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Abstract—Ultrasound imaging is a unique medical imaging 

modality due to its clinical versatility, manageable biological 

effects, and low cost. However, a significant limitation of 

ultrasound imaging is the noisy appearance of its images due to 

speckle noise, which reduces image quality and hence makes 

diagnosis more challenging. Consequently, this problem received 

interest from many research groups and many methods have 

been proposed for speckle suppression using various filtering 

techniques. The common problem with such methods is that they 

tend to distort the edge detail content within the image and 

blurring is commonly encountered. In this work, we propose a 

new method that could be combined with previous speckle 

suppression techniques to preserve edge detail content of the 

image. The original image is first processed to extract the edge 

detail content. Rather than presenting the original method to the 

speckle suppression filtering technique, the edge detail content is 

subtracted from the original image before it is filtered. Then, 

such edge detail content is added to the output of filtering to form 

the final image. The new method is practically verified using 26 

imaging experiments as well as ultrasound images from publicly 

available databases in combination with four widely used speckle 

reduction filters. The results are evaluated qualitatively and 

quantitatively using standard image quality metrics. 
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I. INTRODUCTION 

Ultrasound imaging stands out as a widely embraced 
clinical imaging technique, lauded for its safety, cost-
effectiveness, and diverse soft tissue imaging applications 
encompassing abdominal imaging, echocardiography, and 
obstetrics and gynecology ‎[1]. The mechanism involves 
emitting low-intensity acoustic wave pulses into the body, 
capturing the reflected and scattered echoes from internal 
structures to construct a cross-sectional anatomical image. 
With its inherent safety and an impeccable track record in 
clinical applications, ultrasound imaging stakes its claim as the 
safest imaging modality to date. Its prevalence in critical 
applications, such as monitoring fetal growth and assessing 
biophysical profiles during pregnancy, attests to its reliability. 
The technology spans a spectrum, ranging from basic handheld 
units costing a few thousand dollars to sophisticated systems 
tailored for specialized applications like echocardiography, 
commanding prices in the hundreds of thousands. This 

versatility ensures accessibility in rural and low-income 
communities and integration into large, specialized hospitals, 
poised to become as indispensable to medical practice as the 
stethoscope. 

Despite the myriad advantages of ultrasound imaging, a 
glaring issue persists in the quality of its images compared to 
other modalities. The visual noise and the requisite training to 
correlate anatomy with ultrasound images stem from speckle, a 
persistent problem since the inception of ultrasound imaging. 
Research efforts, both academic and industrial, have focused 
on mitigating speckle noise in ultrasound images due to its 
undeniable impact on the technology ‎[2]. 

Speckle noise emerges inevitably as a direct consequence 
of the underlying physics in ultrasound imaging. The process 
involves transmitting an ultrasonic pulse through the body 
using a 1D or 2D array-formatted ultrasonic transducer. This 
pulse propagates through tissues, engaging with their various 
components, resulting in reflected waves from specular 
reflectors and scattering from point reflectors ‎[1]. The 
distinguishing factor between specular and point reflectors lies 
mainly in size; specular reflectors surpass the ultrasound 
wavelength, while scatterers are notably smaller than this 
wavelength, typically a fraction of a millimeter within the 2-15 
MHz range of ultrasound imaging frequencies. Consequently, 
tissue interfaces and major blood vessels mimic specular 
reflectors, while blood capillaries and cells within the 
extracellular space act as scatterers ‎[3]‎[4]. In tissues like the 
liver, hepatocytes independently scatter ultrasound waves, with 
the backscattered part received by the ultrasound transducer. 
Given the dependence on ultrasound transducer frequency, 
orientation, and the intricate 3D tissue structure, the received 
scattered waves from myriad cells interfere, creating a pattern 
of partial constructive and destructive interference points that 
manifest as random noise in the image. The crucial disparity 
between speckle noise and true random noise lies in the 
former's persistence under unaltered imaging conditions, 
resisting improvement through averaging or conventional 
methods ‎[5]‎[6]. 

