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Abstract—In the highly competitive landscape of academia, 

the study addresses the multifaceted challenge of analyzing 

voluminous and diverse educational datasets through the 

application of machine learning, specifically emphasizing 

dimensionality reduction techniques. This sophisticated approach 

facilitates educators in making data-informed decisions, 

providing timely guidance for targeted academic improvement, 

and enhancing the overall educational experience by stratifying 

individuals based on their innate aptitudes and mitigating failure 

rates. To fortify predictive capabilities, the study employs the 

robust Extra-Trees Classifier (ETC) model for classification 

tasks. This model is enhanced by integrating the Gorilla Troops 

Optimizer (GTO) and Reptile Search Algorithm (RSA), cutting-

edge optimization algorithms designed to refine decision-making 

processes and improve predictive precision. This strategic 

amalgamation underscores the research's commitment to 

leveraging advanced machine learning and bio-inspired 

algorithms to achieve more accurate and resilient student 

performance predictions in the mathematics course, ultimately 

aiming to elevate educational outcomes. Analyses of G1 and G3 

showcase the efficacy of the ETRS model, demonstrating 97.5% 

Accuracy, F1-Score, and Recall in predicting the G1 values. 

Similarly, the ETRS model emerges as the premier predictor for 

G3, attaining 95.3% Accuracy, Recall, and F1-Score, 

respectively. These outcomes underscore the significant 

contributions of the proposed models in advancing precision and 

discernment in student performance prediction, aligning with the 

overarching goal of refining educational outcomes. 
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learning; Extra-Trees Classifier; Gorilla Troops Optimizer; Reptile 
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I. INTRODUCTION 

A. Background 

The achievement of academic success by students is a core 
aim in education and a crucial component of any country's 
educational agenda. Emphasizing the significance of quality 
education as a driver for societal transformation, educational 
institutions are compelled to give priority to the development 
of students who excel not only in academic and non-academic 
evaluations but also acquire vital practical skills to remain 
competitive in the job market. Education, central to societal 
progress, reflects the shared aspirations for well-being and 
advancement [1]. The emphasis on the caliber of students 

graduating from schools has emerged as a significant worry. 
As underscored by Spinath [2], [3], academic success occupies 
a central position, serving as a gauge for intellectual education 
and an essential requirement for personal and societal well-
being. In this context, Martín asserts that academic 
achievement goes beyond intellectual quotient (IQ), 
encompassing diverse dimensions to encompass the cognitive, 
psychomotor, and affective aspects of students' development 
[4], [5], [6]. 

The main advantage of data mining is its capability to 
meticulously analyze large datasets and formulate rules that 
can attract the interest of pertinent stakeholders. Additionally, 
it has the potential to unveil previously unknown and valuable 
insights that significantly enhance decision-making. Machine 
learning (ML) algorithms, particularly noted for their efficacy 
in classification tasks, stand as a focal point in various research 
pursuits [7], [8], [9]. As per the findings of Sharma, Himani, 
and Kumar [10], decision tree algorithms are widely 
acknowledged as effective tools for classification purposes. 
Decision trees, which are structured models comprising root 
nodes, branches, and leaf nodes, serves the functions of 
predicting outcomes. These trees exhibit versatility in handling 
both numerical and categorical data, are easily comprehensible, 
and can be visually represented. Their pivotal role extends to 
the identification of group characteristics, exploration of 
relationships between variables, and application in predicting 
various educational outcomes, including student performance. 
Jorda and Raqueno [11] underscore the significance of diverse 
decision tree algorithms such as C&R Tree, CHAID, C 5.0, 
and QUEST, emphasizing their role in the development of 
classification systems [12], [13], [14]. 

B. Related Works 

Many scholars have conducted thorough investigations into 
the diverse factors that impact student success across different 
academic levels [15], [16], [17], [18]. Numerous studies in this 
realm have employed data mining techniques, specifically 
classification algorithms, to improve the overall quality of 
higher education systems and to forecast student performance. 
This section highlights a selection of pertinent studies; 
particularly those centered on the utilization of decision trees 
and classification methods in assessing students' academic 
performance [19], [20], [21], [22], [23], [24], [25], [26], [27], 
[28], [29]. 
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As an illustration, Al-Radaideh et al. [30] conducted a 
study proposing a decision tree classification model aimed at 
assisting school management in selecting appropriate academic 
tracks for students, thereby streamlining decision-making 
processes. Thammasiri et al. [31] introduced a model designed 
to predict inadequate academic performance among freshmen. 
By combining support vector machines with SMOTE 
(Synthetic Minority Over-sampling Technique), they achieved 
an impressive accuracy rate of 90.24%, effectively addressing 
class imbalance issues. Mustafa et al. [32] utilized the CRISP 
framework to assess students' data in C++ courses, conducting 
a comparative analysis of classifiers such as ID3, C4.5 decision 
trees, and Naive Bayes. The C4.5 decision tree exhibited 
superior performance, offering insights into the attributes 
influencing student performance. Nguyen and Peter [33] 
investigated the efficacy of decision trees and Bayesian 
networks in forecasting the academic performance of 
undergraduate and postgraduate students, with their findings 
indicating the superior performance of decision trees. Sunita 
and LOBO L.M.R.J [34] showcased the practicality of data 
mining in the realm of education by employing classification 
and clustering algorithms to predict student performance and 
group students accordingly. Bichkar and R. R. Kabra [35] 
developed classification models geared towards identifying at-
risk students among first-year engineering students. Bharadwaj 
and Pal [36] applied the ID3 decision tree algorithm to predict 
student divisions based on various academic indicators. Edin 
Osmanbegovic et al. [37] formulated a model aimed at 
predicting student academic success, specifically addressing 
challenges related to data dimensionality. Despite Naïve Bayes 
achieving the highest accuracy at 76.65%, the model fell short 
in effectively handling the class imbalance issue. Surjeet and 
Pal [38] utilized various decision tree algorithms to forecast the 
performance of first-year engineering students, focusing on the 
identification of those at risk of failure. Mahfuza and Shovon 
[13] proposed a hybrid approach that combines clustering and 
classification to categorize students into high, medium, and 
low standards, enabling informed decisions about their 
academic performance and ultimately enhancing their final 
examination results. Kabakchieva [39] compared data mining 
algorithms for predicting student performance and classifying 
students as strong or weak, with the neural network achieving 
high accuracy for the strong class. Carlos et al. [40] employed 
machine learning to create a model for predicting student 
failure, achieving a notable accuracy of 92.7% with the ICRM 
classifier. The summary of several related studies was reported 
in Table I. 

