5 – 100% 78.33 – 96.67 

[53] 
/a/,/e/,/i/, /o/, 

/u/ 
ELM 68.5% 

[65] 
/a/,/e/,/i/, /o/, 

/u 

CNNeeg1-1 

Compared 

with DL 
Shallow 

CNN 

65.62% in BD1 and 85.66% 

in BD2 

In another study, the vowels /a/, /u/, / i/, /o/, and /u/ were 
used. They aimed to classify the imagined speech of EEG 
using a single trial [53].  

In the Feed-Forwarded Neural Network [6], all the weights 
and biases are necessary to tune each layer. It slows down the 
process. Therefore, the author used the ELM method. G. 
Huang invented ELM [53, 57], which uses random weight to 
calculate output weight analytically. Hence learning speed is 
significantly high compared with other conventional neural 
network algorithms.  

Normally classifying EEG data gives poor generalization 
overfitting due to limited samples. However, the generalization 
was good in this research and achieved minimum squared 
training error. The result shows that the ELM and its variants 
have better classification results than other algorithms [53].  

One more research conducted used all the vowels /a/, /u/, 
/i/, /o/, /u/ and created a new dataset with 50 subjects. In this, 
they proposed a new algorithm named CNNeeg1-1 in deep 

learning to classify imagined vowels in EEG signals and 
compared the performance of CNNeeg1-1 with DL Shallow 
CNN and EEGNet benchmark algorithm by an open-access 
dataset (BD1) and a new dataset (BD2). CNNeeg1-1 performs 
better than the other mentioned algorithm, with 65.62% in BD1 
and 85.66% in BD2 [65].  

Another study used English alphabets /a/, /e/, /i/, /and /t/ 
they identified that the EEG phase signals have more 
information than the other frequency band of the EEG signal 
during auditory and visual stimuli. So decoding accuracy is 
more in EEG phase signals than the power information.  

Also, it is possible to get good accuracy in decoding during 
the time between 180ms and 300ms after the appearance of the 
stimulus [21].  

Subject focused on imagine words: Table III shows that 
some of the researchers used specific words instead of using 
either vowels or consonants. So that the model will be helpful 
to persons who are not able to speak or not able to move their 
bodies; they could get help from the caretaker. 

TABLE III. IMAGINED WORDS 

Reference Words Classifier Performance 

[10] 
Go, back, left, 

right, stop 
ELM 

40.30% and 87.90% in 
multi-class and binary 

class 

[50] 
Sos, medicine, 
stop 

RF, DT, KNN, 
SVM 

76.4% in theta wave. 

[63] 
Yes, no, the 

rest state 
MLP 

Yes vs. rest 73.73% 

No vs. rest 75.38% 

Ternary classification 
53.91% 

[66] 10 CVC RNN, DBN 72% & 80% 

[67] In, Cooperate DNN 71.8 % 

[69] 

Forward, 

backward, up, 

down, help, 
take, stop, 

release 

ResNet18+2GRU 85% 

[70 

Ambulance, 
hello, light, 

stop, toilet, 

water, clock, 
help me, pain, 

thank you, TV, 

and Yes. 

RF, SVM 

39.73±5.64% in 
imagined speech. 

40.14±4.17% in visual 

imagery. 

It is possible to develop more intuitive BCIs for 
communication-based on BCI activation tasks involving covert 
speech. The author used 'Yes' and 'no' as imagined words [63]. 
In the same year, Quresh et al. conducted more research to 
classify the five words: go, back, left, right, and stop. They 
used a sigmoid activation function-based linear ELM classifier 
and all the frequency bands. The author suggested that δ and α 
can be used instead of all the frequencies. Because more 
activation processes were present in that frequency band [10], 
they achieved good classification results in both the multi-class 
and binary classification. 

In another research, the author suggested that acquiring 
EEG signals from more channels will increase the training data 
size. It improves the classification accuracy in the deep 
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learning technique [67]. Furthermore, channel selection also 
has a vital role [18]. It is easier to train a DNN if the selected 
channels correspond to individual imagined words and are 
considered independent data vectors [67]. This author has 
taken two words to decode one short word, 'in' and one long 
word, Cooperate, and the DNN model gave a 71.8% 
performance result. A large data set is required to build a 
neural network classifier for good accuracy. In another paper, 
Vorontsova confirmed that a small data set is enough to 
construct a more accurate neural network classifier on EEG in 
a single participant subject rather than a group of subjects with 
an extensive data set. In addition, they concluded that limited 
sample EEG data could apply to the general population [69]. In 
silent EEG, speech recognition with Russian words: Forward, 
backward, up, down, help, take, stop, release, and pseudo-
word. The research conduct result shows that RNN yields good 
accuracy than CNN. 