Numerous approaches have been proposed to tackle the 
challenge of speckle reduction, broadly categorized as either 
acquisition or post-processing methods. Acquisition methods 
aim to diminish speckle by acquiring multiple versions of the 
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same slice with varying beamforming parameters, such as 
steering, focal point, and frequency [7] [8]. Although this 
approach appears straightforward, its practical implementation 
demands the reprogramming of acquisition protocols for 
different applications, incurring substantial costs and posing 
challenges in applications requiring high frame rates or specific 
acquisition sequences, such as in 3D and 4D imaging [8]. 
Alternatively, the second approach, centered on 
postprocessing, has garnered attention from research groups 
since the 1980s. The fundamental premise involves 
commencing with the acquired image and applying diverse 
filtering strategies to suppress speckle noise. This approach 
mandates only a digital processing platform and access to the 
ultrasound imaging system's frame buffer. It can also operate 
on an external computer with a frame grabber or other means 
to collect ultrasound images without altering the existing 
system. Given the advancements in modern computing 
platforms, including parallel processing and GPUs, this 
approach emerges as the pragmatic starting point for practical 
purposes with existing ultrasound imaging systems. 
Technically, most classical post-processing methods fall into 
four main categories, with hybrids across them—linear, 
nonlinear, diffusion-based, and wavelet-based filtering 
methods ‎[2]. Linear filters encompass techniques like first-
order statistics filtering, local statistics filtering with higher 
moments, and homogeneous mask area filtering ‎[9]‎,‎[10], ‎[11]. 
Nonlinear filtering methods include median filtering, linear 
scaling filter, geometric filtering, and homomorphic 
filtering ‎[12]‎,‎[13]‎,‎[14]‎,‎[15]. Diffusion-based methods include 
various variants of anisotropic diffusion filtering ‎[16]‎,‎ [17]‎,‎
[18]‎,‎ [19]‎,‎ [20]. Wavelet-based methods primarily operate 
using wavelet shrinkage with different wavelet families and 
levels of composition ‎[21]‎,‎ [22], ‎[23]‎,‎ [24]. Hybrids 
incorporating elements from these methods have also been 
introduced ‎[25]‎,‎ [26], [34], [35]. Other approaches include 
methods that use a human visual system model to reduce the 
appearance of noise in ultrasound images [36], and methods 
involving deep learning using convolutional neural networks to 
build despeckling models from training custom-designed 
networks [37], [38]. 

Despite the strides made in speckle reduction methods, 
challenges persist in bridging the gap between the perceived 
quality of processed images by researchers and clinicians. The 
apparent smoothness achieved by these methods may 
compromise crucial edge details, significant to clinical 
sonographers. To harness the full potential of existing 
techniques, there is an imperative to enhance their performance 
and align them more accurately with the clinical perspective on 
image quality ‎[27]. Recognizing the substantial contributions 
of current techniques is vital, but addressing their common 
shortcomings is crucial to maximizing their efficacy in routine 
clinical ultrasound applications. 

In this work, we propose a new method that could be 
combined with previous speckle suppression techniques to 
preserve edge detail content of the image. The original image is 
first processed to extract the edge detail content. Rather than 
presenting the original method to the speckle suppression 
filtering technique, the edge detail content is subtracted from 

the original image before it is filtered. Then, such edge detail 
content is added to the output of filtering to form the final 
image. The new method is experimentally verified using 26 
imaging experiments as well as ultrasound images from 
publicly available databases with four widely used speckle 
reduction filters. The results are evaluated qualitatively and 
quantitatively using image quality metrics. 

II. METHODOLOGY 

Ultrasound image acquisition involves gathering a series of 
lines (or sticks) extending across the scanned area, arranged 
either linearly or in a sector pattern, contingent upon the 
employed imaging probe. The acquired data, referred to as 
stick data, serves as the foundation for generating a properly 
formatted output image through image reconstruction 
techniques, leveraging the provided geometry information. The 
new method starts from estimating the edge detail content from 
the original stick data. It works by applying edge detection 
techniques such as Canny edge detection to the original stick 
data to generate a map of the locations of salient edge detail 
features ‎[27]. To better include the complete edge detail 
features and take into account having a smooth transition to 
their surroundings in the subsequent steps, the generated edge 
map is blurred using a simple spatial domain filtering with a 
Gaussian kernel. The normalized version of the outcome is 
used as a mask that is multiplied by the original stick data to 
extract the edge detail content. A version of the original stick 
data that contains only the edge detail-free parts of the data is 
computed by subtracting such edge detail content from the 
original stick data. The detail-free data is used as the input to 
the speckle reduction filtering method. The restoration of edge 
detail content to the filtering output is done by adding them. 
The basic block diagram of the new edge detail preservation 
method is shown in Fig. 1. In order to visually illustrate the 
steps of the process, example stick data for all steps of the 
process are presented in Fig. 2 with comparison to the stick 
data output from the original speckle filtering alone. 