TABLE I. LITERATURE REVIEW 

No. Author (s) Models Accuracy Reference 

1 Al-Radaideh et al. DTC 87.9% [30] 

2 Nguyen and Peter DTC 82% [33] 

3 Bichkar and R. R. Kabra DTC 69.94% [35] 

4 Edin Osmanbegovic et al. NBC 76.65% [37] 

5 Carlos et al. [40] ADTree 97.3% [40] 

6 Kabakchieva DTC 72.74% [39] 

C. Objective 

Employing the Extra-Trees Classifier (ETC) technique, this 
research had the primary objective of developing a robust 
Machine learning model for predicting student performance, 
leveraging data from reliable sources. In creating these models, 
the study introduced an innovative approach by seamlessly 
integrating two optimization algorithms: the Gorilla Troops 
Optimizer (GTO) and the Reptile Search Algorithm (RSA). 
The decision to integrate these optimization algorithms stems 
from their complementary strengths. GTO, inspired by gorilla 
troop foraging behavior, balances global and local search 
strategies, while RSA adapts to changing environments 
efficiently. This novel combination of techniques aimed to 
enhance the accuracy and precision of the predictive model, 
ultimately contributing to more effective student performance 
forecasts in an educational context. The ETC model is 
employed in predicting and classifying student performance 
due to its robustness and effectiveness. ETC minimizes 
overfitting, enhances accuracy, and handles diverse data 
patterns. This model is particularly valuable in educational 
contexts where the prediction of student outcomes requires a 
versatile and resilient algorithm capable of capturing nuanced 
relationships within complex datasets. Subsequently, in Section 
II, the material and methodology of the research are prepared; 
Section III contains information about the evaluation methods, 
results, and discussion of prediction models; and finally, the 
results of classification models. In the end, Section IV 
concludes the important findings of the study. 

II. MATERIALS AND METHODOLOGY 

A. Extra-Trees Classifier (ETC) 

Geurts et al. [41] introduced the Extra Trees Classifier as a 
modification of the Random Forest algorithm. This model, 
acknowledged as a highly randomized tree classifier or 
redundant tree classifier, operates through the utilization of an 
ensemble learning approach. The Extra-Trees algorithm 
constructs an ensemble of decision or regression trees via the 
conventional top-down procedure. Its primary distinctions from 
other tree-based ensemble methods lie in two key aspects: 
firstly, it randomly selects cut-points for node splits, and 
secondly, it employs the entire learning sample for the growth 
of the trees. 

The Extra-Trees algorithm employs a randomized splitting 
procedure for numerical attributes, controlled by parameters   
(number of randomly selected attributes at each node) and 
     (minimum sample size for node splitting). The method 
utilizes the full original learning sample multiple times to 
create an ensemble model with   trees. Predictions are 
aggregated through majority vote or arithmetic average for 
classification and regression, respectively. The approach aims 
to reduce variance by explicit randomization of cut points and 
attributes, outperforming other methods. Using the full learning 
sample minimizes bias. Despite a complexity of      , the 
simplicity of the node-splitting procedure contributes to 
computational efficiency. Parameters  ,     , and   influence 
attribute selection, noise averaging, and variance reduction, 
respectively. While adaptable, default settings are preferred for 
computational advantages and method autonomy. 
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The process of dividing attributes in Extra-Trees is outlined 
as follows: 

Split a node (S) 

Input: for the node designated for splitting, present the local learning 

subset  . The resulting output is either a split, denoted as [    ], or 

no result. 

– If Stop split(S) is TRUE then return nothing. 