To identify the vowel from Consonant-Vowel-Consonant 
words were used RNN and DBN models. From the brain 
connectivity estimator result, the author identified that more 
electrons are activated during speech and imagery speech in the 
left frontal and left temporal portions. Deep Belief Network 
has given a better classification result than the RNN [66].   

A recent study by Agarwal & Kumar (2021) analyzed all 
the brain waves of the three words of silent speech sos, 
medicine, and stop. The research result was 76.4% accuracy in 
the theta wave. This research identified that more details would 
be available in theta and high gamma waves during a silent 
speech [50]. Moreover, some words share a similar pattern in 
brain activity [69]. Decoding EEG signals with more classes is 
also not advisable. In multi-class classification, the author 
found that the decoding performance may reduce moderately 
due to the more feature in imagined and visual imagery speech 
while decoding imagined words [70]. 

TABLE IV. IMAGINE VOWELS AND WORDS 

Reference Vowels/Words Classifier Performance 

[54] 

/a/, /e/, /i/, /o/, 

/u/ up, down, 
left, right, 

backward, 

forward 

CNN 
Word accuracy 24.97% Vowel 

accuracy 30% 

[64] 

/a/, /e/, /i/, /o/, 
/u/ up, down, 

left, right, 

backward, 
forward 

CNN, TL 
CNN-23.98% and 24.77%, 
24.12%, 23.22% 

2) Subject focused on imagine vowels and words-repeated 

study: Table IV depicts two research conducts have done the 

repeated study with the same open-access data set created by 

Coretto but used a different method to classify the word [54, 

64]. The article's main objective was to enhance the 

classification result by decoding imagined speech in EEG 

using DL with  Hyper-parameter optimization [54,71]  on 

classifier performance. They tried both overt and covert 

speech. From this, the author concluded that CNN has 

significantly better accuracy than SVM, RF, and rLDA 

classifiers. All the classifiers used the nCV method for HP 

optimization. The result shows that the robust selection of HP 

in CNN for decoding was critical. The effect of the model 

determines by the number of epochs, activation function, and 

learning rate. So, the selection of optimal HP depends on the 

other hyper-parameters [54]. The author proposed a new CNN 

for the classification in the subsequent repetition study. The 

idea was to reduce the complexity, retaining the same 

accuracy, but the result has shown considerably less accuracy. 

The author recommended more data and powerful machine 

learning algorithms to increase accuracy. The effectiveness of 

the neural network improved through transfer learning [72].  

The research revealed that the brain signal is unique for the 
same imagined action in a different subject [64]. Subject 
focused on imagine directions: Feature extraction and 
classification have a vital role in any BCI system. Researchers 
have used classical approaches like pattern recognition in 
feature extraction and classification for decades. Now many 
researchers are applying a deep learning approach in many 
areas. Few researchers have introduced the deep learning 
method into the study of biomedical signals, especially EEG 
signals. Table V shows that the subjects were imagined the 
directions instead of vowel, consonant, or words.  

TABLE V. IMAGINE DIRECTIONS 

Reference Direction Classifier Performance 

[56] 
Left, right, up, 

and down 
ELM multi & binary 49.77% 

[73] 
+,  or  Both 
feet and tongue 

CNN 92.7% 

In their research, input has been taken based on wavelet 
transform; the time-frequency input images acquired in the C4, 
C3, and Cz channels; resize technique is applied to the input 
image to minimize the training duration in 2D CNN. The 
research result shows that the proposed method is more 
efficient in the 1D kernel with fewer parameters. However, it 
has challenges in performance due to the quality of the signals 
and limited samples [73]. Another research proposed by Pawar 
& Dhage (2020) in multi-class covert speech classification 
using an extreme learning machine (ELM). The ELM provides 
the generalized and optimal solution in multi-class covert 
speech recognition. It has the advantage of training and testing 
the model will take less cost because it is a single hidden layer 
feed-forward neural network. It is not required to tune the 
weights. Moreover, the author has shown that the EEG signals 
taken from a particular region in the brain will be sufficient 
instead of acquiring signals from the entire brain. Their future 
challenge is to develop an intelligent algorithm to classify 
many words in real-time [56]. The authors have taken three 
different brain areas; Brain Area 1 was the Prefrontal cortex, 
right inferior frontal gyrus, and Wernicke's and Broca's areas. 
Brain Area 2 is the same as Brain Area 1, and Brain Area 3 is 
the entire brain area.  