The implementation and testing of the novel edge detail 
preservation method involved four widely adopted speckle 
reduction filtering techniques, serving as representative 
examples from each of the four primary post-processing 
categories, without sacrificing generality. These techniques 
were wavelet denoising ‎[21], ‎[23], relaxed median (RMedian) 
denoising ‎[14]‎,‎ [15], speckle reducing anisotropic diffusion 
(SRAD) ‎[17]‎,‎ [16], ‎[18], and local statistics based filtering 
(Lee) ‎[9]‎,‎ [10]. In each of these techniques, the original 
technique is implemented with the implementation details 
suggested in the most recent variant. In order to quantitatively 
assess the image quality improvement, eleven image quality 
metrics are compared between the original filtering technique 
alone and its combination with the new edge detail 
preservation method. The image quality metrics used are 
geometric absolute error (GAE) ‎[2], mean-squared error 
(MSE) ‎[2], Laplacian mean-squared error (LMSE) ‎[28], 
normalized absolute error (NAE) ‎[28], Minkowski error metric 

(for =1, 3, 4) ‎[29], universal quality index (Q) ‎[30], structural 
similarity index (SSIN) ‎[29], signal-to-noise ratio (SNR) ‎[31], 
and peak signal-to-noise ratio (PSNR) ‎[31]. 
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Fig. 1. Illustration of outputs at each block of the proposed edge detail preservation method. The last image to the right illustrates the output of the speckle 

suppression filter without the new method for comparison. 

 

Fig. 2. Block diagram of the proposed edge detail preservation method applied to experimental stick data. The same block diagram applies to images from public 

databases without need for image reconstruction block. 

III. EXPERIMENTAL VERIFICATION 

The proposed method was verified using collected 
experimental ultrasound imaging data as well as ultrasound 
imaging data from publicly available resources. While the 
latter come in the form of image files encoded using 8-bit 
image formats such as Joint Photographic Experts Group 
(JPEG) or Portable Network Graphics (PNG) formats, the 
collected experimental data come in the form of raw data at a 
higher quantization rate of 16 bits. 

The acquisition of ultrasound imaging data employed the 
Digison Digital Ultrasound Research system from Mashreq, 
Egypt. This system, featuring a customized research interface, 
facilitated image acquisition control with the capability to 
access and store raw radiofrequency sampled data for each 

image line. To ensure a representative spectrum of 
applications, ultrasound array probes, including convex array 
abdominal probes, small parts linear probes, and tight convex 
array endo-cavity probes, were utilized. Imaging experiments 
spanned various clinical applications, conducted on human 
volunteers and a quality control tissue-mimicking phantom 
(Multi-Tissue Ultrasound Phantom CIRS Model 040GSE, 
CIRS Inc., U.S.A.). Each imaging experiment focused on a 
specific region, employing a designated imaging probe, and 
entailed collecting 10 images for each application to derive an 
average, minimizing interference from random noise in speckle 
reduction filtering. The total number of conducted imaging 
experiments was 26, yielding a total of 260 images. Fig. 3 
illustrates the diversity of images from these 26 experiments. 
The research interface facilitated raw image data collection at a 
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sampling rate of 50 M samples/s with 16 bits of quantization. 
Signal processing involved filter-based Hilbert transformation 
for peak detection, followed by resampling to yield 512 data 
samples per line (or stick). The resultant stick data formed a 
512×128 array that could subsequently use to reconstruct the 
final image using scan conversion and interpolation. 

The ultrasound imaging data from publicly available 
resources were obtained from the Breast Ultrasound Imaging 
(BUSI) database [32] and the B-mode ultrasound imaging 
cases from Ultrasound Cases training web site [33]. The BUSI 
database comprises breast sonography images collected from 
women aged 25 to 75 years in 2018. The dataset encompasses 
600 female patients, containing a total of 780 images with an 
average size of 500 by 500 pixels, provided in PNG format. On 
the other hand, the data from Ultrasound Cases website are put 
together through a collaboration between SonoSkills (a 
provider of ultrasound training in Europe) and FUJIFILM 
Healthcare Europe. (a manufacturer of medical imaging 
products, encompassing ultrasound, MRI, and X-ray). The 
database comprises information gathered from 7678 cases, 
covering a diverse range of applications, including liver, 
urinary tract, male reproductive system, gynecology, breast and 
axilla, as well as musculoskeletal joints and tendons. From this 
database, a total of 2428 images of size 225 by 300, 
specifically representing B-mode images, were utilized. 
Therefore, the total number of images from combining both 
databases is 3208 images. 

The stick data (experimental data) or image (public 
database data) underwent detection of edge detail mapping 
using Canny edge detection with thresholds of 0.1 and 0.4 for 
strong and weak edges, respectively, in both vertical and 

horizontal directions ‎[27]. Subsequently, a 2D Gaussian spatial 
filter with a kernel size of three created a mask, which was then 
multiplied by the original stick data to extract the edge detail 
content. This content served two purposes: first, subtracted 
from the original stick data to form detail-free stick data, 
serving as input for speckle reduction filtering; second, 
restored to the filtering output to create the final image. The 
processing steps for experimental stick data are visualized in 
Fig. 1, with illustrations of the data at each step in Fig. 2. It 
should be noted that the same diagram applied to public 
database data with no need for the image reconstruction step. 
The image quality assessment involved eleven quantitative 
metrics, comparing output from the speckle suppression filter 
with and without the edge detail preservation technique. 
Averaging metrics from the 26 experiments provided reliable 
comparisons, and standard deviations were computed. 
Percentage improvement facilitated observation of relative 
changes across metrics with different numerical ranges. The 
statistical significance between the two sets of results across 
experiments was evaluated using the p-value of a two-sample t-
test to test the null hypothesis that the observed differences in 
image quality metrics come from the same distribution where 
such hypothesis is rejected at a significance level of 0.05. 