– Otherwise select   attributes {  , . . .,   } among all non-constant 

(in  ) candidate attributes; 

– Draw   splits {  , . . .,   }, where   = Pick a random split ( ,   ), 
  = 1, . . ., K; 

– Return a split    such that Score (  , S) = maxi=1...,   Score (  , S) 

Pick a random split ( ,a) 

Inputs: a subset   and an attribute   

Output: a split 

– Let     
  and     

  denote the maximal and minimal value of   in 

 ; 

– Draw a random cut-point    uniformly in [    
      

   ]; 

– Return the split [a <   ]. 
Stop split ( )  

Input: a subset    

Output: a Boolean 

– If |S| <     , then return TRUE; 

– If all attributes are constant in  , then return TRUE; 

– If the output is constant in  , then return TRUE; 

– Otherwise, return FALSE. 

B. Gorilla Troops Optimizer (GTO) 

The genesis of the GTO technique can be traced back to the 
observation and analysis of social intelligence within gorilla 
groups in their natural habitats [42]. In this methodology, every 
gorilla is considered a potential solution, and the optimal 
solution at each optimization stage is identified as the 
silverback gorilla. The optimization process is delineated into 
two key phases: exploration and exploitation. To stimulate 
exploration, three strategies are implemented, with one of them 
entailing the migration of gorillas to unexplored areas. The 
objective of this migration strategy is to augment the 
exploration process, as elucidated in Eq. (1). 

  (   )  (     )              (1) 

The second approach entails transitioning to a different 
gorilla group, contributing to the equilibrium between 
exploration and exploitation, as articulated in Eq. (2). 

  (   )  (    )    ( )              (2) 

The third tactic involves relocating to the designated site, 
primarily focused on augmenting the GTO's capacity to 
explore varied optimization spaces, as elucidated in Eq. (3). 

  (   )   ( )    (  ( ( )     ( ))     

( ( )     ( )))           (3) 

where,   (   ) signifies the potential solution position 
of a gorilla in the subsequent iteration, while  ( )  is the 
current position vector of the gorilla.    ,   ,   , and    are 
random values in the range of [   ] .  The parameter   
denotes the probability of opting for the migration strategy to 

an unfamiliar position and must be predetermined between 0 
and 1 prior to initiating the optimization process.      
represents a randomly chosen member from the gorilla group, 
while     denotes the potential solution vector position of the 
gorilla, chosen at random.    and    represent the lower and 
upper limits of the variables, respectively. Additionally,  ,  , 
and   can be defined through mathematical expressions as per 
Eq. (4) to Eq. (6). 

  (   (    )   )  (        ( ))  (4) 

        (5) 

     ( )   (6) 

Here,    signifies a random value within the range of 0 to 1, 
while   represents a random value within the range of -1 to 1, 
and   denotes a random value that ranges from    to  . If the 
value of      is below   , the first strategy is executed. 
Conversely, if      is greater than or equal to 0.5, the second 
strategy is applied, and if      is less than 0.5, the third 
strategy is chosen. The optimal solution acquired during the 
exploration phase is subsequently identified as the silverback. 

To enhance exploitation, the GTO methodology 
incorporates two strategies. The initial strategy entails tracking 
the silverback, which is the designated gorilla, symbolizing the 
optimal solution. This strategy is activated when the value of 
the parameter   exceeds the random parameter  . The 
silverback assumes the role of a leader guiding other gorillas in 
foraging for food. This behavior can be expressed 
mathematically through Eq. (7) and Eq. (8), where,     . 

  (   )      ( ( )     )   ( )  (7) 

  (|(
 

 
)∑    ( )

 
   |

 

)
   

  (8) 

Here,     signifies silverback gorilla. 

The alternate exploitation strategy centers around vying for 
the adult female gorilla. This course is selected when the value 
of the parameter C falls below the random parameter W. In 
their native environment, young male gorillas engage in intense 
competition to win the favor of a female gorilla. This conduct 
can be mathematically articulated through Eq. (9). 

  (   )      (       ( )   )    (9) 

           (10) 

        (11) 

Here,   signifies the force of impact, with    representing a 
random value within the range of [   ] .   is a vector 
signifying the intensity of aggression during a conflict, and   is 
a predetermined value established before initiating the 
optimization process.   denotes the influence of aggression on 
the solution's dimensions. The optimal solution derived from 
the exploitation phase is then assigned the role of the new 
silverback. This designation could either be retained from the 
chosen gorilla during the exploration phase or newly selected.  
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The pseudo-code of GTO is provided below [43]: 

Algorithm 1. The pseudo-code of GTO. 

GTO setting 

Inputs: The population size   and maximum number of iterations   

and parameters   and   

Outputs: The location of the Gorilla and its fitness value 

Initialization 

Initialize the random population   (         ) 

Calculate the fitness values of the Gorilla 

Main Loop 

while (stopping condition is not met) do 

Update the    

Update the    

Exploration phase 

for (each Gorilla (  )) do 

Update the location of Gorilla  

end for 

% Create group 

Calculate the fitness values of the Gorilla 

if    is better than  , replace them 

Set     as the location of            (best location) 

% Exploitation phase 

for (each Gorilla (  )) do 

if (| |   ) then 

Update the location of Gorilla  

else 

Update the location of Gorilla  

end if 

end for  

% Create group 

Calculate the fitness values of the Gorilla 

if New Solutions are better than previous solutions, replace them  

Set     as the location of            (best location) 

end while 

Return             ,             

C. Reptile Search Algorithm 

The Reptile Search Algorithm (RSA) draws inspiration 
from the foraging behaviors observed in crocodiles within their 
natural environment [44]. It operates by alternating between 
encircling and hunting search phases, with the transition 
between these phases achieved by dividing the total number of 
iterations into four segments [45], [46].  