3) Subject focused on imagined object: Table VI shows 

that the objects were used instead of imagine vowel, 

consonant and word.  
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TABLE VI. IMAGINED OBJECT 

Reference Objects Classifier Performance 

[60] 
Cube, Rectangular 

prism, Pyramid 
Decision tree 43% 

The author used two visually challenged subjects and two 
sighted subjects to recognize the objects. The author achieved 
43% classification accuracy, which was less. Still, it could be 
90% accurate for an enormous decision tree, but if it is too 
large, it is not easy to analyze. The author revealed that sighted 
people could identify the object through their vision signal 
though blindfolded. It means the occipital lobe was 
significantly active. However, visually impaired people 
identified the same things by sensing only. Neurons in the 
parietal lobe were active [60].  

However, this decoding of covert speech is in the NP-Hard 
problem only; we hope it will soon be NP-Complete. If 
researchers achieved 100% success in decoding covert speech 
and deploying it successfully, many impaired people could lead 
better life in society. 

IV. SIGNIFICANCE OF THE NUMBER OF CHANNELS AND 

SUBJECTS, KEY CHALLENGES 

It is essential to select the proper electrodes and their 
locations. If fewer electrodes are selected correctly, they may 
retain critical information. If too many electrodes are selected, 
then it may produce redundant information. Similarly, the 
number of subjects is essential to acquire the EEG signals for 
better classification results.  Training a model with 
significantly fewer data will be an issue with underfitting. 
Sometimes an over-fit problem may occur after training a 
model with sufficient data. So, it is necessary to have more 
subjects and attention to place sufficient electrodes in the scalp 
location as per the researchers' application. In one research, the 
authors stated that increasing the number of electrodes in the 
front temporal of the brain's left hemisphere could improve the 
imagined speech signal reorganization [65]. 

Many researchers showed more interest in decoding 
imagined speech using the non-invasive method. Various 
techniques were used to increase the accuracy of the 
classifications; however, it is hard to implement in a real-world 
scenario. Because of an insufficient EEG data set, takes long 
calibration time, Poor SNR and non-static signal. These are all 
significant challenges to the researchers. 

V. CONCLUSION  

In this systematic review, number of studies reviewed, 
which reveals a promising result for decoding imagined speech 
using vowels, consonants, words, directions and objects from 
EEG signals. However more work required to be conducted to 
interface with the machine and human. And also, we have 
observed that very few imagined data sets are available for BCI 
applications but still need to be adequately deployed in BCI 
applications due to a lack of data. Furthermore, all the available 
EEG data sets pertain to normal and healthy subjects only, 
particularly in decoding imagined speech. Any BCI model 
developed using the available data set will be helpful to people 
who have brain disorders while they are growing up or who are 

injured accidentally or due to illness. But may not be helpful to 
disabled people by birth itself.  

REFERENCES 

[1] Olsen, S., Zhang, J., Liang, K. F., Lam, M., Riaz, U., & Kao, J. C. 
(2021). An artificial intelligence that increases simulated brain–
computer interface performance. Journal of Neural Engineering, 18(4), 
046053. 

[2] Minguillon, J., Lopez-Gordo, M. A., & Pelayo, F. (2017). Trends in 
EEG-BCI for daily-life: Requirements for artifact removal. Biomedical 
Signal Processing and Control, 31, 407-418. 

[3] Dash, D., Ferrari, P., & Wang, J. (2020). Decoding imagined and spoken 
phrases from non-invasive neural (MEG) signals. Frontiers in 
neuroscience, 14, 290. 

[4] Nieto, N., Peterson, V., Rufiner, H. L., Kamienkowski, J. E., & Spies, R. 
(2022). Thinking out loud, an open-access EEG-based BCI dataset for 
inner speech recognition. Scientific Data, 9(1), 1-17. 