The final image reconstruction utilized scan conversion 
and/or interpolation, aligning with array geometry and 
dimensions to present the image in the correct spatial format. 
All processing occurred on Matlab 2023a (Mathworks, Inc.) 
with an educational license from King Abdulaziz University. 
The computing platform featured an HP Omen 25L personal 
computer with an 11th generation Intel® Core™ i7-11700F 
running at 2.50 GHz, using a 64-bit Windows 11 Home 
Edition, and equipped with 32 GB of RAM. 

 

Fig. 3. Visualization of diverse imaging experiments conducted in this investigation. 
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IV. RESULTS AND DISCUSSION 

For the experimental data, Fig. 4 presents the output image 
results stemming from the implementation of the novel edge 
detail preservation technique, coupled with four illustrative 
techniques representing the prevailing approaches in speckle 
reduction for sample applications. Also, Fig. 5 presents 
magnified versions of parts of the output image results in Fig. 4 
to better demonstrate the effect of the new edge preservation 
method. The considered previous techniques encompass the 

widely used methods of wavelet denoising ‎[21]‎,‎ [23], relaxed 
median (RMedian) denoising ‎[14]‎,‎ [15], speckle-reducing 
anisotropic diffusion (SRAD) ‎[17]‎,‎ [16]‎,‎ [18], and local 
statistics-based filtering (Lee) ‎[9]‎,‎[10]. The original images are 
provided in the left column with the outputs of the four 
techniques on the first row and their combination with edge 
detail preservation technique on the second row in each 
application. As can be observed, the details are sharper with the 
new method for all techniques and across different 
applications. 

 

Fig. 4. Diagram showing the output image results from the original speckle suppression techniques (first row of each experiment) and combined with new edge 

detail preservation method (second row of each experiment) for four example experiments with original image in the left column. 
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Fig. 5. Magnified parts of the output image of Fig. 4 showing results from the original speckle suppression techniques (first row of each experiment) and 

combined with new edge detail preservation method (second row of each experiment) for four example experiments with original image in the left column. 
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TABLE I. IMAGE QUALITY METRICS BEFORE AND AFTER APPLICATION OF PROPOSED EDGE PRESERVATION TO ORIGINAL SPECKLE REDUCTION METHOD, 
AND ITS STANDARD DEVIATION CALCULATED ACROSS THE SET OF 26 EXPERIMENTS 