1) Initialization phase: The Reptile Search Algorithm 

commences by stochastically generating an initial set of 

solution candidates using the following equation: 

        (     )                (12) 

In the initialization matrix (   )  mentioned earlier, the 

variable   corresponds to the population size, indicating the 
number of rows in the matrix. LB and UB denote the lower and 
upper bound constraints, respectively, and     signifies 
randomly generated values employed in the initialization 
process. 

2) Exploration (Encircling phase): The encircling phase 

primarily involves navigating an area with a high density of 

potential solutions. In this phase, movements inspired by 

crocodile behaviors, such as high walking and belly walking, 

plays a crucial role. It is essential to emphasize that these 

movements are not directly focused on capturing prey; 

instead, their purpose is to explore a wide search space within 

the optimization process. 

   (   )      ( )  (  (  )( ))    (   ( )     ) 

  
 

 
     (13) 

   (   )      ( )   (    )    ( )        
  

 
      

 

 
  (14) 

Here,     ( ) represents the optimal solution obtained at 

the     position, where   denotes the current iteration number, 
and   is the maximum number of iterations.  (  )  represents 

the value generated by the hunting operator for the     solution 
at the     position. The parameter   explains the sensitivity, 
influencing the exploration accuracy.      is utilized to reduce 

the search space area. The calculations for  (  ) and     are as 

follows: 

 (  )      ( )   (   )  (15) 

 (  )  
    ( )  (    )

    ( )  
  (16) 

Here, the variable    is a randomly generated number 
within the range of [   ], where T represents the total count 

of candidate solutions.  (    ) signifies a randomly chosen 

position for the     solution. Similarly,    is another randomly 
generated number ranging from [   ] , and   denotes a 
small-magnitude value.   ( ) denoted as Evolutionary Sense, 
is a probability-based ratio. The mathematical expression of 
Evolutionary Sense can be articulated as follows: 

  ( )       (  
 

 
)  (17) 

In this scenario, the variable    represents a randomly 

generated numerical value. The calculation of  (   )  is 

determined using the following formula: 

 (   )    
 (   )  (  )

    ( ) (     )  
  (18) 

   (  )  
 

 
∑  (   )
 
     (19) 

where,    (  ) represents the average position of the     
solution. 

3) Exploitation (Hunting phase): The hunting phase 

involves two key strategies: hunting coordination and 

cooperation. These strategies play a crucial role in local-scale 

exploration, resembling the pursuit of optimal solutions, 

similar to hunting prey. The hunting phase is segmented based 

on the current iteration number. The hunting coordination 

strategy operates when the iteration number   is within 

  
  

 
 and   

  

 
, while the hunting cooperation strategy is 
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applied when     and   
  

 
. These strategies incorporate 

stochastic coefficients to explore the local search space and 

generate optimal solutions systematically. The exploitation 

phase is guided by Eq. (9) and Eq. (10) to facilitate this 

process. 

   (   )      ( )     ( )       

  
  

 
        

  

 
  (20) 

   (   )      ( )   (  )( )       ( )        

       
  

 
   (21) 

The RSA process is illustrated in Fig. 1. 

 

Fig. 1. Flowchart of RSA. 

D. Data Processing 

The principal objective of this study is to formulate a robust 
methodology for the accurate evaluation of students' academic 
performance, considering various contextual factors that exert 
influence. To achieve this goal, meticulous preprocessing of 
the initial dataset is imperative. In this research, a dataset 
related to education in Portugal was employed, consisting of 33 
distinct characteristics [47], [48] [49]. These features were 
selected to effectively depict the academic performance of a 
total of 395 students, considering the information and 
circumstances of each individual throughout the academic 
period. The initial step involves the conversion of textual data 
into numerical values, a foundational prerequisite for the 
execution of machine learning tasks, facilitating effective data 
analysis and the application of advanced statistical techniques. 
The dataset encompasses a diverse range of variables with 
potential impacts on academic outcomes, including sex, school, 
urban or rural residency (address), age, family size (famsize), 
guardian, parental cohabitation status (Pstatus), parental 
education and occupations (Medu, Fedu, Mjob, and Fjob), 
home-to-school travel time (traveltime), weekly study time 
(studytime), school choice motivation (reason), current health 
status, past class failures (failures), weekday (Dalc), and 
weekend (Walc) alcohol consumption, engagement in extra 
paid classes, participation in supplementary education 
(schoolsup), family educational support (famsup), attendance 

at nursery school, involvement in extracurricular activities, 
aspirations for higher education, access to the internet, student 
absences, involvement in romantic relationships, quality of 
family relationships, free time, and frequency of socializing. 
To optimize the dataset's suitability, the preprocessing phase 
incorporated the application of random permutation (randperm) 
to mitigate biases, along with normalization procedures aimed 
at standardizing parameter scales. This research aims to predict 
and categorize students' academic performance, utilizing the 
G1 and G3 variables, with G3 representing final grades 
segmented into four distinct levels: Excellent (16–20), Good 
(14–16), Acceptable (12–14), and Poor (0–12). The 
methodology seeks to establish a comprehensive framework 
for comprehending and assessing academic performance within 
various contextual factors, contributing to improvements in 
educational practices and policy development. Fig. 2, presented 
in the article, illustrates a correlation matrix detailing 
relationships among input and output variables, highlighting 
the positive influence of parental education, especially 
maternal education, on academic performance. Additionally, 
factors such as daily and weekly alcohol consumption, prior 
academic failures, and student age demonstrate discernible 
impacts on school grades, underscoring the critical importance 
of both study time and parental education as pivotal factors 
contributing to academic success. 
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Fig. 2. Correlation matrix for the input and output variables. 