[5] Proix, T., Delgado Saa, J., Christen, A., Martin, S., Pasley, B. N., 
Knight, R. T., ... & Giraud, A. L. (2022). Imagined speech can be 
decoded from low-and cross-frequency intracranial EEG 
features. Nature communications, 13(1), 48. 

[6] Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 
521(7553), 436–444. https://doi.org/10.1038/nature14539 

[7] Reddy, T. K., Arora, V., & Behera, L. (2018). HJB-equation-based 
optimal learning scheme for neural networks with applications in brain–
computer interface. IEEE Transactions on Emerging Topics in 
Computational Intelligence, 4(2), 159-170 

[8] Shih, J. J., Krusienski, D. J., & Wolpaw, J. R. (2012, March). Brain-
computer interfaces in medicine. In Mayo clinic proceedings (Vol. 87, 
No. 3, pp. 268-279). Elsevier. 

[9] Van Erp, J., Lotte, F., & Tangermann, M. (2012). Brain-computer 
interfaces: beyond medical applications. Computer, 45(4), 26-34. 

[10] Qureshi, M. N. I., Min, B., Park, H. J., Cho, D., Choi, W., & Lee, B. 
(2017). Multi-class classification of word imagination speech with 
hybrid connectivity features. IEEE Transactions on Biomedical 
Engineering, 65(10), 2168-2177. 

[11] Buskila, Y., Bellot-Saez, A., & Morley, J. W. (2019). Generating brain 
waves, the power of astrocytes. Frontiers in neuroscience, 13, 1125. 

[12] Tangkraingkij, P. (2016). Significant frequency range of brain wave 
signals for authentication. In Software Engineering, Artificial 
Intelligence, Networking and Parallel/Distributed Computing 2015 (pp. 
103-113). Springer, Cham. 

[13] Casey, A., Azhar, H., Grzes, M., & Sakel, M. (2021). BCI controlled 
robotic arm as assistance to the rehabilitation of neurologically disabled 
patients. Disability and Rehabilitation: Assistive Technology, 16(5), 
525-537. 

[14] Herff, C., Heger, D., De Pesters, A., Telaar, D., Brunner, P., Schalk, G., 
& Schultz, T. (2015). Brain-to-text: decoding spoken phrases from 
phone representations in the brain. Frontiers in neuroscience, 9, 217. 

[15] Konerding, W. S., Froriep, U. P., Kral, A., & Baumhoff, P. (2018). New 
thin-film surface electrode array enables brain mapping with high spatial 
acuity in rodents. Scientific reports, 8(1), 1-14. 

[16] Wang, M., & Guo, L. (2020). Intracortical Electrodes. Neural Interface 
Engineering, 67-94. 

[17] İnce, R., Adanır, S. S., & Sevmez, F. (2021). The inventor of 
electroencephalography (EEG): Hans Berger (1873–1941). Child's 
Nervous System, 37(9), 2723-2724. 

[18] Alotaiby, T., El-Samie, F. E. A., Alshebeili, S. A., & Ahmad, I. (2015). 
A review of channel selection algorithms for EEG signal processing. 
Eurasip Journal on Advances in Signal Processing, 2015(1). 
https://doi.org/10.1186/s13634-015-0251-9 

[19] Burle, B., Spieser, L., Roger, C., Casini, L., Hasbroucq, T., & Vidal, F. 
(2015). Spatial and temporal resolutions of EEG: Is it really black and 
white? A scalp current density view. International Journal of 
Psychophysiology, 97(3), 210-220.  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

397 | P a g e  

www.ijacsa.thesai.org 

[20] Liu, X., Makeyev, O., & Besio, W. (2020). Improved Spatial Resolution 
of Electroencephalogram Using Tripolar Concentric Ring Electrode 
Sensors. Journal of Sensors, 2020. 

[21] Wang, Y. Y., Wang, P., & Yu, Y. (2018). Decoding English alphabet 
letters using EEG phase information. Frontiers in Neuroscience. 
https://doi.org/10.3389/fnins.2018.00062 

[22] Tian, X., & Poeppel, D. (2010). Mental imagery of speech and 
movement implicates the dynamics of internal forward 
models. Frontiers in psychology, 1, 166. 

[23] Singh, S. P. (2014). Magnetoencephalography: basic principles. Annals 
of Indian Academy of Neurology, 17(Suppl 1), S107. 