Quality Metric 
Wavelet Relaxed Median SRAD Lee 

Before After Before After Before After Before After 

Geometric Average Error (GAE) 
3.51 

± 0.61 
2.96 

± 0.49 
2.06 

± 0.35 
1.70 

± 0.29 
4.83 

± 2.28 
3.93 

± 1.56 
3.57 

± 0.57 
2.88 

± 0.47 

Mean Squared Error (MSE) 
114.89 

± 31.32 
59.94 

± 19.30 
71.58 

± 16.25 
30.23 

± 9.06 
184.80 

± 156.31 
94.87 

± 63.92 
120.8 

± 30.24 
57.81 

± 18.37 

Laplacian Mean Squared Error (LMSE) 
0.99 

± 0.04 
0.67 

± 0.08 
0.94 

± 0.07 
0.66 

± 0.08 
0.62 

± 0.13 
0.41 

± 0.1 
0.95 

± 0.13 
0.61 

± 0.08 

Normalized Absolute Error (NAE) 
0.07 

± 0.01 
0.05 

± 0.01 
0.04 

± 0.01 
0.03 

± 0.01 
0.09 

± 0.05 
0.07 

± 0.04 
0.07 

± 0.01 
0.05 

± 0.01 

Minkowski Error Metric (=1) 
7.53 

± 1.22 
5.89 

± 0.97 
4.47 

± 0.67 
3.40 

± 0.57 
10.19 

± 4.82 
7.65 

± 2.93 
7.47 

± 1.14 
5.74 

± 0.94 

Minkowski Error Metric (=3) 
15.82 

± 2.25 
9.24 

± 1.51 
15.08 

± 2.19 
8.55 

± 0.84 
17.00 

± 4.41 
10.71 

± 3.09 
16.11 

± 2.29 
9.15 

± 1.45 

Minkowski Error Metric (=4) 
22.8 

± 4.11 
10.77 

± 1.75 
23.52 

± 3.66 
14.89 

± 1.24 
23.35 

± 4.72 
11.98 

± 3.18 
22.99 

± 4.08 
10.73 

± 1.66 

Universal Quality  Index (Q) 
0.57 

± 0.04 
0.64 

± 0.04 
0.80 

± 0.04 
0.84 

± 0.04 
0.74 

± 0.08 
0.78 

± 0.08 
0.57 

± 0.05 
0.65 

± 0.05 

Structural Similarity Index (SSIN) 
0.66 

± 0.06 
0.72 

± 0.06 
0.84 

± 0.04 
0.87 

± 0.04 
0.81 

± 0.04 
0.85 

± 0.04 
0.66 

± 0.05 
0.74 

± 0.05 

Signal-to-Noise Ratio (SNR) 
23.97 

± 1.27 
26.88 

± 1.78 
25.99 

± 1.16 
29.84 

± 2.08 
22.78 

± 3.10 
25.71 

± 3.3 
23.72 

± 1.03 
27.02 

± 1.72 

Peak Signal-to-Noise Ratio (PSNR) 
27.65 

± 0.97 
30.41 

± 1.34 
29.27 

± 0.83 
33.25 

± 1.52 
26.40 

± 2.93 
29.39 

± 2.64 
26.83 

± 0.78 
30.48 

± 1.27 

TABLE II. AVERAGE PERCENTAGE ALTERATION IN IMAGE QUALITY METRICS FOLLOWING APPLICATION OF PROPOSED EDGE PRESERVATION TO ORIGINAL 

SPECKLE REDUCTION METHOD AND PERCENTAGE STANDARD DEVIATION ACROSS THE SET OF 26 EXPERIMENTS 

Quality Metric Wavelet Relaxed Median SRAD Lee 

Geometric Average Error (GAE) 
-15.65% 

± 5.42 
-17.47% 

± 5.08 
-18.66% 

± 6.49 
-19.31% 

± 4.37 

Mean Squared Error (MSE) 
-47.83% 

± 14.48 
-57.77% 

± 18.59 
-48.66% 

± 13.97 
-52.14% 

± 14.63 

Laplacian Mean Squared Error (LMSE) 
-32.48% 

± 9.28 
-29.83% 

± 9.61 
-33.08% 

± 9.50 
-36.13% 

± 13.91 

Normalized Absolute Error (NAE) 
-19.98% 

± 6.65 
-23.88% 

± 6.94 
-22.52% 

± 9.75 
-23.16% 

± 5.77 

Minkowski Error Metric (=1) 
-19.81% 

± 5.16 
-23.89% 

± 4.81 
-24.94% 

± 7.85 
-23.11% 

± 4.43 

Minkowski Error Metric (=3) 
-41.56% 

± 14.14 
-43.29% 

± 15.34 
-36.98% 

± 18.41 
-43.22% 

± 14.27 

Minkowski Error Metric (=4) 
-52.75% 

± 19.45 
-36.72% 

± 12.99 
-48.7% 

± 24.3 
-53.34% 

± 19.0 

Universal Quality  Index (Q) 
+11.35% 

± 4.17 
+4.26% 

± 1.62 
+4.88% 

± 2.01 
+14.41% 

± 5.05 

Structural Similarity Index (SSIN) 
+9.55% 

± 3.46 
+3.86% 

± 1.45 
+4.26% 

± 2.13 
+11.6% 

± 4.01 

Signal-to-Noise Ratio (SNR) 
+12.15% 

± 3.02 

+14.79% 

± 4.54 

+12.86% 

± 4.45 

+13.92% 

± 3.54 

Peak Signal-to-Noise Ratio (PSNR) 
+9.97% 

± 2.1 

+13.6% 

± 3.97 

+11.32% 

± 2.16 

+13.59% 

± 3.53 
 

In order to assess the results from the experimental data 
quantitatively, Table I presents the image quality metrics 
before and after applying the proposed edge detail preservation 
method to the original speckle reduction methods and their 
standard deviations. Table II presents the percentage mean 
change in image quality metrics after applying the proposed 
edge detail preservation method to the original speckle 
reduction methods and their percentage standard deviations. 

The p-values of statistical significance testing for the two sets 
of results over the 26 experiments were all significant at the 
0.05 level, which supports the hypothesis that the reported 
changes in image quality metrics are statistically significant. 
The results indicate that the new edge detail preservation 
method significantly improves image quality metrics for all 
speckle reduction methods where error metrics (GAE, MSE, 
LMSE, NAE, and Minkowski error metrics) become lower and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 2, 2024 

406 | P a g e  

www.ijacsa.thesai.org 

quality metrics (SNR, PSNR, Q, and SSIN) become higher. To 
illustrate the actual image quality metric values across different 
imaging experiments, Fig. 6 shows plots of three example 
metrics of LMSE, SSIN and Quality, where the metric values 
from the original speckle suppression alone were plotted as a 
colored solid line and the combination with the new edge detail 
preservation method were shown as ‗x‘ marks with the same 
color. It can be noted that the different applications affect the 
outcome of speckle suppression techniques in general and that 
different techniques vary in their performance. The addition of 
the new edge detail preservation method still resulted in 
marked improvement across applications and techniques. This 
suggests its robustness and potential to meet the rigorous 
demands in real clinical use. 