III. RESULTS AND DISCUSSION 

A. Evaluation of Models' Applicability 

In the evaluation of classification problems, the metric 
commonly employed to assess a model's overall performance is 
Accuracy. This metric relies on four key components: True 
Positives (TP) for correct positive predictions, True Negatives 
(TN) denoting accurate negative predictions, False Positives 
(FP) representing inaccurate positive predictions, and False 
Negatives (FN) indicating incorrect negative predictions. 
However, the applicability of Accuracy diminishes in scenarios 
involving imbalanced data, where it tends to favor the majority 
class, limiting its interpretability. To overcome this limitation, 
three additional evaluation metrics, including Recall, F1-Score, 
Precision, Matthew’s correlation coefficient (MCC), and Area 
under the curve (AUC), are frequently utilized. These metrics 
offer a more nuanced understanding of a model's performance, 
particularly in the presence of imbalanced class distributions. 
Expressed through mathematical equations, typically numbered 
from 22 to 26, these metrics collectively contribute to a refined 
and comprehensive assessment of the effectiveness of a 
classification model. 

         
     

           
   (22) 

          
  

     
  (23) 

           
  

 
 

  

     
  (24) 

          
                    

                
  (25) 

     
(     ) (     )

√(     )(     )(     )(     )
 (26) 

B. Hyperparameters and Convergence Results 

In machine learning, hyperparameters, external 
configurations that encompass elements such as learning rates 
and regularization strengths, play a pivotal role in shaping a 
model's behavior. Unlike parameters, hyperparameters are 
predetermined and are not directly acquired from the data. The 
optimization of model performance hinges on the essential 
process of tuning hyperparameters, demanding 
experimentation, and the application of optimization 
techniques. Table II meticulously delineates the 
hyperparameter values associated with ETRS and ETGT 
models, specifically max_depth, min_samples_split, 
min_samples_leaf, and max_leaf_nodes. This comprehensive 
presentation significantly bolsters the transparency and 
reproducibility of models in machine learning research, 
offering crucial insights for a more profound comprehension 
and accurate replication of model configurations. 
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TABLE II. RESULTS OF  HYPERPARAMETERS 

Target Hyperparameter ETRS ERGT 

G1 

max_depth 24 722 

min_samples_split 0.028 0.511 

min_samples_leaf 0.0125 0.092 

max_leaf_nodes 250 10 

G3 

max_depth 275 975 

min_samples_split 0.001 0.234 

min_samples_leaf 0.0015 0.0631 

max_leaf_nodes 4790 10 

This research endeavors to optimize the Extra-Trees 
Classifier's (ETC) hyperparameters, tailoring its performance 
to specific datasets and problem domains. The optimization 
process involves utilizing the Gorilla Troops Optimizer (GTO) 
and Reptile Search Algorithm (RSA), representing a 

substantial advancement in enhancing the predictive 
capabilities of this foundational machine learning algorithm. 
Evaluating the optimization performance involves assessing 
how selected algorithms impact the Accuracy of ETC through 
iterations. Fig. 3 depicts two convergence curves, namely 
ETRS and ETGT, using a stair form with four steps of 50 
iterations each. In G1 prediction, ETRS initiates with lower 
accuracy, but within the first 90 iterations, it consistently 
outperforms ETGT. The dynamics reverse in the second stage, 
and after the 90th iteration, both models perform similarly. 
Notably, around the 125th iteration, ETRS exhibits a marked 
increase in Accuracy. Conversely, in G3 estimation, both 
models start with similar Accuracy values. ETRS outperforms 
ETGT from 0 to 25 iterations, and then ETGT surpasses ETRS 
from 25 to approximately 75 iterations. Between 75 and 120 
iterations, the performance of both models aligns. After the 
125th iteration, ETRS experiences a distinctive surge, 
ultimately concluding the convergence process with a higher 
accuracy rate than the ETGT model. 

 

 

Fig. 3. Convergence curve of models. Prediction and classification results. 
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In the pursuit of predicting future academic achievements 
in mathematics through machine learning algorithms, this 
investigation integrates a diverse array of student information, 
with a specific emphasis on their short-term and final grades 
(G1 and G3). The dataset assumes a pivotal role in the training 
and evaluation of three models based on Extra-Trees Classifier 
(ETC), namely ETC, ETRS, and ETGT. Within this section, 
the study systematically computes performance metrics such as 
Accuracy, Precision, Recall, F1-score, MCC, and AUC at each 
prediction stage. This meticulous analysis aims to discern the 
most effective prediction model, offering valuable insights for 
enhancing students' academic success. All relevant metric 
values, encompassing all, train, test, and model, are detailed in 
Table III and illustrated in Fig. 4. 