[24] Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation‐
sensitive contrast in magnetic resonance image of rodent brain at high 
magnetic fields. Magnetic resonance in medicine, 14(1), 68-78. 

[25] Yoo, P. E., John, S. E., Farquharson, S., Cleary, J. O., Wong, Y. T., Ng, 
A., ... & Moffat, B. A. (2018). 7T-fMRI: Faster temporal resolution 
yields optimal BOLD sensitivity for functional network imaging 
specifically at high spatial resolution. Neuroimage, 164, 214-229. 

[26] Rahman, M., Siddik, A. B., Ghosh, T. K., Khanam, F., & Ahmad, M. 
(2020). A narrative review on clinical applications of fNIRS. Journal of 
Digital Imaging, 33(5), 1167-1184. 

[27] Suhaimi, N. S., Mountstephens, J., & Teo, J. (2020). EEG-based 
emotion recognition: a state-of-the-art review of current trends and 
opportunities. Computational intelligence and neuroscience, 2020. 

[28] Koudelková, Z., Strmiska, M., & Jašek, R. (2018). Analysis of brain 
waves according to their frequency. Int. J. Of Biol. And Biomed. 
Eng., 12, 202-207. 

[29] Paulraj, M. P., Subramaniam, K., Yaccob, S. Bin, Adom, A. H. Bin, & 
Hema, C. R. (2015). Auditory Evoked Potential Response and Hearing 
Loss: A Review. The Open Biomedical Engineering Journal, 9(1), 17–
24. https://doi.org/10.2174/1874120701509010017 

[30] Zhao, H., Chen, Y., Pei, W., Chen, H., & Wang, Y. (2021). Towards 
online applications of EEG biometrics using visual evoked 
potentials. Expert Systems with Applications, 177, 114961 

[31] Kim, K. T., Choi, J., Jeong, J. H., Kim, H., & Lee, S. J. (2022). High-
Frequency Vibrating Stimuli Using the Low-Cost Coin-Type Motors for 
SSSEP-Based BCI. BioMed Research International, 2022. 

[32] Spüler, M. (2017). A high-speed brain-computer interface (BCI) using 
dry EEG electrodes. PLoS ONE, 12(2), 1–12. 
https://doi.org/10.1371/journal.pone.0172400 

[33] Gao, Q., Dou, L., Belkacem, A. N., & Chen, C. (2017). Non-invasive 
electroencephalogram based control of a robotic arm for writing task 
using hybrid BCI system. BioMed research international, 2017. 

[34] Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adeli, H. (2018). 
Deep convolutional neural network for the automated detection and 
diagnosis of seizure using EEG signals. Computers in Biology and 
Medicine, 100(September), 270–278. 
https://doi.org/10.1016/j.compbiomed. 2017.09.017 

[35] Indolia, S., Goswami, A. K., Mishra, S. P., & Asopa, P. (2018). 
Conceptual Understanding of Convolutional Neural Network- A Deep 
Learning Approach. Procedia Computer Science, 132, 679–688. 
https://doi.org/10.1016/j.procs.2018.05.069 

[36] Lashgari, E., Liang, D., & Maoz, U. (2020).  Data augmentation for 
deep-learning-based electroencephalography. Journal of Neuroscience 
Methods, 346,108885. 

[37] Jukic, S., Saracevic, M., Subasi, A., & Kevric, J. (2020). Comparison of 
ensemble machine learning methods for automated classification of 
focal and non-focal epileptic EEG signals. Mathematics, 8(9). 
https://doi.org/10.3390/math8091481 

[38] Handojoseno, A. M. A., Naik, G. R., Gilat, M., Shine, J. M., Nguyen, T. 
N., Quynh, T. L. Y., Lewis, S. J. G., & Nguyen, H. T. (2018). Prediction 
of freezing of gait in patients with Parkinson's disease using EEG 
signals. Studies in Health Technology and Informatics, 246(March), 
124–131. https://doi.org/10.3233/978-1-61499-845-7-124 

[39] Fredrickson, B. L. (2004). The broaden–and–build theory of positive 
emotions. Philosophical transactions of the royal society of London. 
Series B: Biological Sciences, 359(1449), 1367-1377. 
https://doi.org/10.1098/rstb.2004.1512 

[40] Rahman, A., Alzoubi, O., & Bhardwaj, A. (2015). Classification of 
human emotions from EEG signals using SVM and LDA Classifiers 
Related papers Classification of human emotions from EEG signals 
using SVM and LDA Classifiers. 