In order to further qualitatively demonstrate the advantage 
of using the new edge detail preservation method, a zoomed 
version of the outcomes from using the tissue-mimicking 
resolution phantom is presented in Fig. 7 where the resolution 
pins are compared between the outputs from the Lee method 
with and without the new method. The blurring in the original 
technique is evident and significant visual improvement is 
observed after using the new method. 

For the ultrasound imaging data from public databases, 
Table III presents the image quality metrics before and after 
applying the proposed edge detail preservation method to the 
original speckle reduction methods and their standard 
deviations across all 3208 images. Also, Table IV presents the 
percentage mean change in image quality metrics after 
applying the proposed edge detail preservation method to the 
original speckle reduction methods and their percentage 
standard deviations. The results indicate that the new edge 
detail preservation method generally improves image quality 
metrics for all speckle reduction methods where most error 
metrics (GAE, MSE, LMSE, NAE, and Minkowski error 
metrics) become lower and quality metrics (SNR, PSNR, Q, 
and SSIN) become higher. However, the percentage mean 
change rates of image equality metrics improvement are lower 
than those in the experimental data particularly for quality 
metrics (SNR, PSNR, Q, and SSIN). This is most obvious with 
SRAD technique. This can be explained by the quantization 
effects on the calculations of the proposed method where edge 
detection accuracy can be significantly affected, especially for 
weak edges encountered inside tissues such as edges of blood 
vessels within the liver. Whereas the experimental data have a 
quantization level of 16 bits per pixel, the images from public 
databases come with only 8 bits per pixel, which is 
substantially lower. This indicates that the proposed method 
may be better suited to process the raw data rather than the 
formed, limited quantization ultrasound images. 

The advantage of the new edge detail preservation method 
is that it recognizes the significant body of research already 
presents in the field of speckle reduction filtering and works to 
boost the performance of existing methods. This study 
demonstrated the effectiveness of combing the new method 
with four existing speckle reduction filters, but its generality 
and applicability with any other technique are readily evident 
from its block diagram. The improvement results presented 
should encourage broader adoption in this area. 

 

Fig. 6. Performance Comparison of Original Speckle Suppression 

Techniques with and without New Edge detail Preservation Method as 
Evaluated by Three Quantitative Image Quality Metrics across 26 Imaging 

Experiment. 
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Fig. 7. Qualitative performance comparison of example speckle suppression technique (Lee) with and without new edge detail preservation method where a 

zoomed part of the output for a tissue mimicking resolution phantom is magnified to demonstrate the improvement. 

TABLE III. IMAGE QUALITY METRICS BEFORE AND AFTER APPLICATION OF PROPOSED EDGE PRESERVATION TO ORIGINAL SPECKLE REDUCTION METHOD, 
AND ITS STANDARD DEVIATION CALCULATED ACROSS ALL IMAGES IN BUSI AND ULTRASOUND CASES DATABASES 