Regarding G1 prediction, ETRS and ETC exhibit the 
strongest and weakest prediction performance, achieving 
maximum and minimum Accuracy values of 0.975 and 0.839, 
respectively. ETRS attains maximum Precision, Recall, F1-
score, MCC, and AUC values of 0.976, 0.975, 0.975, 0.957, 
and 0.931, affirming its high accuracy in positive predictions. 
The performance of the other hybrid model (ETGT) aligns with 
ETRS in the training phase Accuracy but experiences a lower 
value in the testing phase. For G3 prediction, the comparison 
among the three models reveals ETRS as the strongest 
predictor with maximum Accuracy, Recall, and F1-score 
values of 0.953 and 0.921 for MCC. ETGT, with a 0.7% lower 
Accuracy, secures the second position in the ranking when 
compared to ETC. 

TABLE III. RESULT OF PRESENTED MODELS 

Target Model Section 
Index values 

Accuracy Precision Recall F1 _Score MCC AUC 

G1 

ETC 

Train 0.960 0.961 0.960 0.960 0.932 

0.913 Test 0.839 0.844 0.839 0.832 0.722 

All 0.924 0.925 0.924 0.922 0.871 

ETRS 

Train 0.975 0.976 0.975 0.975 0.957 

0.931 Test 0.864 0.874 0.864 0.860 0.768 

All 0.942 0.944 0.942 0.946 0.902 

ETGT 

Train 0.975 0.975 0.975 0.975 0.957 

0.936 Test 0.847 0.843 0.848 0.842 0.739 

All 0.937 0.936 0.937 0.936 0.893 

G3 

ETC 

Train 0.957 0.957 0.957 0.956 0.926 

0.922 Test 0.847 0.851 0.848 0.844 0.737 

All 0.924 0.924 0.924 0.923 0.871 

ETRS 

Train 0.953 0.955 0.953 0.953 0.921 

0.945 Test 0.924 0.924 0.924 0.923 0.872 

All 0.944 0.946 0.944 0.944 0.906 

ETGT 

Train 0.946 0.946 0.946 0.946 0.908 

0.932 Test 0.898 0.900 0.898 0.896 0.827 

All 0.932 0.933 0.932 0.931 0.884 
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Fig. 4. Pie chart plot for the evaluation of developed models. 

Tables IV and V presents the Precision, Recall, F1_score, 
MCC metrics for students categorized by G1 and G3 grades. 
These tables offer insights into the model's performance, 
revealing its accuracy in positive predictions, ability to capture 
true positives, and overall effectiveness in classifying students 
based on academic performance levels. 

1) G1 

a) Excellent: This cohort constitutes around 10% of the 

dataset, featuring 41 high-achieving students. Despite the ETC 

and ETRS models exhibiting impeccable Precision (1), the 

optimized ETGT model shows a slight difference of 

approximately        However, with a Recall value of 

0.8293, the ETGT model excels in accurately identifying 

instances within this top-performing group, surpassing the 

other models. 

b) Good: Among the 54 students in this group, the 

ETGT model emerged as the superior classifier, achieving 

Precision, Recall, and F1_score values of 0.9444. Notably, 

ETRS exhibited the weakest performance based on Precision 

values, whereas, considering MCC, Recall, and F1-Score, the 

ETC model demonstrated the least optimal performance 

levels. 

c) Acceptable: The ETRS model showcased superior 

applicability compared to other models, registering maximum 

values for all metrics (Precision = 0.984, Recall = 0.912, F1-

Score = 0.947, and MCC=0.928). In contrast, the ETGT 
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hybrid model occupied the last position, exhibiting the lowest 

values across all metrics. 

d) Poor: This group pertains to students who have faced 

academic failure, and the 232 students classified within this 

category demand heightened institutional focus for 

improvement.  Notably, the performance of all models in 

classifying this group proves to be optimal, surpassing the 

other three classes with Precision exceeding 90%. Once again, 

ETRS stands out as the best model, exhibiting the highest 

metric values in this context. 

TABLE IV. EVALUATION INDEXES OF THE DEVELOPED MODELS’ PERFORMANCE IN G1 

Model Grade 
Index values 

Precision Recall F1-score MCC 

ETC 

Excellent 1.000 0.805 0.892 0.873 

Good 0.878 0.796 0.835 0.812 

Acceptable 0.922 0.868 0.894 0.892 

Poor 0.924 0.991 0.956 0.887 

ETRS 

Excellent 1.000 0.781 0.877 0.937 

Good 0.839 0.870 0.855 0.831 

Acceptable 0.984 0.912 0.947 0.928 

Poor 0.947 0.996 0.971 0.872 

ETGT 

Excellent 0.9444 0.8293 0.8831 0.847 

Good 0.9444 0.9444 0.9444 0.935 

Acceptable 0.8923 0.8529 0.8722 0.906 

Poor 0.9458 0.9784 0.9619 0.873 
 

2) G3 

a) Excellent: This subset comprises 40 high-achieving 

students, representing nearly 10% of the entire dataset under 

scrutiny. While the Precision values imply that the standalone 

ETC model showcases flawless predictive capability with a 

score of 0.971, the optimized models exhibit slightly higher 

scores (less than 1%). However, a thorough evaluation based 

on MCC, Recall and F1- score underscores the superiority of 

the ETRS model, attaining values of 0.883 0.9 and 0.9351. 