[41] Lane, R. D., Nadel, L., & Kaszniak, A. W. (2002). Cognitive 
Neuroscience. Cognitive Neuroscience of Emotion, 407 

[42] Chaudhary, U., Mrachacz-Kersting, N., & Birbaumer, N. (2021). 
Neuropsychological and neurophysiological aspects of brain-computer-
interface (BCI) control in paralysis. Journal of Physiology, 599(9), 
2351–2359. https://doi.org/10.1113/JP278775 

[43] Won, K., Kwon, M., Jang, S., Ahn, M., & Jun, S. C. (2019). P300 
Speller Performance Predictor Based on RSVP Multi-feature. Frontiers 
in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00261 

[44] Kristensen, A. B., Subhi, Y., Puthusserypady, S., & Member, S. (2020). 
Vocal Imagery vs Intention : Viability of Vocal Based EEG-BCI 
Paradigms. 4320(c), 1–9. https://doi.org/10.1109/TNSRE.2020.3004924 

[45] Kim, M., Kim, M. K., Hwang, M., Kim, H. Y., Cho, J., & Kim, S. P. 
(2019). Online home appliance control using EEG-Based brain–
computer interfaces. Electronics (Switzerland), 8(10). 
https://doi.org/10.3390/electronics8101101 

[46] Soman, S., & Murthy, B. K. (2015). Using brain computer interface for 
synthesized speech communication for the physically disabled. Procedia 
Computer Science, 46, 292-298. 

[47] Zhang, X., Yao, L., Kanhere, S. S., Liu, Y., Gu, T., & Chen, K. (2018). 
Mindid: Person identification from brain waves through attention-based 
recurrent neural network. Proceedings of the ACM on Interactive, 
Mobile, Wearable and Ubiquitous Technologies, 2(3), 1-23. 

[48] Jayarathne, I., Cohen, M., & Amarakeerthi, S. (2016, October). BrainID: 
Development of an EEG-based biometric authentication system. In 2016 
IEEE 7th Annual Information Technology, Electronics and Mobile 
Communication Conference (IEMCON) (pp. 1-6). IEEE. 

[49] Hema, C. R., & Osman, A. A. (2010, May). Single trial analysis on EEG 
signatures to identify individuals. In 2010 6th International Colloquium 
on Signal Processing & its Applications (pp. 1-3). IEEE. 

[50] Agarwal, P., & Kumar, S. (2021). Transforming imagined thoughts into 
speech using a covariance-based subset selection method. Indian 
Journal of Pure and Applied Physics, 59(3), 180–183. 

[51] Richhariya, B., & Tanveer, M. (2018). EEG signal classification using 
universum support vector machine. Expert Systems with 
Applications, 106, 169-182. 

[52] Iqbal, S., PP, M. S., Khan, Y. U., & Farooq, O. (2016). EEG Analysis of 
Imagined Speech. International Journal of Rough Sets and Data 
Analysis (IJRSDA), 3(2), 32-44. 
https://doi.org/10.4018/IJRSDA.2016040103 

[53] Min, B., Kim, J., Park, H. J., & Lee, B. (2016). Vowel Imagery 
Decoding toward Silent Speech BCI Using Extreme Learning Machine 
with Electroencephalogram. BioMed Research International. 
https://doi.org/10.1155/2016/2618265 

[54] Cooney, C., Korik, A., & Coyle, D. (2020). Evaluation of 
Hyperparameter Optimization in. Sensors. 

[55] Duan, J., Qu, y., Hu, J., Wang, Z., Jin, S., & Xu, C. (2017). Fast and 
stable learning of dynamical systems based on extreme learning 
machine. IEEE  Transactions on Systems, Man, and Cybernetics: 
Systems, 49(6), 1175-1185. 

[56] Pawar, D., & Dhage, S. (2020). Multi-class covert speech classification 
using extreme learning machine. Biomedical Engineering Letters, 10(2), 
217–226. https://doi.org/10.1007/s13534-020-00152-x 

[57] Huang, G. Bin, Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning 
machine: Theory and applications. Neurocomputing, 70(1–3), 489–501. 
https://doi.org/10.1016/j.neucom.2005.12.126 

[58] Aydemir, O., & Kayikcioglu, T. (2014). Decision tree structure based 
classification of EEG signals recorded during two dimensional cursor 
movement imagery. Journal of neuroscience methods, 229, 68-75. 