Quality Metric 
Wavelet Relaxed Median SRAD Lee 

Before After Before After Before After Before After 

Geometric Average Error (GAE) 
3.00 

± 0.76 
2.77 

± 0.73 
1.44 

± 0.33 
1.63 

± 0.28 
1.97 

± 0.36 
1.94 

± 0.32 
2.71 

± 0.53 
2.49 

± 0.52 

Mean Squared Error (MSE) 
50.86 

± 26.16 

50.09 

± 23.59 

901.3 

± 97.52 

521.88 

± 205.29 

29.02 

± 7.79 

27.70 

± 6.80 

68.07 

± 19.59 

58.38 

± 17.51 

Laplacian Mean Squared Error (LMSE) 
0.20 

± 0.04 

0.15 

± 0.08 

0.97 

± 0.07 

0.55 

± 0.08 

0.14 

± 0.13 

0.11 

± 0.1 

0.25 

± 0.13 

0.17 

± 0.08 

Normalized Absolute Error (NAE) 
0.1 

± 0.01 
0.09 

± 0.01 
0.11 

± 0.01 
0.08 

± 0.01 
0.07 

± 0.05 
0.07 

± 0.04 
0.10 

± 0.01 
0.09 

± 0.01 

Minkowski Error Metric (=1) 
5.42 

± 1.44 

5.07 

± 1.39 

5.87 

± 0.67 

4.70 

± 1.03 

3.38 

± 0.72 

3.76 

± 0.64 

5.35 

± 1.07 

4.94 

± 1.03 

Minkowski Error Metric (=3) 
8.99 

± 2.13 
8.41 

± 2.07 
59.91 
± 2.78 

46.35 
± 8.47 

6.54 
± 0.74 

6.38 
± 0.68 

10.88 
± 1.29 

10.00 
± 1.30 

Minkowski Error Metric (=4) 
10.5 

± 2.48 

9.79 

± 2.41 

85.31 

± 3.46 

68.26 

± 11.14 

7.57 

± 0.75 

7.37 

± 0.70 

13.71 

± 1.50 

12.51 

± 1.53 

Universal Quality  Index (Q) 
0.67 

± 0.09 

0.68 

± 0.09 

0.86 

± 0.05 

0.88 

± 0.06 

0.76 

± 0.06 

0.75 

± 0.07 

0.72 

± 0.06 

0.74 

± 0.07 

Structural Similarity Index (SSIN) 
0.85 

± 0.06 

0.87 

± 0.05 

0.93 

± 0.04 

0.95 

± 0.03 

0.88 

± 0.04 

0.89 

± 0.03 

0.82 

± 0.05 

0.84 

± 0.05 

Signal-to-Noise Ratio (SNR) 
23.30 

± 1.58 

23.89 

± 1.71 

10.45 

± 1.47 

13.2 

± 1.85 

25.92 

± 0.89 

26.10 

± 0.85 

22.17 

± 0.82 

22.88 

± 0.96 

Peak Signal-to-Noise Ratio (PSNR) 
31.21 

± 2.20 

31.85 

± 2.29 

18.53 

± 0.49 

20.48 

± 1.76 

33.65 

± 1.20 

34.02 

± 1.08 

29.67 

± 1.18 

30.57 

± 1.33 

TABLE IV. AVERAGE PERCENTAGE ALTERATION IN IMAGE QUALITY METRICS FOLLOWING APPLICATION OF PROPOSED EDGE PRESERVATION TO ORIGINAL 

SPECKLE REDUCTION METHOD AND PERCENTAGE STANDARD DEVIATION ACROSS ALL IMAGES IN BUSI AND ULTRASOUND CASES DATABASES. 