b) Good: Among this cohort of 60 students, 

representing 15% of the total 395 studied students, the ETGT 

model showcased superior performance, particularly evident 

in Precision values. Furthermore, a comprehensive evaluation 

considering MCC, Recall and F1-Score affirmed the model's 

excellence, boasting MCC, Recall and F1-Score values of 0.9, 

0.8667 and 0.9123, respectively. 

c) Acceptable: Upon scrutinizing the outcomes, it is 

apparent that the Reptile Search Algorithm (RSA) 

outperformed the Gorilla Troops Optimizer (GTO) in 

optimizing the Extra-Trees Classifier (ETC) for G3 

classification. The RSA demonstrated higher success, yielding 

a Recall of 0.9516 and an F1-score of 0.908. 

d) Poor: In the classification of students within the Poor 

category, the ETRS model demonstrated superior performance 

among the three models. It achieved maximum values across 

all metrics, notably excelling in the Recall evaluator with a 

value of 0.9828. 

TABLE V. EVALUATION INDEXES OF THE DEVELOPED MODELS’ PERFORMANCE IN G3 

Model Grade 
Index values 

Precision Recall F1-score MCC 

ETC 

Excellent 0.971 0.825 0.892 0.856 

Good 0.895 0.850 0.872 0.850 

Acceptable 0.885 0.871 0.878 0.885 

Poor 0.934 0.974 0.954 0.884 

ETRS 

Excellent 0.973 0.9 0.9351 0.883 

Good 0.9245 0.8167 0.8673 0.847 

Acceptable 0.8551 0.9516 0.908 0.942 

Poor 0.9703 0.9828 0.9765 0.929 

ETGT 

Excellent 0.9722 0.875 0.9211 0.855 

Good 0.963 0.8667 0.9123 0.900 

Acceptable 0.8852 0.871 0.878 0.880 

Poor 0.9303 0.9742 0.9518 0.914 
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C. Discussion 

1) G1: In Fig. 5, the visual representation illustrates the 

distribution of students across categories, enabling a 

comprehensive comparison between measured data and the 

outcomes of classification effectiveness. Specifically focusing 

on forecasting student performance in G1 scores, individual 

graphs for each category (Poor, Acceptable, Good, and 

Excellent) are presented. It is noteworthy that, as per the 

studied dataset, the total number of students amounts to 395. 

The subsequent sections meticulously evaluate the models 

based on recorded figures, revealing 232 individuals in the 

Poor category, 68 in the Acceptable category, 54 in the Good 

category, and 41 in the Excellent category. The ETRS model 

emerges as the most effective classifier for the Poor and 

Acceptable categories, showcasing precise predictions. 

However, in the Good and Excellent groups, notable 

differences are observed between the two hybrid models, with 

ETRS displaying weaker performance in classifying datasets 

for these higher-performing groups. 

  

  

Fig. 5. 3D wall plot for the developed models’ accuracy for G1. 

Fig. 6 presents a confusion matrix, offering insights into the 
accurate categorization of students and instances of 
misclassifications. Within the ETRS model, 372 students were 
accurately classified across grades, including 32 in Excellent, 
47 in Good, 62 in Acceptable, and 231 in Poor, with 23 
misclassifications. In contrast, the ETGT model had 25 
misclassifications, while the straightforward ETC model 
accurately classified 365 students and misclassified 30 
students. 

2) G3: According to Fig. 7, the recorded student figures 

for the Poor, Acceptable, Good, and Excellent categories were 

233, 62, 60, and 40, respectively. Interestingly, the standalone 

ETC model demonstrated superior performance in the Poor 

and Good categories compared to the two hybrid models. 

Subsequently, the ETRS model emerged as the more effective 

classifier, excelling in the categorization of students into 

Excellent and Acceptable groups. 
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Fig. 6. Confusion matrix for each model’s accuracy for G1. 
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Fig. 7. 3D wall plot for the developed models’ accuracy for G3. 

 
 

 

Fig. 8. Confusion matrix for each model’s accuracy for G3. 
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Examining Fig. 8, the ETRS model accurately categorized 
373 students into their respective grades, with only 22 
misclassifications. In contrast, the ETGT model achieved 368 
correct predictions but experienced 27 misclassifications. A 
thorough comparison reveals that the ETRS model 
outperformed both the ETGT and ETC models in terms of 
overall performance. 

D. Comparing Previous Studies vs. Present Research Study 

Table VI summarizes the results of four existing studies in 
the field of student performance. According to these works, the 
highest accuracy was related to the employment of the DTC 
model in the Nguyan and Peter’s study [33] with 82%, while in 
the present study, the combination of ETC model and RSA 
algorithm, achieved high value of 0.975 for G1 and 0.953 for 
G3. As can be seen, this work reached the highest accuracy 
among others. 