[59] Arvaneh, M., Guan, C., Ang, K. K., & Quek, H. C. (2010). EEG channel 
selection using decision tree in brain-computer interface. In Proceedings 
of the Second APSIPA Annual Summit and Conference (pp. 225-230). 

[60] Bastos, N. S., Marques, B. P., Adamatti, D. F., & Billa, C. Z. (2020). 
Analyzing EEG Signals Using Decision Trees: A Study of Modulation 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

398 | P a g e  

www.ijacsa.thesai.org 

of Amplitude. Computational Intelligence and Neuroscience. 
https://doi.org/10.1155/2020/3598416. 

[61] Dubey, J. D., Arora, D., & Khanna, P. (2018). Reducing Electrodes 
based on Decision Tree Classification for EEG Motor Movement Data. 
international Journal of Engineering & Technology, 7 (3.12) (2018) 
344-347. 

[62] Kołodziej, M., Majkowski, A., & Rak, R. J. (2012). Linear discriminant 
analysis as EEG features reduction technique for brain-computer 
interfaces. Przeglad Elektrotechniczny, 88(3), 28-30. 

[63] Rezazadeh Sereshkeh, A., Trott, R., Bricout, A., & Chau, T. (2017). 
EEG Classification of Covert Speech Using Regularized Neural 
Networks. IEEE/ACM Transactions on Audio Speech and Language 
Processing, 25(12), 2292–2300. 
https://doi.org/10.1109/TASLP.2017.2758164 

[64] Tamm, M. O., Muhammad, Y., & Muhammad, N. (2020). Classification 
of vowels from imagined speech with convolutional neural networks. 
Computers, 9(2). https://doi.org/10.3390/computers9020046 

[65] Sarmiento, L. C., Villamizar, S., López, O., Collazos, A. C., Sarmiento, 
J., & Rodríguez, J. B. (2021). Recognition of eeg signals from imagined 
vowels using deep learning methods. Sensors, 21(19), 1–28. 
https://doi.org/10.3390/s21196503  

[66] Chengaiyan, S., Retnapandian, A. S., & Anandan, K. (2020). 
Identification of vowels in consonant–vowel–consonant words from 
speech imagery based EEG signals. Cognitive Neurodynamics, 14(1), 1–
19. https://doi.org/10.1007/s11571-019-09558-5 

[67] Panachakel, J. T., Ramakrishnan, A. G., & Ananthapadmanabha, T. V. 
(2020). A Novel Deep Learning Architecture for Decoding Imagined 
Speech from EEG. http://arxiv.org/abs/2003.09374 

[68] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. 
(2007, June). An empirical evaluation of deep architectures on problems 
with many factors of variation. In Proceedings of the 24th international 
conference on Machine learning (pp. 473-480). 

[69] Vorontsova, D., Menshikov, I., Zubov, A., Orlov, K., Rikunov, P., 
Zvereva, E., Flitman, L., Lanikin, A., Sokolova, A., Markov, S., & 
Bernadotte, A. (2021). Silent eeg-speech recognition using 
convolutional and recurrent neural network with 85% accuracy of 9 
words classification. Sensors, 21(20), 1–19. 
https://doi.org/10.3390/s21206744 

[70] Lee, S. H., Lee, M., & Lee, S. W. (2020). Neural decoding of imagined 
speech and visual imagery as intuitive paradigms for BCI 
communication. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, 28(12), 2647-2659. 

[71] Yu, T., & Zhu, H. (2020). Hyper-Parameter Optimization: A Review of 
Algorithms and Applications. 1–56. http://arxiv.org/abs/2003.05689 

[72] TOP, A. E., & KAYA, H. (2018). Classification of Eeg Signals By 
Using Transfer Learning on Convolutionalneural Networks Via 
Spectrogram. International Conference on Engineering Technologies, 
Dl, 1–6. 

[73] Xu, B., Zhang, L., Song, A., Wu, C., Li, W., Zhang, D., Xu, G., Li, H., 
& Zeng, H. (2018). Wavelet Transform Time-Frequency Image and 
Convolutional Network-Based Motor Imagery EEG Classification. IEEE 
Access, 7(Mi), 6084–6093. https://doi.org/10.1109/ACCESS. 
2018.2889093.  

  