Quality Metric Wavelet Relaxed Median SRAD Lee 

Geometric Average Error (GAE) 
-7.78% 

± 2.92 
+12.69% 

± 7.59 
-1.7% 

± 2.32 
-7.93% 

± 3.45 

Mean Squared Error (MSE) 
-11.90% 

± 6.42 
-42.10% 

± 16.51 
-4.56% 

± 4.28 
-14.24% 

± 8.68 

Laplacian Mean Squared Error (LMSE) 
-24.61% 

± 48.00 
-43.57% 

± 20.61 
-21.78% 

± 56.35 
-30.55% 

± 52.64 

Normalized Absolute Error (NAE) 
-6.59% 

± 2.44 
-21.12% 

± 10.59 
-1.43% 

± 2.09 
-7.75% 

± 3.14 

Minkowski Error Metric (=1) 
-6.45% 

± 2.71 
-19.86% 

± 7.19 
-1.71% 

± 2.33 
-7.60% 

± 3.44 

Minkowski Error Metric (=3) 
-6.44% 

± 2.2 

-22.63% 

± 11.51 

-2.44% 

± 1.63 

-8.04% 

± 4.49 

Minkowski Error Metric (=4) 
-6.79% 

± 2.15 
-19.99% 

± 10.77 
-2.64% 

± 1.45 
-8.77% 

± 4.74 

Universal Quality  Index (Q) 
+2.40% 

± 6.53 
+1.77% 

± 4.77 
-1.09% 

± 5.63 
+2.93% 

± 4.89 

Structural Similarity Index (SSIN) 
+2.61% 

± 4.10 
+1.79% 

± 3.97 
+1.04% 

± 4.16 
+11.6% 

± 4.36 

Signal-to-Noise Ratio (SNR) 
+2.54% 

± 1.07 
+26.33% 

± 14.43 
+0.68% 

± 0.58 
+3.22% 

± 1.66 

Peak Signal-to-Noise Ratio (PSNR) 
+2.05% 

± 0.84 
+10.5% 

± 7.69 
+1.11% 

± 0.50 
+3.04% 

± 1.35 
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Even though the proposed method is meant to be applied as 
a tool to complement speckle reduction methods rather than 
compete with them, it is important to demonstrate that its 
performance enhancement with classical methods compare 
well with recent techniques to show its potential. Comparing 
the presented results to those of [34] using real ultrasound data, 
the best reported values of PSNR and SSIM are 31.47 and 
0.8026 respectively, whereas these same metrics reach 33.25 
and 0.87 in the proposed method for experimental data and 
34.02 and 0.95 for data from publicly available databases. This 
particular study shares the utilization of raw ultrasound 
imaging data as the input to the technique like the proposed 
method, but the number of images used in that study was 
reported to be only 20 images out of 366 images that were 
available in their data source [34], which is much lower than 
the number of experimental images used in this study of 260 
images. Furthermore, simulated speckle noise was added 
artificially to such real images, which makes such testing data 
artificial. On the other hand, the study in [37] reported best 
PSNR and SSIM values of 38.1952 and 0.9770 respectively, 
which are significantly higher than this work. However, close 
inspection of the methodology used in that study reveals that 
such high values were obtained using simulated low variance 
speckle patterns superimposed on publicly available ultrasound 
images with very high SNR (small depth of penetration for 
neural ultrasound images and low attenuation from blood 
within cardiac images). The reported best results for PSNR and 
SSIM in that same study from higher speckle variance were 
31.3849 and 0.9046 respectively, which are outperformed by 
the proposed method when applied to publicly available 
ultrasound images. Furthermore, in [38] the reported best 
values for PSNR and SSIM were 34.89 and 0.89 respectively, 
which are again outperformed by the proposed method for 
publicly available ultrasound images. Hence, the comparison 
with recent techniques indicates that the proposed method has 
potential to enhance classical, explainable speckle reduction 
methods to perform well against more recent deep learning-
based methods while maintaining lower complexity. 

Given that the new method adds more steps to existing 
speckle reduction filtering, a concern arises about whether this 
will affect the real-time performance that is considered very 
important in ultrasound imaging. In order to estimate the 
computational complexity of the added blocks in the new 
method, we need to consider the blocks used to do Canny edge 
detection (dominated by convolutions), 2D Gaussian filtering 
(convolution), and final edge detail restoration (addition). For 
an ultrasound image acquisition M sticks and N samples per 
line, the combined computational complexity of efficient 
implementations of these blocks will be O(MN log2(MN)). This 
is close to the same order of computations as the image 
reconstruction process involving scan conversion and 
interpolation of raw data but with M being the second 
dimension of the image rather than the smaller number of 
sticks. Hence, adding the proposed method to the processing 
chain is not expected to pose any burden for real-time 
performance especially with current high processing 
capabilities available in modern digital ultrasound imaging 
systems. The added complexity of different speckle reduction 
techniques to be used in combination with the proposed 
method varies widely across different techniques. To 

investigate this issue further, we conducted several 
experiments on Matlab to measure the computation time for the 
four speckle reduction techniques used in this work along with 
that of the added processing to implement the proposed method 
and also the image reconstruction from experimental data for 
different images sizes. The computational time results are 
shown in Fig. 8. As can be observed, the computational time of 
the proposed method scales fairly adheres to the theoretical 
estimate where it is close to the reconstruction time for smaller 
image sizes and becomes significantly lower for the commonly 
used image size of 512. The image reconstruction time 
increases at a much higher rate at this size because of the much 
larger number of points in the sector format image that need to 
be interpolated compared to those at smaller sizes. 
Furthermore, the proposed method has a significantly lower 
computational time compared to all speckle reduction methods 
except the Lee method at this size. Even with the techniques 
having the largest computation time (Wavelet method), the 
total computational time needed of 19 ms (Wavelet method) + 
11 ms (image reconstruction) + 3 ms (proposed method) = 33 

ms at image size of 512512, offers real-time performance of 
30 frames/s on Matlab under Windows operating system 
without parallel processing or GPU computation. This 
indicates that real-time performance requirements will be met 
or exceeded with the dedicated high performance processing 
platforms used in modern ultrasound imaging systems. 

 

Fig. 8. Computational time for different speckle reduction techniques 
compared to additional processing for proposed method and image 

reconstruction for different image sizes. 

V. CONCLUSION 

This work introduces a novel method designed to augment 
existing speckle suppression techniques by preserving the edge 
detail content of images. The process initiates by extracting the 
edge detail content from the original image. Instead of directly 
applying the traditional method to the speckle suppression 
filtering technique, the edge detail content is subtracted from 
the original image before undergoing the filtering process. 
Subsequently, this edge detail content is incorporated into the 
output of the filtering, culminating in the generation of the final 
image. Experimental validation of this new method was 
conducted through 26 imaging experiments as well as 3208 
ultrasound images from publicly available databases, 
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employing four representative speckle reduction filters. Real 
ultrasound imaging data were used to assess the method's 
performance. Evaluation involved both qualitative comparisons 
of image appearances and quantitative analyses using eleven 
image quality metrics. The results affirm the effectiveness of 
the proposed method and underscore its potential to enhance 
diagnostic accuracy. Future work includes use for other 
imaging modalities such as low field MRI or nuclear medicine 
and combination with other despeckling methods. 
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