TABLE VI. COMPARING RESULTS OF EXISTING STUDIES AND PRESENT 

WORK 

Author (s) Models Accuracy 

Kabakchieva [39] DTC 72.74% 

Bichkar and R. R. Kabra [35] DTC 69.94% 

Nguyen and Peter [33] DTC 82% 

Edin Osmanbegovic et al. [37] NBC 76.65% 

Present study for G1 ETRS 0.975 

Present study for G3 ETRS 0.953 

E. Generelizability and Limitation of Proposed Model 

It is acknowledged that our study was conducted on a 
specific dataset and that the results may not be directly 
applicable to other educational contexts. However, it is 
believed that the potential to be generalized to other settings is 
possessed by the proposed approach of combining the ETC 
model with optimization algorithms, as long as the following 
conditions are met: The data is sufficiently large and 
representative of the target population The data contains 
relevant features that can capture the factors influencing 
students’ academic performance The data is preprocessed and 
cleaned to ensure its quality and validity The optimization 
algorithms are tuned and adapted to the characteristics of the 
data. 

The optimization algorithms are powerful tools that can 
improve the performance of predictive models, but they also 
have some limitations that need to be taken into account. Some 
of the common limitations and potential drawbacks of 
optimization algorithms are then discussed, such as: 

 The dependence on the quality and quantity of the data. 
The data is relied on by optimization algorithms to learn 
and optimize the objective function, but the data may 
not be sufficient, representative, or accurate enough to 
capture the true complexity and variability of the 
problem domain. This may lead to overfitting, 
underfitting, or bias in the optimization results. Iterative 
processes are often involved by optimization algorithms 
that require a large amount of computation and memory 
resources, especially for high-dimensional and 
nonlinear problems. 

 This may limit the applicability and efficiency of the 
optimization algorithms in real-world scenarios, where 
time and space constraints are important factors. 

 The sensitivity to the choice of parameters and initial 
conditions. 

 Optimization algorithms often have several parameters 
and initial conditions that need to be specified by the 
user or tuned by some methods. 

 The convergence, stability, and quality of the 
optimization results may have a significant impact on 
these parameters and initial conditions, but they may 
not be easy to determine or adapt to different problems 
or datasets. 

 The lack of guarantees and robustness. 

IV. CONCLUSION 

In the context of education, the deployment of data-driven 
predictive models takes center stage in this investigation. It 
accentuates the critical need to integrate both qualitative and 
quantitative factors for the prediction and evaluation of 
students' academic performance. Illustrating the effectiveness 
of data mining methodologies like clustering, classification, 
and regression, the study addresses the multifaceted challenges 
proactively encountered by undergraduate students. The 
insights gleaned offer valuable guidance for policymakers, 
educational institutions, and students alike, with the shared 
objective of enhancing future academic outcomes. Moreover, 
the study introduces a cutting-edge strategy by merging the 
Extra-Trees Classifier (ETC) model with optimization 
algorithms, namely Gorilla Troops Optimizer (GTO) and 
Reptile Search Algorithm (RSA). This innovative approach 
demonstrates the potential of combining machine learning 
techniques and optimization algorithms to enhance the 
precision and effectiveness of predictive models. The outcome 
is a resilient toolkit designed to tackle the dynamic challenges 
inherent in students' academic journeys. The comprehensive 
evaluation undertaken in the study, involving the division of 
models into training and testing sets, unveils the considerable 
potential of these hybrid models to augment the classification 
capabilities of the ETC model. This improvement manifests in 
noteworthy enhancements in Accuracy and Precision. Upon 
scrutinizing the results, it becomes apparent that the 
recognition of the potential to significantly enhance the 
classification capabilities of the ETC model by these hybrid 
models is growing. In the context of G1 values, the 
enhancement of Accuracy, Recall, and F1-Score, achieved 
through the implementation of RSA and GTO optimization 
algorithms on the ETC model, was notable. The utilization of 
RSA and GTO resulted in a 1.56% improvement. The ETRS 
model, showcasing a remarkable Accuracy rate of 0.975, 
effectively and precisely classified the majority of students. 

On the other hand, the ETGT and ETC models experienced 
misclassification rates of 6.33% and 7.6%, respectively. 
Turning attention to G3 values, the application of RSA and 
GTO optimization algorithms to the ETC model yielded 
significant improvements in all metrics’ values in the testing 
phase. Nonetheless, this application led to a small reduction in 
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the results of the training phase. The rate of Accuracy values’ 
enhancement for RSA was 9.09%, and for GTO was 6.02% in 
the testing phase. When the 395 students were categorized 
based on their final grades, the prowess of the RSA algorithm 
in enhancing classification Accuracy became evident. The 
ETRS model demonstrated an impressive Accuracy rate of 
0.953, adeptly classifying the majority of students. These 
findings underscore the efficacy of both RSA and GTO 
optimization algorithms in refining the predictive capabilities 
of the ETC model. Notably, the RSA algorithm exhibited a 
particularly commendable performance, showcasing its 
exceptional ability to enhance Accuracy, especially in the 
classification of students based on final grades (G3). The 
results suggest that the integration of these optimization 
algorithms holds promise for refining and optimizing the 
performance of models in educational contexts, contributing to 
more accurate and reliable student classifications. 
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